液压与气动的优缺点
- 格式:ppt
- 大小:96.50 KB
- 文档页数:4
气动与液压传动的优缺点气动与液压传动的优缺点液压与气压传动同电力拖动系统、机械系统相比有许多优异的特点,下面从搬运负载能力和控制方式性能两个方面进行比较。
1.拖动能力由于气压传动系统的使用压力一般在0.2-1.0MPA范围之内,因此它不能作为功率大的动力系统。
在此只对液压传动系统与电力拖动系统作比较。
从所能达到的最大功率看,液压系统远不如电力拖动系统,但液压传动最突出的优点是出力大、重量轻,惯性小以及输出刚度大,可用以下指标来表示:(1)功率—质量比大这意味着同样功率的控制系统,液压系统体积小、重量轻,这是因为机电元件,例如电动机由于受到磁性材料饱和作用的限制,单位质量的设备所能输出的功率比较小,液压系统可以通过提高系统的压力来提高输出功率,这时仅受到机械强度和密封技术的限制。
在典型情况下,发电机和电动机的功率—质量比仅为 165W/kg 左右,而液压泵和液压马达可达 1650W/kg, 是机电元件10倍,在航空、航天技术领域应用的液压马达可达成 6600W/kg 。
作直线运动的动力装置将更加悬殊,从单位面积出力来看,液压缸的出力一般可达到700-300N/CM2,而直流直线式电动机为30N/CM2 左右。
(2)力一质量比液压缸的力—质量比一般为 13000N/kg,而直流直线式电动机仅为130N/kg 。
一般回转式液压马达的转距—惯量比是同容量电动机的10-20倍,一般液压马达为61*10立方NM(近年来发展的无槽电动机具有很高的转矩—惯量比,同液压马达相当)。
转矩—惯量比大,意味着液压系统能够产生大的加速度,也就是说时间常数小,响应速度快,具有优良的动态品质。
2 .控制方式性能液压及气压传动在组成控制系统时,与机械装置相比,其主要优点是操作方便、省力、系统结构空间的自由度大,易于实现自动化,且能在很大范围内实现无级高速,传动比可达100:1至2000:1。
如与电气控制相配合,可较方便地实现复杂的程序动作和远程控制。
液压与气动技术课程总结液压与气动技术是现代工程领域中非常重要的一门课程,涉及到流体力学、控制工程等多个学科的知识,广泛应用于工业、农业、航空航天等领域。
通过本门课程的学习,我对液压与气动技术有了更深入的了解,下面将对课程内容进行总结。
一、液压技术液压技术是利用液体传递能量的一种技术,主要应用于工程机械、船舶、飞机等领域。
在液压技术的学习中,我了解到液压系统的基本组成部分包括液压泵、液压阀、液压缸等。
液压泵是液压系统的动力来源,通过将机械能转化为液体压力能,为液压系统提供动力。
液压阀则是调节液体流量和压力的元件,起到控制液压系统的作用。
而液压缸则是液压系统的执行机构,通过液压力将液压能转化为机械能,实现对物体的运动。
在液压技术的学习中,我还了解到了液压系统的原理和工作过程。
液压系统的工作原理是利用液体在封闭的容器中的传递压力,实现机械元件的运动。
液压系统的工作过程一般包括液压泵吸油、液压系统的压力建立、液压阀的控制和液压缸的工作等几个阶段。
通过学习液压技术,我了解到了液压系统的优点是传递力矩大、传动效率高、运动平稳等。
二、气动技术气动技术是利用气体传递能量的一种技术,主要应用于自动控制系统、工业生产等领域。
在气动技术的学习中,我了解到气动系统的基本组成部分包括气源、气压调节器、执行元件等。
气源是气动系统的动力来源,通常使用压缩空气作为气源。
气压调节器用于调节气源的压力,为气动系统提供稳定的工作压力。
执行元件则是气动系统的执行机构,通过气动力将气动能转化为机械能,实现对物体的运动。
在气动技术的学习中,我还了解到了气动系统的原理和工作过程。
气动系统的工作原理是利用气体在封闭的容器中的传递压力,实现机械元件的运动。
气动系统的工作过程一般包括气源供气、气压调节、气动元件的控制和执行元件的工作等几个阶段。
通过学习气动技术,我了解到了气动系统的优点是传递速度快、结构简单、维护方便等。
三、液压与气动技术在实际应用中的重要性液压与气动技术在工业生产中有着广泛的应用,可以实现各种复杂的运动和控制。
液压与气动技术液压与气动技术是工业生产中常用的两种动力传输技术,液压运用液体输能,气动则利用气体输能。
两种技术广泛应用于工业生产流程的各个环节。
1. 液压技术的优势液压技术通过液体输能,具有以下优势:1.1. 稳定性高液压传动具有质量稳定,冲击消除能力强等特点。
在工业生产中,如果需要精确控制和精确调节,液压技术相对于气动技术更稳定、可靠。
