高斯平面直角坐标系的建立知识分享
- 格式:doc
- 大小:305.00 KB
- 文档页数:15
高斯直角坐标系高斯直角坐标系是一种用于地图制图的坐标系,也被称为高斯-克吕格投影坐标系。
它是一种平面直角坐标系,用于将地球表面上的点映射到平面上。
在这个坐标系中,地球表面被划分成了许多小区域,每个小区域都有一个唯一的投影中心。
下面将对高斯直角坐标系进行详细介绍。
一、高斯直角坐标系的定义高斯直角坐标系是指在地球表面上建立一个平面直角坐标系,使得该平面上任意一点(x,y)与其所对应的经纬度(B,L)之间存在着确定的函数关系。
二、高斯直角坐标系的原理在高斯直角坐标系中,我们假设地球是一个椭球体,并将其投影到一个平面上。
这个平面可以看作是椭球体的切平面,即与椭球体相切的平面。
我们选择以某个点为中心进行投影,并规定该点处的投影正北方向与地理正北方向重合。
然后根据柏松定理和拉普拉斯方程式来计算每个点在该投影中所对应的坐标。
三、高斯直角坐标系的特点1. 高精度:高斯直角坐标系是一种高精度的坐标系,可以用于制图、导航和测量等领域。
2. 局部性:由于每个小区域都有一个唯一的投影中心,因此该坐标系具有局部性。
在同一小区域内,可以使用相同的投影参数进行计算。
3. 正交性:高斯直角坐标系是一种正交坐标系,即x轴和y轴互相垂直。
这个特点使得计算更加简单。
4. 投影形式多样:高斯直角坐标系有多种投影形式,可以根据不同需求选择不同的投影方式。
四、高斯直角坐标系的应用1. 地图制图:高斯直角坐标系是地图制图中常用的坐标系之一。
它可以将地球表面上的点映射到平面上,便于绘制地图。
2. 导航定位:在导航定位中,可以使用高斯直角坐标系来表示位置信息。
例如,在GPS导航系统中,可以通过将GPS信号转换为高斯-克吕格投影来实现位置定位。
3. 测量应用:在测量应用中,高斯直角坐标系可以用于计算距离、面积等。
例如,在土地测量中,可以使用高斯直角坐标系来计算土地面积。
五、总结高斯直角坐标系是一种常用的地图制图坐标系,具有高精度、局部性、正交性和投影形式多样等特点。
论述高斯平面直角坐标系的建立过程在数学的发展史上,高斯平面直角坐标系是一项极为重要的发明,它可以用于表示平面上的所有点,并且常常被广泛地应用于数学、物理、工程等各个领域。
但是,这一坐标系的建立并不是一蹴而就的,下面我们将分步骤来阐述高斯平面直角坐标系的建立过程。
第一步,建立一组直角坐标系高斯平面直角坐标系的建立首先要由一组直角坐标系起步。
这组直角坐标系一般都是由两条垂直于某一直线的直线构成的。
其中,垂直于直线的水平线被称为x轴,与之垂直的竖直线被称为y轴,而这条直线则被称为坐标轴。
在这个直角坐标系中,任何一个点都可以用(x,y)的形式表示出来,其中x是该点在x轴上的坐标,y是该点在y轴上的坐标。
第二步,确定x轴和y轴的正方向在确定了一组直角坐标系之后,我们还需要确定x轴和y轴的正方向。
这一般是由实际问题所决定的。
例如,对于地图上的坐标系来说,一般规定x轴为东向,y轴为北向;对于物理学中的坐标系来说,一般规定x轴为水平向右,y轴为竖直向上等等。
第三步,建立单位长度在坐标系中,我们还需要规定一个长度单位。
这个单位长度可以是任意的,但是为了便于使用,一般会选择某种已经定义好的度量单位。
例如,对于平面直角坐标系来说,我们可以选择米、厘米、英尺等等作为长度单位。
第四步,建立高斯平面直角坐标系在上述步骤完成之后,就可以建立起一组平面直角坐标系了。
但是,高斯平面直角坐标系还需要进行一些改进。
我们将建立一个平面,将平面上的每一个点对应于一个坐标(x,y),并且每一个坐标对应于一个唯一的点。
这样,我们就可以用坐标的方式表示平面上的所有点,从而更方便地进行计算或研究。
以上就是高斯平面直角坐标系的建立过程。
要想使用这一坐标系,必须事先清楚地了解每一步的含义和作用。
这样,我们才能更好地应用高斯平面直角坐标系在实际问题中取得更好的结果。
完整版)平面直角坐标系知识点总结二、知识要点梳理知识点一:有序数对有序数对是由有顺序的两个数a与b组成的,记作(a,b)。
它通常用来表示物体的位置,其中,a与b的顺序不能随意交换,因为(a,b)与(b,a)的顺序不同,含义也不同。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
