甲乙类互补对称功率放大电路分析
- 格式:ppt
- 大小:883.00 KB
- 文档页数:23
OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明清华大学张小斌(教授)一.OCL电路OCL(output capacitor less)的英文本意是说没有电容的输出级(这样可以使输出在低频时变得平滑),你一定认为这个称谓怪怪的,那是因为OCL不是最早的职业输出级电路而是最终的。
OTL(OCL从它发展而来)电路的标配有上一句所说的奇怪的电容。
OTL在后面谈论。
之所以说OCL是“最终的”是因为它是最迎合集成电路趋势的(集成电路中最容易制造的类型)。
OCL电路的基本形式如下图所示:它的最重要的特点是双电源,注意电源在集成电路中可不是什么难题。
正是这个双电源的结构特点让电容下岗了。
Ui作为输出信号,在正的时候T1管发生作用;在负的时候T2管发生作用。
于是能产生一个连续的输出,信号如右图所示。
但是,当信号的电压在-0.6V 到0.6V之间(以硅管为例),T1和T2管的导通就成了问题了,这种状况会造成信号输出的交越失真。
面对这个问题,我们只能设置合适的静态工作点,目的就是,在没有Ui时,T1和T2就已经微导通了,那么这个时候来一点点Ui就可以自由的让T1或T2导通。
这是个很有逻辑的想法。
见下面的电路:这个旨在消除交越失真的电路在从正电源+VCC经R1、D1、D2、R2到负电源——VCC 形成一个直流电流的旅行中,必然使T1和T2的两个基极之间产生电压,电压的大小等于两个二极管的压降之和。
这样T1和T2管就均处于微导通状态了。
这种结构稍显幼稚,我们在实际中喜欢采用(b)中的形式,学名Ube倍增电路(注意要是I2远大于Ib),意思是说,合理选择R3、R4的阻值,可以使Ub1、b2得到(1+R3/R4)Ube的直流电压。
为了增大T1和T2管的电流放大系数,减小前级的驱动电流,常采用复合管的架构,复合管前面已经由gemfield讨论过了。
现在就该讨论OTL的情况了,电路如下图:很明显的是,和OCL相比,它的特点是输出端多了个电容,而且是单电源供电。
模拟电子技术知识点:甲乙类单电源互补对称功率放大电路静态时,V K=V CC/2输出通过电容C与负载耦合,而不用变压器——OTL电路(OutputTransformerless) V CC/21.基本电路2.原理分析v i负半周-+充电+v i 正半周-+放电•只要R L C 足够大,电容C 就能起到电源的作用。
-2.原理分析v i 为负半周最大值时接近饱和CCK V v +≈2.原理分析•理想情况下,负载R L 两端得到的交流输出电压幅值V om ≈V CC /2v i 为正半周最大值时接近饱和≈=CES K V v 2.原理分析•在单电源互补对称电路中,计算输出功率、效率、管耗和电源供给的功率,可借用双电源互补对称电路的计算公式,但要用V CC /2代替原公式中的V CC 。
2.原理分析+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题图(b )所示为某集成功率放大器的简化电路图。
已知输入电压为正弦波;三极管T 6、T 8的饱和管压降=2V ;C 和C 2对交流信号均可视为短路。
填空:+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2①为了驱动扬声器,将图(b)与图(a)、图(c)合理连接,可以增加一个元件,使电路正常工作;此时引入的交流负反馈的组态为,在深度负反馈条件下的电压放大倍数≈。
电压串联负反馈1+R 6/R=11-+-+++例题+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2②D 2、D 3和D 4作为输出级偏置电路的一部分,作用是。
甲乙类互补对称功率放大电路甲乙类互补对称功率放大电路是一种常用于音频放大器中的电路设计。
它具有高效率、低失真等优点,被广泛应用于家庭影院、音响系统等场合。
本文将从以下几个方面详细介绍甲乙类互补对称功率放大电路。
一、甲乙类功率放大器的基本原理甲乙类功率放大器是由两个互补的晶体管组成,一个为NPN型晶体管(甲级),一个为PNP型晶体管(乙级)。
在输入信号为正半周时,只有甲级工作;在输入信号为负半周时,只有乙级工作。
这样就实现了信号的全波放大。
由于两个晶体管都能够进行导通和截止,因此能够充分利用晶体管的性能,达到高效率和低失真的效果。
二、甲乙类功率放大器的分类根据输出管的偏置方式不同,可以将甲乙类功率放大器分为固定偏置和动态偏置两种类型。
1.固定偏置:输出管的偏置电压是固定不变的。
这种方式简单可靠,但是会产生较大的静态功耗,因此效率较低。
2.动态偏置:输出管的偏置电压随着输出信号的变化而变化。
这种方式能够降低静态功耗,提高效率,但是需要更复杂的电路设计,容易产生交趾失真。
三、甲乙类互补对称功率放大电路的特点甲乙类互补对称功率放大电路是一种特殊的甲乙类功率放大器。
它具有以下几个特点:1.高效率:由于采用了互补对称结构,能够最大化地利用晶体管的性能,因此效率较高。
2.低失真:由于两个晶体管都能够进行导通和截止,因此可以实现完美的信号全波放大,减小失真。
3.抗干扰:采用了差分输入电路和共模反馈电路等技术,能够有效地抑制干扰信号。
4.稳定性好:采用了负反馈电路和保护电路等技术,能够保证稳定可靠地工作。
四、甲乙类互补对称功率放大电路的应用甲乙类互补对称功率放大电路广泛应用于音频放大器中,特别是功率放大器。
它能够提供足够的输出功率,满足家庭影院、音响系统等场合的需求。
同时,由于具有高效率、低失真等优点,也被广泛应用于汽车音响、舞台音响等领域。
五、甲乙类互补对称功率放大电路的设计甲乙类互补对称功率放大电路的设计需要考虑以下几个方面:1.输入级:采用差分输入电路能够提高抗干扰能力和共模抑制比。
甲乙类互补对称功率放大电路甲乙类互补对称功率放大电路乙类放大电路的失真:前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN 硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。