1.2. 承载能力大液压系统的承载能力与系统设计有关,一般来说动力输出大,承载能力强,并且承载能力随着液压元件和系统设计的改进而不停地提高,可用于各种类型的工业生产。
1.3. 传动效率高液压传动设备能够在工作过程中将液体输送到相应设备,长时间工作也没有问题。
与气动相比,传动效率更高,可大大缩短生产时间。
1.4. 隔离效果好液压传动系统具有灵活度高、隔离效果好、噪音小等诸多优点。
这也使得液压技术被广泛应用于需要复杂控制和隔离完成产品生产的领域中。
2. 气动技术的优势气动技术是利用气体作为能量媒介转换为机械能的技术,相对于液压技术,气动技术也有很多优势:2.1. 操作简单气动系统操作简单,控制电气要求低,维修方便,制造材料呼也应得。
2.2. 成本低廉相对于液压系统而言,气动传动设备价格便宜,适用范围广,成本较为低廉。
2.3. 内部运动速度快气体在中央管道流动和阀门开启时,具有快速加速的特性,从而使得传输变成更快、更高效。
2.4. 适用范围广气动技术广泛应用于各种类型的工业生产,如物流运输,自动化控制等领域中。
3. 液压与气动技术的应用领域液压与气动技术在工业生产中有着广泛的应用,尤其是在大型机械、建筑机械、航空航天、冶金、化工等行业中,尤其液压技术得到的应用更为广泛。
3.1. 冶金行业液压技术在冶金行业中主要应用于铁、钢等金属矿物的生产中,如铸造成型机、轧制机、折弯机、钻孔机、压力机等。
3.2. 建筑机械液压技术在建筑机械生产中扮演着重要的角色,常用设备如挖掘机、装载机、升降机、起重机等。
一、实验目的1. 理解液压与气动系统的基本原理及组成。
2. 掌握液压与气动元件的结构、工作原理和性能。
3. 熟悉液压与气动系统的安装、调试与维护方法。
4. 提高动手能力和分析解决问题的能力。
二、实验内容1. 液压与气动系统基本原理2. 液压与气动元件实验3. 液压与气动系统实验三、实验原理1. 液压与气动系统基本原理液压与气动系统是利用流体(液体或气体)的压力能来传递动力、实现机械运动和控制的系统。
液压系统以液体为工作介质,气动系统以气体为工作介质。
2. 液压与气动元件实验液压元件主要包括:液压泵、液压缸、液压阀、液压油管等;气动元件主要包括:气源、气缸、气动阀、气动管等。
3. 液压与气动系统实验液压与气动系统实验主要包括:液压系统实验、气动系统实验、液压与气动复合系统实验。
四、实验器材1. 液压与气动实验台2. 液压与气动元件3. 量具(压力表、流量计等)4. 连接管路5. 电源6. 控制开关五、实验步骤1. 液压与气动系统基本原理实验(1)观察液压与气动元件的结构,了解其工作原理;(2)分析液压与气动系统的组成及工作过程;(3)对比液压与气动系统的优缺点。
2. 液压与气动元件实验(1)观察液压与气动元件的结构,了解其工作原理;(2)进行液压与气动元件的性能测试,如压力、流量、流量系数等;(3)分析液压与气动元件的性能特点。
3. 液压与气动系统实验(1)根据实验要求,设计液压与气动系统;(2)安装、调试液压与气动系统;(3)观察系统运行情况,记录实验数据;(4)分析实验结果,总结液压与气动系统的性能。
六、实验数据1. 液压与气动系统基本原理实验(1)液压与气动元件的结构、工作原理及性能;(2)液压与气动系统的组成及工作过程;(3)液压与气动系统的优缺点。
2. 液压与气动元件实验(1)液压与气动元件的压力、流量、流量系数等性能参数;(2)液压与气动元件的性能特点。
3. 液压与气动系统实验(1)液压与气动系统的压力、流量、速度等性能参数;(2)液压与气动系统的运行稳定性、响应速度等性能指标。
液压与气动技术液压与气动技术液压技术是利用液体传递压力和能量的一种技术,其优点是传递稳定,速度慢且可控,传递能量大。
液压系统被广泛应用于各种机械设备中,如工业机械、建筑机械、航空航天设备和重型卡车等。
液压系统的主要部件是油泵、液控阀和执行器。
气动技术是利用气体传递压力和能量的一种技术,其优点是传递速度快,维护简单,成本低。
气动系统被广泛应用于各种工业设备中,如气动工具、轻型机械、装配线和自动化生产线等。
气动系统的主要部件是压缩机、气缸和气控阀。
液压与气动技术的应用液压与气动技术已被广泛应用于各种工业领域。
下面分别介绍它们在工业自动化、航空航天和卡车制造等方面的应用。
工业自动化:液压系统和气动系统广泛应用于工业自动化中。
液压系统主要用于生产线上的大型机械,如钢铁加工、航空发动机和汽车制造。