其中,水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法。
要想表示一个点的具体位置,需要用它的坐标来表示。
点的坐标由横坐标和纵坐标组成,记作A(a,b),其中横坐标a 表示点到y轴的距离,纵坐标b表示点到x轴的距离。
知识点三:点坐标的特征1.四个象限内点坐标的特征平面直角坐标系将平面分成四个象限,分别为第一、二、三、四象限,按逆时针顺序排列。
这四个象限的点的坐标符号分别为(+,+)、(-,+)、(-,-)、(+,-)。
2.数轴上点坐标的特征x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b)。
3.象限的角平分线上点坐标的特征象限的角平分线上的点的坐标通常是两个相同的数,如(1,1)、(-2,-2)等。
点的平移指的是在平面内将一个点沿着某个方向移动一定的距离后得到的新点。
设原点为O,点P的坐标为(x,y),平移向量为(a,b),则点P'的坐标为(x+a,y+b)。
其中,向量(a,b)表示从原点O到点P'的位移向量。
2)图形的平移:图形的平移指的是将整个图形沿着某个方向移动一定的距离后得到的新图形。
设原图形的每个顶点的坐标为(x,y),平移向量为(a,b),则新图形的每个顶点的坐标为(x+a,y+b)。
可以看出,图形的平移实际上就是将图形中的每个点都进行相同的平移操作。
要点诠释:在平移操作中,向量的概念是非常重要的。
高斯平面直角坐标系1. 引言高斯平面直角坐标系是一个二维坐标系统,常用于描述平面中的几何问题和物理量。
它由两个相交的轴线组成,分别称为横轴(x轴)和纵轴(y轴)。
本文将详细介绍高斯平面直角坐标系的基本概念、坐标表示和常用运算等内容。
2. 基本概念在高斯平面直角坐标系中,每个点都由一对有序实数(x, y)表示,其中x表示点在横轴上的位置,y表示点在纵轴上的位置。
点的位置由坐标确定,而坐标则由点决定。
坐标系中的原点(0,0)位于横轴和纵轴的交点处,并作为坐标的起始位置。
横轴和纵轴向右和向上的方向分别为正方向,向左和向下的方向为负方向。
3. 坐标表示在高斯平面直角坐标系中,坐标表示的一般形式为(x, y),其中x和y分别表示点在横轴和纵轴上的位置。
例如,点A在横轴上的位置为2,纵轴上的位置为3,则点A的坐标表示为(2,3)。
4. 坐标运算在高斯平面直角坐标系中,可以进行一些基本的坐标运算,如求两点间距离、求两点的中点等。
4.1 两点间距离设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则点A和点B之间的距离可以按照以下公式计算:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)4.2 两点的中点设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则点A和点B的中点的坐标可以按照以下公式计算:x = (x1 + x2) / 2y = (y1 + y2) / 25. 坐标系转换高斯平面直角坐标系可以与其他坐标系之间进行转换。
常见的坐标系转换包括直角坐标系到极坐标系的转换和直角坐标系到正交曲线坐标系的转换等。
5.1 直角坐标系到极坐标系的转换在直角坐标系中,点的坐标为(x, y),转换为极坐标系的坐标(r, θ)可以按照以下公式计算:r = sqrt(x^2 + y^2)θ = arctan(y / x)5.2 直角坐标系到正交曲线坐标系的转换在直角坐标系中,点的位置可以通过正交曲线坐标系的等值线图进行表示,转换公式如下:x = x(u, v)y = y(u, v)结论高斯平面直角坐标系是一个二维坐标系统,用于描述平面中的几何问题和物理量。
高斯平面直角坐标系横轴平面直角坐标系的13个知识点包括平面直角坐标系的定义、两条数轴分别置于水平位置与垂直位置、直角坐标系中点的坐标、象限、对称点、点的符号等等。
(1)平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。
