液压与气动技术第1章 液压与气压传动基础
- 格式:ppt
- 大小:856.00 KB
- 文档页数:57
液压与气压传动教案第一章:液压与气压传动概述1.1 教学目标了解液压与气压传动的基本概念掌握液压与气压传动系统的应用领域理解液压与气压传动的工作原理1.2 教学内容液压与气压传动的定义液压与气压传动系统的应用领域液压与气压传动的工作原理1.3 教学方法讲授法:讲解液压与气压传动的基本概念和原理案例分析法:分析实际应用案例,让学生更好地理解液压与气压传动系统的应用1.4 教学评估课堂问答:检查学生对液压与气压传动基本概念的理解小组讨论:让学生通过讨论加深对液压与气压传动系统的应用领域的理解第二章:液压系统的基本元件2.1 教学目标了解液压系统的基本元件及其功能掌握液压系统的组成部分理解液压系统的工作原理2.2 教学内容液压泵的概念与分类液压缸的概念与分类液压控制阀的概念与分类2.3 教学方法讲授法:讲解液压系统的基本元件及其功能互动教学法:引导学生参与课堂讨论,加深对液压系统组成部分的理解2.4 教学评估课堂问答:检查学生对液压系统基本元件的理解小组讨论:让学生通过讨论加深对液压系统组成部分的认识第三章:液压系统的设计与计算3.1 教学目标掌握液压系统的设计原则和方法学会液压系统的计算方法能够应用液压系统的设计与计算解决实际问题3.2 教学内容液压系统的设计原则和方法液压系统的计算方法液压系统设计实例3.3 教学方法讲授法:讲解液压系统的设计原则和方法案例分析法:分析实际液压系统设计实例,让学生更好地理解液压系统的设计与计算方法3.4 教学评估课堂问答:检查学生对液压系统设计原则和方法的理解小组讨论:让学生通过讨论加深对液压系统设计与计算的应用能力第四章:气压传动系统的基本元件4.1 教学目标了解气压传动系统的基本元件及其功能掌握气压传动系统的组成部分理解气压传动系统的工作原理4.2 教学内容气压泵的概念与分类气压缸的概念与分类气压控制阀的概念与分类4.3 教学方法讲授法:讲解气压传动系统的基本元件及其功能互动教学法:引导学生参与课堂讨论,加深对气压传动系统组成部分的理解4.4 教学评估课堂问答:检查学生对气压传动系统基本元件的理解小组讨论:让学生通过讨论加深对气压传动系统组成部分的认识第五章:气压传动系统的应用5.1 教学目标了解气压传动系统的应用领域掌握气压传动系统在实际工程中的应用能够应用气压传动系统的知识解决实际问题5.2 教学内容气压传动系统的应用领域气压传动系统在实际工程中的应用案例5.3 教学方法讲授法:讲解气压传动系统的应用领域和实际工程中的应用案例案例分析法:分析实际应用案例,让学生更好地理解气压传动系统的应用5.4 教学评估课堂问答:检查学生对气压传动系统应用领域的理解小组讨论:让学生通过讨论加深对气压传动系统在实际工程中应用的认识第六章:液压系统的故障诊断与维护6.1 教学目标学习液压系统常见故障的诊断方法理解液压系统故障诊断的基本原则掌握液压系统的维护保养知识6.2 教学内容液压系统故障诊断的方法与步骤液压系统故障诊断的基本原则液压系统的维护保养措施6.3 教学方法讲授法:讲解液压系统故障诊断的方法与步骤案例分析法:分析典型液压系统故障案例,提高学生的故障诊断能力实践教学法:让学生在实验室进行液压系统的维护保养操作6.4 教学评估课堂问答:检查学生对液压系统故障诊断方法的理解故障诊断练习:让学生通过实际操作练习液压系统故障诊断第七章:气压传动系统的故障诊断与维护7.1 教学目标学习气压传动系统常见故障的诊断方法理解气压传动系统故障诊断的基本原则掌握气压传动系统的维护保养知识7.2 教学内容气压传动系统故障诊断的方法与步骤气压传动系统故障诊断的基本原则气压传动系统的维护保养措施7.3 教学方法讲授法:讲解气压传动系统故障诊断的方法与步骤案例分析法:分析典型气压传动系统故障案例,提高学生的故障诊断能力实践教学法:让学生在实验室进行气压传动系统的维护保养操作7.4 教学评估课堂问答:检查学生对气压传动系统故障诊断方法的理解故障诊断练习:让学生通过实际操作练习气压传动系统故障诊断第八章:液压与气压传动的应用案例分析8.1 教学目标了解液压与气压传动在工程实际中的应用案例分析液压与气压传动系统在实际工作中的优势与局限性学会分析液压与气压传动系统的设计与实施方法8.2 教学内容液压与气压传动在工程实际中的应用案例分析液压与气压传动系统在实际工作中的优势与局限性液压与气压传动系统的设计与实施方法8.3 教学方法讲授法:讲解液压与气压传动在工程实际中的应用案例案例分析法:分析液压与气压传动系统在实际工作中的优势与局限性小组讨论法:让学生分组讨论液压与气压传动系统的设计与实施方法8.4 教学评估课堂问答:检查学生对液压与气压传动应用案例的理解小组报告:评估学生在小组讨论中的表现和对设计与实施方法的理解第九章:液压与气压传动的节能与环保9.1 教学目标了解液压与气压传动系统中能量损失的原因学习液压与气压传动系统的节能技术理解液压与气压传动系统对环境的影响及环保要求9.2 教学内容液压与气压传动系统中能量损失的原因及减少能量损失的方法液压与气压传动系统的节能技术液压与气压传动系统对环境的影响及环保要求9.3 