气动系统主要用于轻型机械和装配线,如喷漆机和工件输送线。
航空航天:液压系统和气动系统在航空航天领域中应用广泛。
液压系统主要用于飞机的起落架和襟翼系统,可以提供强大的推力和可靠性。
气动系统主要用于飞机的控制面和涡轮等,可以提供高速、小型、低成本和易维护的优势。
卡车制造:液压系统和气动系统在卡车制造领域中应用广泛。
液压系统主要用于大型卡车的转向和升降系统,可以提供高效的柔性控制和可靠性。
气动系统主要用于制动系统,可以提供快速响应、安全性和低成本的优势。
液压与气动技术的未来液压与气动技术在未来将继续发展。
下面分别介绍它们在工业自动化、医疗和新能源领域中的应用前景。
工业自动化:随着自动化制造的不断发展,液压和气动系统技术将得到更广泛的应用。
液压系统将更多地用于智能制造、3D打印和机器人制造。
气动系统将更多地用于物流和仓储,如智能货架和自动仓库。
医疗:液压和气动系统技术在医疗中的应用前景非常广阔。
液压系统将更多地用于人工智能化的手术设备和高端医疗器械。
气动系统将更多地用于呼吸机和输液泵等医疗设备。
新能源:液压和气动系统技术在新能源领域的应用前景也非常广阔。
气压传动的优点气压传动的缺点优 点(1) 可进行大范围无极调速·用速度控制阀对排气或供气进行节流,可以调节气缸的速度。
优 点(2) 输出力的调整简便·可用减压阀对气压进行调整,以调节气缸的输出力。
优 点(3) 可进行高速动作·由于空气的粘性较低,因此管道中的压力降小、流速快,可进行高速动作。
优 点(4) 不必担心爆炸或起火·由于采用气压,因此不必担心会爆炸或起火。
此外,也不会因湿度而产生影响。
优 点(5) 采用软接触方式,即使过载也很安全·由于空气是压缩性流体,因此即使施加冲击性负载,由于气缸内的空气被压缩,冲击力也能被吸收。
优 点(6) 可储存能量·只需设置气罐,便可简单地储存气压能量。
优 点(7) 即使没有专业知识也可操作·无需非常专业的知识便可操作气动元件。
优 点(8) 作为能量源的空气随处可得·作为能量源的空气在地球上的任何地方都能得到。
优 点(9) 维护简单·不需要非常专业的知识和技术,维护十分简便。
缺 点我们需要认识到气压系统也有着如下的缺点。
(1) 难以实现精确的速度调节·由于空气具有压缩、膨胀的性质,因此在速度上会不均匀,难以实现极为精确的调节。
缺 点(2) 有排气噪音·会发出排气噪音。
以上为气压的优点及缺点。
在自动化的进程中,我们不应仅依赖于气动技术,而应该将它和液压、机械、电气、电子等各种控制方式组合使用,从而有效地发挥气动技术的优点。
液压与气动技术液压与气动技术是一种相辅相成的工业技术,是现代工业领域中最重要的技术之一。
液压技术和气动技术的本质是利用流体来传递能量和控制机械运动。
这两种技术都能够将能量从一个地方传递到另一个地方,并因此拥有广泛的应用领域。
液压技术的原理是利用液体作为传动介质进行力的传递、控制和动力转换。
它通过压力控制来调整速度、转动力矩和角度,从而达到工业现场设备的控制目的。
液压系统具有动态响应快、周转高效、控制精度高等特点,因此被广泛应用于重型机器、工业机械、船舶、航空和军事等领域。
气动技术的原理是利用气体作为传动介质进行力的传递、控制和动力转换。
与液压系统相比,气动系统具有响应速度更快、动力性能较差的特点。
它的应用领域主要集中在需要简单线路和移动性强的场合,例如移动机器、工业机械、自动控制和自动化生产线等。
液压技术和气动技术的组成都是相似的。
它们都由一系列压力泵、压力控制阀、工作缸或执行元件、管路和油缸或气罐组成。
其中,压力泵将油液或气体压缩并将其传送到控制阀中,控制阀将压力分配到工作缸或执行元件中,使其产生动力,达到控制和执行的目的。
液压和气动是密封系统,它们在应用过程中非常重要。
密封技术的发展可以保持液压和气动系统的持续性能和长寿命。
当液压和气动系统发生泄漏时,它们将有效性能受到影响,并且可能会造成不必要的浪费和危险,从而造成财产和人员的损失。
近年来,液压和气动技术的应用逐渐向机器人、医疗保健、食品加工和包装等新兴领域拓展,同时液压和气动技术在现代城市的交通和港口航运中也扮演着重要的角色。
总的来说,液压和气动技术在未来的发展中将继续保持其重要地位,为人们的生活和工作提供更加高效、便利和安全的服务。
液压与气压传动的优缺点1、液压传动之所以能得到广泛的应用,是由于它具有以下的主要优点:(1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方。