(2)两条数轴分别放在水平边线与横向边线,价值观念右与向上的方向分别为两条数轴的也已方向。
水平的数轴叫作x轴或横轴,横向的数轴叫作y轴或纵轴,x轴y轴泛称为坐标轴,它们的公共原点o称作直角坐标系则的原点。
(3)x轴y轴将坐标平面分成了四个象限,右上方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(4)座标平面内的点与有序实数对一一对应。
存有序数对:存有顺序的两个数a与b 共同组成的数对,叫作存有序数对,记作(a,b)。
(5)关于x轴成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
(横同纵反)(6)关于y轴变成轴对称的点的座标,纵坐标相同,横坐标互为相反数。
(斜反纵同)(7)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
(横纵皆反)(8)第一象限中的点的横坐标(x)大于0,纵坐标(y)大于0。
(9)第二象限中的点的横坐标(x)小于0,纵坐标(y)大于0。
(10)第三象限中的点的横坐标(x)大于0,纵坐标(y)大于0。
(11)第四象限中的点的横坐标(x)大于0,纵坐标(y)小于0。
(12)x轴上的点,纵坐标都为0。
(13)y轴上的点,横坐标都为0。
论述高斯平面直角坐标系的建立过程
高斯平面直角坐标系是一种常用的坐标系,它是由德国数学家高斯在18世纪末和19世纪初所创立的。
高斯平面直角坐标系的建立过程可以分为以下几个阶段:
1. 坐标系的基本概念
在建立坐标系之前,必须先了解坐标系的基本概念。
坐标系是由两条互相垂直的坐标轴组成的一组直角坐标系。
在高斯平面直角坐标系中,通常选择x轴和y轴作为坐标轴。
2. 坐标系的建立
高斯平面直角坐标系的建立是通过指定一个原点和两条互相垂
直的坐标轴来实现的。
在高斯平面直角坐标系中,通常将原点设为坐标轴的交点O。
3. 坐标系的单位
在高斯平面直角坐标系中,通常使用米或厘米作为长度单位,使用弧度或度作为角度单位。
这些单位的选择取决于所研究的问题的特性。
4. 坐标系的转换
在实际的问题中,有时需要将高斯平面直角坐标系转换为其它坐标系,例如极坐标系或三维坐标系。
转换坐标系需要使用数学工具,例如三角函数、矩阵乘法等。
总之,高斯平面直角坐标系的建立过程是一个逐步深入的过程,需要对数学知识的应用和理解。
通过对高斯平面直角坐标系的深入研
究和应用,我们可以更好地理解和解决实际问题。
第八章高斯平面直角坐标§1 正形投影的基本公式一、地图投影的概念1.投影的必要性及其方法①投影的必要性:测量工作的根本任务,是测定地面点的坐标和测绘各种地形图。
因:1)椭球面上计算复杂;2)地图是画在平面图纸上,故,有必要将椭球面上的坐标、方向、长度投影到平面上。
②投影的方法:按一定的数学法则,得到如下的解析关系(函数关系)x=F1(B,L)y=F2(B,L)式中B,L——椭球面上的大地坐标x,y——投影平面上的直角坐标按高斯投影方法得到的平面直角坐标x,y叫高斯平面直角坐标。
2.投影的分类椭球面是不可展开的曲面(圆柱,圆锥面是可展开曲面)。
若展开成平面,必产生变形。
投影按变形的性质可分为:等距离投影━投影后地面点见的距离不变等面积投影━保证投影后面积不变等角投影━投影后微分范围的形状相似3.测量采用的投影测量工作从计算和测图考虑,采用等角投影(又称正形投影、保角投影)。
其便利在于:1)可把椭球面上的角度,不加改正地转换到平面上。
(注:椭球面上大地线投影到平面上亦为曲线。
为实用,需将投影的曲线方向改正为两点间弧线方向,称方向改化。
方向改化是在平面上为实用而做的工作,非投影工作。
且:①改化小,公式简单;②只在等级控制改化,图根控制、测图不顾及)2)因微分范围内投影前后图形相似,则大比例尺图的图形与实地完全相似,应用方便。
二、正形投影1.正形投影的特性有微分三角形如图:对于保角投影:A′=A;B′=B;C′=C所以长度比 cc b b a a md d d d d d '='='=故,正形投影在一个点(微分范围)上,各方向长度比相同。
即投影后保持图形相似。