教学方法讲授法:讲解液压与气压传动系统中能量损失的原因及节能技术互动教学法:引导学生讨论液压与气压传动系统的环保问题实践教学法:让学生在实验室实践节能与环保的相关技术9.4 教学评估课堂问答:检查学生对液压与气压传动节能与环保知识的理解实践报告:评估学生在实践活动中对节能与环保技术的应用能力第十章:液压与气压传动的现代发展趋势10.1 教学目标了解液压与气压传动技术的最新发展趋势学习现代液压与气压传动系统的创新应用理解液压与气压传动技术在未来的发展方向10.2 教学内容液压与气压传动技术的最新发展趋势现代液压与气压传动系统的创新应用液压与气压传动技术在未来的发展方向10.3 教学方法讲授法:讲解液压与气压传动技术的最新发展趋势案例分析法:分析现代液压与气压传动系统的创新应用案例小组讨论法:让学生分组讨论液压与气压传动技术的未来发展方向10.4 教学评估课堂问答:检查学生对液压与气压传动技术最新发展趋势的理解小组报告:评估学生在小组讨论重点和难点解析1. 液压与气压传动的基本概念和原理:重点关注液压与气压传动的工作原理,以及液压与气压传动系统的应用领域。
目录第一章液压传动基础知识绪论第二章液压动力元件第三章液压执行元件第四章液压控制元件第五章液压辅助元件第六章液压基本回路第七章典型液压传动系统第八章液压伺服和电液比例控制技术第九章液压系统的安装和使用第十章液压系统的故障诊断与排除第十一章气源装置及气动辅助元件第十二章气动执行元件第十三章气动控制元件第十四章气动基本回路第十五章气压传动系统实例一、液压与气压传动的研究对象液压与气压传动是以有压流体(压力油或压缩空气)为工作介质,来实现各种机械的传动和自动控制的传动形式。
液压传动传递动力大,运动平稳,但由于液体粘性大,在流动过程中阻力损失大,因而不宜作远距离传动和控制;而气压传动由于空气的可压缩性大,且工作压力低(通常在1.0MPa以下),所以传递动力不大,运动也不如液压传动平稳,但空气粘性小,传递过程中阻力小、速度快、反应灵敏,因而气压传动能用于远距离的传动和控制。
二、液压与气压传动的工作原理图0-1 液压千斤顶a)液压千斤顶原理图b)液压千斤顶简化模型1-杠杆手柄2-小缸体3-小活塞4、7-单向阀5-吸油管6、10-管道8-大活塞9-大缸体11-截止阀12-通大气式油箱1.力比例关系或(0-1)式中A1、A2分别为小活塞和大活塞的作用面积;F1为杠杆手柄作用在小活塞上的力。
在液压和气压传动中工作压力取决于负载,而与流入的流体多少无关。
2.运动关系或(0-2)式中h1、h2分别为小活塞和大活塞的位移。
●从式(O-2)可知,两活塞的位移和两活塞的面积成反比。
将A1h1=A2h2两端同除以活塞移动的时间t得:即(0-3)式中v1、v2分别为小活塞和大活塞的运动速度。
●从式(0-3)可以看出,活塞的运动速度和活塞的作用面积成反比。
(0-4)如果已知进入缸体的流量q ,则活塞的运动速度为:(0-5)●从式(O-5)可得到另一个重要的基本概念,即活塞的运动速度取决于进入液压(气压)缸(马达)的流量,而与流体压力大小无关。
第一章 液压与气压传动基础知识液压油是传递动力和运动的工作介质,它还起到润滑、冷却和防锈的作用。
因此,了解油液的基本性质和主要力学规律,正确理解液压传动原理与规律,对于正确使用液压系统都是非常必要的。
第一节 液压传动工作介质一、液压油的性质反应液压油性质的主要参数有粘度、密度、粘温特性等。
液压油的基本性质可由有关资料中查到。
例如,矿物油在15℃时的密度为900Kg/m 3;体积膨胀系数(6.3~7.8)×10-4K -1和比热容(1.7~2.1)×103J/(k g ·K )等等。
1、 粘性 液体在外力作用下流动(或有流动趋势)时,分子间的内聚力会阻止分子间的相对运动而产生一种内摩擦力,这一特性称为液体的粘性,它是液体重要的物理性质,也是选择液压油的主要依据。
由于粘性表现为一种内摩擦力阻止分子间的相对运动,因此各液压层间液体的运动速度是不相等的,这可以用图2-1示意图来表示。
若两平行平板间充满液体,下平板固定,而上平板以u 0速度向右平动,由于液体的粘性作用,粘连于下平板的液体层速度为零,粘连于上平板的液体层速度为u 0。
而由于粘性作用,中间各层液体速度则从上到下按递减规律,呈线性分布。
实验测定指出,液体流动时相邻液层间的 内摩擦力F 与液层接触面积A 、液层间相对运 动的速度S 梯度d u /d y 成正比F=µ Adydu(2-1)式中 µ——比例常数。
又称为粘性系数或动力粘度。
若以τ表示内摩擦切应力,即液层间在单位面积上的内摩擦力,则τ=A F =µdydu(2-2) 这就是牛顿液体内摩擦定律。
2、粘度 液体粘性的大小用粘度来表示,常用的粘度有三种:即动力粘度、运动粘度、和相对粘度。
(1) 动力粘度 流体粘性的内摩擦系数或绝对粘度,用μ表示。
即dudyτμ= (2-3)3、粘度与压力的关系 压力对液压油的粘度有一定影响。
液体所受的压力增加时,其分子间的距离将减小,于是内聚力增加,粘度也略随之增大,液体的粘度与压力的关系公式 νp =ν(1+0.003p ) (2-8)式中 νp ——压力为p 时液体的运动粘度;ν——压力为一个大气压时液体的运动粘度; p 液体所受的压力。