例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。
由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。
(2)液压传动装置的重量轻、结构紧凑、惯性小。
例如,相同功率液压马达的体积为电动机的12%〜13%。
液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至0.0025N/W(牛/瓦),发电机和电动机则约为0.03N/W。
(3)可在大范围内实现无级调速。
借助阀或变量泵、变量马达,可以实现无级调速,调速范围可达1 : 2000 ,并可在液压装置运行的过程中进行调速。
(4)传递运动均匀平稳,负载变化时速度较稳定。
正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动。
(5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长。
(6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控。
(7)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用。
液压传动的缺点是:(1)液压系统中的漏油等因素,影响运动的平稳性和正确性,使得液压传动不能保证严格的传动比。
(2)液压传动对油温的变化比较敏感,温度变化时,液体粘性变化,引起运动特性的变化,使得工作的稳定性受到影响,所以它不宜在温度变化很大的环境条件下工作。
(3)为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造精度要求较高,加工工艺较复杂。
(4)液压传动要求有单独的能源,不像电源那样使用方便。
(5)液压系统发生故障不易检查和排除。
液压与气动期末总结近年来,随着工业化的发展和机械制造业的快速进步,液压与气动技术在工程领域中得到了广泛应用。
液压与气动作为一种能量传动和控制技术,具备许多优势,如高效率、高可靠性、大功率密度和灵活性等特点,因此被广泛应用于各种工程设备和系统中,包括汽车制动系统、挖掘机、起重机、液压机床等。
在这门课程中,我们深入学习了液压和气动系统的工作原理、设计和优化方法,以及系统元件的选择和应用。
通过对系统的分析和计算,我们可以了解系统的性能特点和工作原理,从而实现对系统的控制和优化。
在课程的学习过程中,我收获了以下几点:首先,我了解了液压与气动系统的工作原理和组成部分。
液压系统是通过液体传递能量的系统,而气动系统则是通过气体传递能量的系统。
两者都通过液压泵或气压泵将能量转换为液体或气体,通过阀门、执行器和其他元件进行控制和传递。
系统的设计和选择需要考虑流量、压力和功率等因素,以及系统的稳定性和可靠性。
其次,我学会了进行液压与气动系统的分析和计算。
课程中,我们学习了流体动力学的基本原理,例如质量守恒定律、能量守恒定律和动量守恒定律等,利用这些原理可以对系统中的液体或气体进行分析和计算。
通过对流速、压力和功率等参数的计算和分析,可以了解系统的性能和特点,从而进行控制和优化。
然后,我了解了液压与气动系统的主要应用领域。
液压与气动技术广泛应用于汽车制动系统、挖掘机、起重机、液压机床、航空航天设备等众多领域。
在这些领域中,液压与气动技术可以实现高效能量传递和控制,提高设备的性能和效率。
例如,液压系统在起重机中可以实现精确的位置和力控制,气动系统在航空航天设备中可以实现高速和大功率的传递。
最后,我了解了液压与气动系统的进一步发展方向。
随着科学技术的不断进步和工程领域的发展,液压与气动技术也在不断创新和改进。
例如,液压与气动系统的智能化和自动化程度不断提高,可以实现远程控制和监测。
此外,新型材料和技术的应用也为液压与气动系统的性能提升提供了新的可能性。
液压与气压传动的优缺点1、液压传动之所以能得到广泛的应用,是由于它具有以下的主要优点:(1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方。
例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。
由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。
(2)液压传动装置的重量轻、结构紧凑、惯性小。