例如下图,对一个任意形状的微小图形,总可以取一个边数极多的中点多边形逼近它,对于正形投影:m obb o oa a o =='='但上述特点只在微分范围内成立。
在广大范围内,投影前后图形保持相似是不可能的(否则意味着椭球面可以展开)。
数学平面直角坐标系的知识点漫长的学习生涯中, 是不是听到知识点, 就立刻清醒了?知识点也不一定都是文字, 数学的知识点除了定义, 同样重要的公式也可以理解为知识点。
想要一份整理好的知识点吗?下面是店铺精心整理的数学平面直角坐标系的知识点, 供大家参考借鉴, 希望可以帮助到有需要的朋友。
数学平面直角坐标系的知识点11.平面直角坐标系:(1)在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系, 通常把其中水平的一条数轴叫横轴或轴, 取向右的方向为正方向;铅直的数轴叫纵轴或轴, 取向上的方向为正方向;两数轴的交点叫做坐标原点。
(2)建立了直角坐标系的平面叫坐标平面.x轴和y轴把坐标平面分成四个部分, 称为四个象限, 按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限说明: 两条坐标轴不属于任何一个象限。
2.点的坐标:对于平面直角坐标系内任意一点P, 过点P分别向x轴和y轴作垂线, 垂足在x轴, y轴对应的数a,b分别叫做点P的横坐标, 纵坐标, 有序数对(a, b)叫做P的坐标。
3.点与有序实数对的关系:坐标平面内的点可以用有序实数对来表示, 反过来每一个有序实数对应着坐标平面内的一个点, 即坐标平面内的点和有序实数对是一一对应的关系。
数学平面直角坐标系的知识点2一、平面解析几何的基本思想和主要问题平面解析几何是用代数的方法研究几何问题的一门数学学科, 其基本思想就是用代数的方法研究几何问题。
例如, 用直线的方程可以研究直线的性质, 用两条直线的方程可以研究这两条直线的位置关系等。
平面解析几何研究的问题主要有两类:一是根据已知条件, 求出表示平面曲线的方程;二是通过方程, 研究平面曲线的性质。
二、直线坐标系和直角坐标系直线坐标系, 也就是数轴, 它有三个要素: 原点、度量单位和方向。
如果让一个实数与数轴上坐标为的点对应, 那么就可以在实数集与数轴上的点集之间建立一一对应关系。
点与实数对应, 则称点的坐标为, 记作, 如点坐标为, 则记作;点坐标为, 则记为。
空间数据的地理参照系和控制基础4、高斯—克吕格投影高斯—克吕格投影是一种横轴等角切椭圆柱投影。
它是将一椭圆柱横切于地球椭球体上,该椭圆柱面与椭球体表面的切线为一经线,投影中将其称为中央经线,然后根据一定的约束条件即投影条件,将中央经线两侧规定范围内的点投影到椭圆柱面上,从而得到点的高斯投影(图3-2-5)。
将一球椭球体地球装在椭圆柱内上下切点为中央经线。
高斯投影的条件为:(1)中央经线和地球赤道投影成为直线且为投影的对称轴;(2)等角投影;(3)中央经线上没有长度变形。
根据高斯投影的条件推导出的高斯—克吕格投影的计算公式为:式中:X、Y为点的平面直角坐标系的纵、横坐标;φ、λ为点的地理坐标,以弧度计,λ从中央经线起算;S为由赤道至纬度φ处的子午线弧长;N为纬度φ处的卯酉圈曲率半径;其中η为地球的第二偏心率,a、b则分别为地球椭球体的长短半轴。
高斯投影由于是等角投影,故没有角度变形,其沿任意方向的长度比都相等,其面积变形是长度的两倍。
对高斯—克吕格投影长度变形的研究可以依下述长度比表达式进行:由该长度比公式可以分析出高斯投影变形具有以下特点:(1)中央经线上无变形;(2)同一条纬线上,离中央经线越远,变形越大;(3)同一条经线上,纬度越低,变形越大;由此可见,高斯投影的最大变形处为各投影带在赤道边缘处,为了控制变形,我国地形图采用分带方法,即将地球按一定间隔的经差(6°或3°)划分为若干相互不重叠的投影带,各带分别投影。
1:2.5万至1:50万的地形图均采用6°分带方案,即从格林尼治零度经线起算,每6°为一个投影带,全球共分为60个投影带。
我国领土位于东经72°到136°之间,共包括11个投影带(13带~22带)。
1:1万及更大比例尺地形图采用3°分带方案,全球共分为120个投影带。
图3—4给出了高斯投影的6°带和3°带分带方案。
