例3 验证方程 (cos x sin x xy2 )dx y(1 x2 )dy 0,
是恰当方程,并求它满足初始条件y(0)=2的解.
解:这里M (x, y) cos x sin x xy2, N (x, y) y(1 x2 ),
M (x, y) 2xy N (x, y) ,
y
x
故所给方程是恰当方程. 把方程重新“分项组合”得
下面证明(7)的右端与 x无关, 即对x的偏导数常等于零
事实上
x
[N
y
M
(x, y)dx] N
x x
[
y
M
(
x,
y)dx]
N x
[ y x
M (x,
y)dx]
N x
M y
0.
于是, (7)右端的确只含有 y,积分之得
(
y)
[N
y
M
(
x,
y)dx]dy,
故
u(
x,
y)
M
(x,
y)dx
du u dx u dy x y
如果我们恰好碰见了方程
u(x, y) dx u(x, y) dy 0
x
y
就可以马上写出它的隐式解
u(x, y) c.
1 恰当方程的定义
定义1 若有函数u(x, y), 使得
du(x, y) M (x, y)dx N(x, y)dy
则称微分方程
M (x, y)dx N(x, y)dy 0, (1)
由于 2u 和 2u 都是连续的 ,从而有 2u 2u ,
yx xy
yx xy
故
M (x, y) N (x, y) .
y
x