当输入信号vi 低于这个数值时,T1和T2都截止,ic1和ic2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。
这种现象称为交越失真。
5.3.1 甲乙类双电源互补对称电路一、电路的结构与原理利用图1所示的偏置电路是克服交越失真的一种方法。
由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。
静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。
由于电路对称,静态时iC1= iC2 ,iL= 0, vo =0。
有信号时,由于电路工作在甲乙类,即使vi很小(D1和D2的交流电阻也小),基本上可线性地进行放大。
上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用VBE扩展电路。
二、VBE扩展电路利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用VBE扩展电路来解决,如图1所示。
在图1中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出VCE4=VBE4(R1+R2)/R2因此,利用T4管的VBE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。
这种方法,在集成电路中经常用到。
5.3.2 单电源互补对称电路一、电路结构与原理图1是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。
在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使IC3 、VB2和VB1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位VK=VC=VCC/2 。
甲乙类单电源互补对称放大电路制作与调试一、概述甲乙类单电源互补对称放大电路是一种常见的功率放大电路,适用于音频功率放大器等场合。
本文将介绍该电路的制作与调试方法。
二、材料准备1. 电容:0.1μF、10μF、100μF;2. 电阻:100Ω、1kΩ、10kΩ;3. 三极管:2SC5200(NPN)、2SA1943(PNP);4. 散热片;5. PCB板;6. 其他常用工具。
三、电路设计1. 甲乙类单电源互补对称放大电路原理图如下:[图1]2. 该电路采用了甲乙两个级别的互补对称放大器,其中甲级为NPN 型,乙级为PNP型。
两个级别之间通过一个0.1μF的耦合电容相连。
3. C1和C2为输入耦合电容,用于隔离输入信号和直流偏置。
R1和R2为输入端的限流电阻。
4. R3和R4分别为甲乙两个级别的基极负反馈电阻,可以提高放大器的稳定性和线性度。
5. C3和C4为输出耦合电容,用于隔离输出信号和直流偏置。
R5和R6为输出端的限流电阻。
6. 电源滤波电容C5和C6可以有效降低电源噪声,提高放大器的信噪比。
7. 散热片的选型需要根据实际功率大小进行选择。
四、制作步骤1. 根据上述原理图,绘制PCB板图,并进行打样。
2. 将元器件焊接到PCB板上,注意焊接位置和方向。
3. 安装散热片,注意与三极管之间需要使用硅脂隔离。
4. 连接电源线、输入信号线和输出信号线。
五、调试步骤1. 使用万用表检查各个元器件是否正确连接,并进行必要的修正。
2. 接通电源,使用示波器检查输出波形是否正常。
3. 调整偏置电压,使得输出为0V时基极电压分别为甲级-0.7V、乙级+0.7V。
4. 调整负反馈电阻,使得放大器的稳定性和线性度达到最优状态。
六、注意事项1. 在焊接过程中要避免短路和虚焊等问题。
2. 在调试过程中要注意安全,避免触电和短路等问题。
3. 在使用过程中要注意散热,避免过热损坏三极管。
4. 在连接输入信号时要注意信号源的阻抗和电平,避免对放大器产生影响。
甲乙类互补对称功率放大电路1 甲乙类互补对称功率放大电路乙类放大电路的失真:前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。
当输入信号vi低于这个数值时,T1和T2都截止,i c1和i c2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。
这种现象称为交越失真。
图1 交越失真的产生原因2 甲乙类双电源互补对称电路一、电路的结构与原理利用图2所示的偏置电路是克服交越失真的一种方法。
图2由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。
静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。
由于电路对称,静态时i C1= i C2,I L= 0, v o=0。
有信号时,由于电路工作在甲乙类,即使v i很小(D1和D2的交流电阻也小),基本上可线性地进行放大。
上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用V BE扩展电路。
二、VBE扩展电路图3利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用V BE扩展电路来解决,如图3所示。
在图3中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出V CE4=V BE4(R1+R2)/R2因此,利用T4管的V BE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。
这种方法,在集成电路中经常用到。
3 单电源互补对称电路图4一、电路结构与原理图4是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。
在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使I C3、V B2和V B1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位V K=V C=V CC/2 。