高斯-克吕格投影大地坐标系是大地测量的基本坐标系。
常用于大地问题的细算,研究地球形状和大小,编制地图,火箭和卫星发射及军事方面的定位及运算,若将其直接用于工程建设规划、设计、施工等很不方便。
所以要将球面上的大地坐标按一定数学法则归算到平面上,即采用地图投影的理论绘制地形图,才能用于规划建设。
高斯克吕格平面直角坐标系是投影坐标系的一种,根据我国的地理情况,为建立地形图的测量控制和城市、矿山等区域性的测量控制,早在1952年决定,采用高斯克吕格平面直角坐标系。
重点:1 高斯投影概念、投影带的划分、6º带与3º带的划分及其关系2 高斯平面直角坐标系的建立3坐标方位角的定义、性质与反算难点:l 投影带的划分、6º带与3º带的划分及其关系2 坐标方位角的定义、性质与反算1 高斯—克吕格投影的形成1.1为什么要投影⏹参考椭球面是不可展曲面⏹不便于地图的制作、使用和保管⏹不便于地图应用中的计算1.2 什么是投影⏹按一定的数学法则将参考椭球面上的点、线、图形化算到平面上的过程。
1.3 投影变形⏹长度变形、角度变形、面积变形1.4 地图投影的种类⏹按投影面:方位投影, 圆锥投影, 圆柱投影⏹按投影变形:等角投影等积投影任意投影(等距投影)⏹按投影面与参考椭球的位置关系:⏹切、割横、纵、斜1.5 地图投影的选择⏹依国土的位置、形状和地图的用途选择投影方式。
⏹我国基本比例尺地形图投影选择标准:⏹投影后保持角度不变⏹长度变形不能超过一定限度⏹小范围内图形保持相似2 高斯投影(等角横切椭圆柱投影)2.1 高斯投影的基本概念地球是椭球面,是不可展曲面,无论如何选择投影函数,椭球面上的元素,投影到平面上,都会产生变形(角度、长度、面积)。
高斯是德国杰出的数学家、测量学家。
他提出的横椭圆柱投影是一种正形投影。
它是将一个横椭圆柱套在地球椭球体上,如下图所示:椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。
空间数据的地理参照系和控制基础4、高斯—克吕格投影高斯—克吕格投影是一种横轴等角切椭圆柱投影。
它是将一椭圆柱横切于地球椭球体上,该椭圆柱面与椭球体表面的切线为一经线,投影中将其称为中央经线,然后根据一定的约束条件即投影条件,将中央经线两侧规定范围内的点投影到椭圆柱面上,从而得到点的高斯投影(图3-2-5)。
将一球椭球体地球装在椭圆柱内上下切点为中央经线。
高斯投影的条件为:(1)中央经线和地球赤道投影成为直线且为投影的对称轴;(2)等角投影;(3)中央经线上没有长度变形。
根据高斯投影的条件推导出的高斯—克吕格投影的计算公式为:式中:X、Y为点的平面直角坐标系的纵、横坐标;φ、λ为点的地理坐标,以弧度计,λ从中央经线起算;S为由赤道至纬度φ处的子午线弧长;N为纬度φ处的卯酉圈曲率半径;其中η为地球的第二偏心率,a、b则分别为地球椭球体的长短半轴。
高斯投影由于是等角投影,故没有角度变形,其沿任意方向的长度比都相等,其面积变形是长度的两倍。
对高斯—克吕格投影长度变形的研究可以依下述长度比表达式进行:由该长度比公式可以分析出高斯投影变形具有以下特点:(1)中央经线上无变形;(2)同一条纬线上,离中央经线越远,变形越大;(3)同一条经线上,纬度越低,变形越大;由此可见,高斯投影的最大变形处为各投影带在赤道边缘处,为了控制变形,我国地形图采用分带方法,即将地球按一定间隔的经差(6°或3°)划分为若干相互不重叠的投影带,各带分别投影。
1:2.5万至1:50万的地形图均采用6°分带方案,即从格林尼治零度经线起算,每6°为一个投影带,全球共分为60个投影带。
我国领土位于东经72°到136°之间,共包括11个投影带(13带~22带)。
1:1万及更大比例尺地形图采用3°分带方案,全球共分为120个投影带。
图3—4给出了高斯投影的6°带和3°带分带方案。
为了制作地图和使用地图的方便,通常在地图上都绘有一种或两种坐标网,即经纬线网和方里网。
经纬线网——即指由经线和纬线所构成的坐标网,又称地理坐标网。
在1:1万——1:20万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。