例如,相同功率液压马达的体积为电动机的12%~13%。
液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至0.0025N/W(牛/瓦),发电机和电动机则约为0.03N/W。
(3)可在大范围内实现无级调速。
借助阀或变量泵、变量马达,可以实现无级调速,调速范围可达1∶2000,并可在液压装置运行的过程中进行调速。
(4)传递运动均匀平稳,负载变化时速度较稳定。
正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动。
(5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长。
(6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控。
(7)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用。
液压传动的缺点是:(1)液压系统中的漏油等因素,影响运动的平稳性和正确性,使得液压传动不能保证严格的传动比。
(2)液压传动对油温的变化比较敏感,温度变化时,液体粘性变化,引起运动特性的变化,使得工作的稳定性受到影响,所以它不宜在温度变化很大的环境条件下工作。
(3)为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造精度要求较高,加工工艺较复杂。
(4)液压传动要求有单独的能源,不像电源那样使用方便。
(5)液压系统发生故障不易检查和排除。
液压传动的优缺点与其它传动方式相比,液压传动具有以下优缺点。
一、液压传动的优点1) 液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点。
2) 液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3) 在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。
液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4) 液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。
而且由于其反应速度快,故可实现频繁换向。
5) 操作简单,调整控制方便,易于实现自动化。
特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6) 液压系统便于实现过载保护,使用安全、可靠。
由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7) 液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。
二、液压传动的缺点1) 油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比。
2) 对油温的变化比较敏感,不宜在很高或很低的温度条件下工作。
3) 能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。
4) 系统出现故障时,不易查找原因。
综上所述,液压传动的优点是主要的、突出的,它的缺点随着科学技术的发展会逐步克服的,液压传动技术的发展前景是非常广阔的。
气压传动的优缺点优点1·用空气做介质,取之不尽,来源方便,用后直接排放,不污染环境,不需要回气管路因此管路不复杂。
2·空气粘度小,管路流动能量损耗小,适合集中供气远距离输送。
3·安全可靠,不需要防火防爆问题,能在高温,辐射,潮湿,灰尘等环境中工作。
4·气压传动反应迅速。
5·气压元件结构简单,易加工,使用寿命长,维护方便,管路不容易堵塞,介质不存在变质更换等问题。
液压与气动技术
第一篇:液压技术的基本原理与应用
液压技术是指利用液体的流动产生压力、传递能量以及
完成各种工艺过程的技术。
作为一种高效可靠的动力传输方式,液压技术在工业生产中得到了广泛应用。
液压系统主要由液压马达、液压泵、液压阀等组成。
其
工作原理基于流体静力学和流体动力学的基本原理,通过控制压力和流量来调节和控制液压系统的各项参数。
液压技术具有以下特点:
1. 高效性:液压系统压力高达1000 bar以上,传递功