为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称“分度带”),必要时对应短线相连就可以构成加密的经纬线网。
1:25万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。
我国的1:50万——1:100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。
方里网——是由平行于投影坐标轴的两组平行线所构成的方格网。
因为是每隔整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时又是平行于直角坐标轴的坐标网线,故又称直角坐标网。
直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。
这样,坐标系中就出现了四个象限。
纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。
我国位于北半球,全部X值都是正值。
在每个投影带中则有一半的Y 坐标值为负。
为了避免Y坐标出现负值,规定纵坐标轴向西平移500km(半个投影带的最大宽度不超过500km)。
这样,全部坐标值都表现为正值了。
1 绪论坐标系统的选择对一项工程来说是一项首先必须进行的工作,同时坐标系统选择的适当与否关系到整个工程的质量问题,因此对坐标系统的研究是一项非常重要和必须的工作。
我国《规范》规定:所有国家的大地点均按高斯正形投影计算其在带内的平面直角坐标……。
在1:1万和更大比例尺测图的地区,还应加算其在带内的直角坐标系。
我们通常将这种控制点在带或带内的坐标系称为国家统一坐标系统。
在实际应用中,国家统一坐标系统往往不能满足工程建设的需要,所以必须针对不同的工程采用适合它的独立坐标系统。
线路独立坐标系的建立方法研究主要是研究线路工程中如何建立坐标系统而使其精度能满足工程需要。
由于线路测量的特点是跨度较长,当采用国家统一坐标系时往往会因为离开中央子午线较远而使变形量超限,因此必须采用独立坐标系统。
由于线路工程的不同,因此需采用的独立坐标系统也不尽相同。
所以针对不同的线路工程应采用不同的独立坐标系统。
当线路工程是南北走向时由于线路基本上位于中央子午线上,因此不必要对多个独立坐标系统的转换衔接问题进行研究。
当线路工程是东西走向时由于线路跨度较长而往往需要建立多个独立坐标系统,因此需要对多个独立坐标系统的转换衔接问题进行研究。
公路、铁路、架空送电线路以及输油管道等均属于线型工程,它们的中线统称线路。
一条线路的勘测和设计工作,主要是根据国家的计划与自然地理条件,确定线路经济合理的位置。
为达此目的,必须进行反复地实践和比较。
线路在勘测设计阶段首先要进行控制测量工作,由于在线路控制测量过程中,每条线路所在测区的位置不同且距离不可能很短,有的可能跨越一个投影带,二个投影带甚至更多,所以,在线路控制测量中,投影长度变形很容易超限,这就需要我们采取一定的措施来使投影长度变形减弱,将投影长度变形控制在允许的范围之内。
最有效的方法就是建立与测区相适应的坐标系统。
坐标系统是所有测量工作的基础,所有测量成果都是建立在其上的,因此坐标系统选择的适当与否关系到整个工程的质量问题。
对于线路工程而言,使投影长度变形控制在允许的精度范围之内是建立独立坐标系统主要解决的问题,因此,独立坐标系统的建立主要是根据线路的长度和所在测区的不同而建立与本测区和本线路相适应的坐标系统,从而使其投影长度变形控制在允许范围之内。
本文以线路控制测量为例,详细论述了线路独立坐标系统的建立方法。
2 高斯平面直角坐标系的建立我们已经知道,大地坐标系是以椭球面为基准面的坐标系,它可以用来确定地面点在椭球面上的位置,但是如果用于大比例尺测图控制网以及工程控制网则不适应。
因此通常是将椭球面上的元素,如大地坐标、长度、方向等转化至平面上,采用平面直角坐标系进行计算,本章就高斯平面直角坐标系的建立及相关问题进行了讨论。
2.1.1地球椭球的基本几何参数参考椭球具有一定的几何参数、定位及定向的用以代表某一地区大地水准面的地球椭球叫做参考椭球。
地面上一切观测元素都应归算到参考椭球面上,并在该面上进行计算,它是大地测量计算的基准面,同时又是研究地球形状和地图投影的参考面。