率高,输出功率大。
2. 灵活性:液压系统可进行精细调节,流量和压力可实
现无级调节,并可选用多种类型的液压元件,满足不同的工作要求。
3. 操作简便:液压系统自动化程度高,只需调节液压阀
或操作控制杆,即可实现液压系统的各项参数的控制。
液压技术应用广泛,下面介绍几个常见的应用领域:
1. 工程机械:挖掘机、装载机、铲车等。
2. 机床:数控机床、金属加工机床。
3. 飞机、船舶、汽车:制动系统、操纵系统。
在使用液压技术过程中,需注意以下几点:
1. 液压系统运行前应先进行系统检测和调试,以及排除
故障。
2. 液压油应定期更换,以保证系统正常运行。
3. 液压元件的使用应符合规定,以免出现故障。
因此,在实际应用过程中,保持液压系统的正常运行状态需要科学的维修和保养。
这样才能保证液压系统的高效可靠工作,提高生产效率和产品质量。
解密如何区分液压设备中液压系统和气动系统的优缺点
液压设备中的液压系统与气动系统是其行业设备中的两种常见系统装置,那么两个系统在流体掌握上各有什么优点和缺点呢?请看本文以下详情:
柳州北斗星液压设备液压系统的优点:
①液压掌握用油液作为工作介质,故能把由于功率的损耗而产生的热量,从发生的地方带到别处,这样在一定的功率状况下,可以大大减小部件的尺寸;
②从负载的影响看,液压系统具有机械上的刚性,用在闭环系统中,定位刚度较大,位置误差较小;
③与机械机构相比,液压执行器的响应速度较高,能高速启动、制动与反向,同时其力矩—惯量比也较大,因而其加速力量较强;
④液压传动易实现无级调速,具有自身润滑等优点。
液压设备液压系统简单出现的缺点:
①简单漏油,因而会影响运动的平稳性,并使效率降低;
③油液具有易燃性,有引起爆炸的危急;
④液体粘度受温度影响,使供油量和执行机构的运动速度不稳定;
⑤油液中有空气会引起工作机构的不匀称跳动;
⑥就处理小功率信号的数学运算、误差检测、放大、测试与补偿等功能而言,液压装置不如电子或机电装置那样敏捷、线性、精确和便利,因而在掌握系统的小功率局部,一般不宜采纳,主要应用于系统的动力局部。
液压设备
而液压设备中气动系统的优点在于:
①气动掌握与液压掌握相比,动作快速、便利;
②用法的元件和工作介质本钱低,便于现有机器设备的自动化改装。
其气动系统的缺乏优势又表现在:
①运动不平稳;
②有噪音;
③掌握元件的体积较大。
液压与气动技术教案第1章液压传动基础知识教学目标:了解液压传动发展历程、用途、特点。
了解液压传动原理及液压传动系统的组成。
教学重点:液压传动的原理。
教学难点:液压传动系统中压力与流量、功率的计算。
教学方法:做实验生活实例。
1.1 液压传动概述1.2 液压传动原理目的:了解液压传动优缺点。
掌握液压传动的原理。
重点:液压传动原理及传动系统组成。
难点:液压传动系统的组成。
方法:讲授内容:一,液压传动的主要优点1,操纵控制方便,可实现大范围的无极调速。
2,液压传动的各种元件可根据余姚方便、灵活地布置。
3,采用电液联合控制,可实现更高程度的自动控制过程。
二,液压传动的缺点1,液体流动的阻力损失和泄漏较大。
2,液压原籍的制造精度高,价格较贵。
3,液体的泄漏及可压缩性,较难得到严格的传动比。
三,液压传动原理液压传动是一个不同能量的转换过程,是以液体作为工作介质,通过密封容积的变化来传递运动,通过液体内部的压力来传递动力。
四,液压传动系统的组成1,动力部分:将原动机的机械能转换为油液的压力能。
(液压泵、齿轮泵、柱塞泵)2,执行部分:将压力能转换成为带动工作机构运动的机械能。
(液压缸、液压马达、)3,控制部分:用来控制和调节油液的压力、流量和流动方向。
(压力控制阀、流量控制阀、方向控制阀)4,辅助部分:保证系统正常的工作的辅助元件。
(管路、接头、油箱、过滤器)五,液压传动系统图的图形符号1,图形符号只表示元件的只能。
2,图形符号内的油液流动方向用箭头表示。
3,图形符号均与原件的静止位置或中间零位置表示。
1.3液压传功系统中的压力与流量1.4液压传动的功率计算目的:了解液压传动系统的压力、流量的概念了解液压泵的工作效率重点:静压传递原理难点:液体阻力和压力损失方法:讲授内容:一,压力的概念油液的压力是由油液的自重和油液收到的外力(一般表现为助力)作用所产生的P=F/AP——油液的压力,单位为paF——作用在油液表面上的外力,单位为NA——油液表面的承压面积,单位为㎡额定压力:连续运转(工作)的最高工作压力二,静压传递原理1,静止油液中任意一点所受到的哥哥方向的压力都相等。