有关元素如图1O为椭球中心;NS为旋转轴;a为长半轴;b为短半轴;子午圈(或径圈或子午椭圆);平行圈(或纬圈);赤道。
旋转椭球的形状和大小是由子午椭圆的五个基本几何参数(元素)(图1:椭球参数示意图)来决定的,即:椭圆的长半轴:a椭圆的短半轴:b椭圆的扁率:(2-1)椭圆的第一偏心率:(2-2)椭圆的第二偏心率:(2-3)其中:a、b称为长度元素;扁率反映了椭球体的扁平程度,如=0时,椭球变为球体;=1时,则为平面。
e和e/是子午椭圆的焦点离开中心的距离与椭圆半径之比,它们也反映了椭球体的扁平程度,偏心率越大,椭球愈扁。
五个参数中,若知道其中的两个参数就可决定椭球的形状和大小,但其中至少应已知一个长度元素(如a 或b),人们习惯于用和表示椭球的形状和大小,便于级数展开。
引入下列符号:(2-4)式中B为大地纬度,c为极曲率半径(极点处的子午线曲率半径)。
两个常用的辅助函数,W第一基本纬度函数,V第二基本纬度函数。
(2-5)传统大地测量利用天文大地测量和重力测量资料推求地球椭球的几何参数,自1738年(法国)布格推算出第一个椭球参数以来,200多年间各国大地测量工作者根据某一国或某一地区的资料,求出了数目繁多,数值各异的椭球参数。
由于卫星大地测量的发展,使推求总地球椭球体参数成为可能,自1970年以后的椭球参数都采用了卫星大地测量资料。
长半经变化于6378135m~6378145m之间,扁率分母变化于298.25~298.26之间,可见精度已很高。
比较著名的有30个椭球参数,其中涉及我国的如表1示:(表1:椭球参数表)海福特1906 6378283 297.8 美、阿根廷、比利时、大洋洲椭球参数年代长半径m 扁率分母采用国家、地区克拉索夫斯基1940 6378245 298.3 苏、东欧、中、朝鲜等1975年大地坐标1975 6378140 298.257 1975年国际第三个推荐值1954年北斯基椭球参数,1980年西安坐标系应用的是1975年国际椭球参数,而GPS应用的是WGS-84系椭球参数。
2.1.2地球椭球参数间的相互关系由(2-2)和(2-3)式得:并得:(2-6)推得:同理可得:(2-8)系WGS-84 1984 6378137 298.25722 GPS定位系统。
2.2.1高斯投影与高斯平面直角坐标地球投影所谓地球投影,简略说来就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。
(2-9)式中L,B是椭球面上某点的大地坐标,而是该点投影后的平面(投影面)直角坐标。
式(2-9)表示了椭球面上一点同投影面上对应点之间坐标的解析关系,也叫做坐标投影公式。
投影问题也就是建立椭球面元素与投影面相对应元素之间的解析关系式。
投影的方法很多,如高斯投影、兰勃脱投影等。
我国采用高斯投影。
高斯投影又称横轴椭圆柱等角投影,是德国测量学家高斯于1825~1830年首先提出的。
实际上,直到1912年,由德国另一位测量学家克吕格推导出实用的坐标投影公式后,这种投影才得到推广,所以该投影又称高斯-克吕格投影。
想象有一椭圆柱面横套(图2:横轴椭圆柱等角投影示意图)在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。
我国规定按经差和度进行投影分带,大比例尺测图和工程测量一般采用带投影。
特殊情况下工程测量控制网也可用带或任意带。
高斯投影带自子午线起每隔经差自西向东分带,依次编号1,2,3,…。
我国带中央子午线的经度,由起每隔而至,共计12带,带号用n表示,中央子午线的经度用表示,则与n的关系为。
(图3:高斯投影分带示意图)高斯投影带是自子午线每隔经差自西向东分带,它的中央子午线一部分同带中央子午线重合,一部分同带分界子午线重合,带号用n/表示,带中央子午线用L表示,关系是:。
在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道的交点O作为坐标原点,以中央子午线的投影为纵坐标轴,以赤道的投影为横坐标轴,这样便形成了高斯平面直角坐标系。
在我国坐标均为正,坐标的最大值(在赤道上)约为330KM。