六年级上册数学奥数试题-等差数列-人教版(含答案)
- 格式:docx
- 大小:71.16 KB
- 文档页数:14
奥数试卷六年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 11B. 12C. 13D. 142. 一个等差数列的前三项分别是2、5、8,那么第四项是多少?A. 7B. 10C. 11D. 123. 下列哪个数是质数?A. 21B. 23C. 25D. 274. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 15B. 50C. 100D. 1505. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 三角形D. 圆形二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
()2. 1是质数。
()3. 面积相等的两个图形,它们的形状一定相同。
()4. 一个等差数列的公差是0。
()5. 任何两个奇数的和都是偶数。
()三、填空题(每题1分,共5分)1. 100的因数有:1、2、___、___、10、___、20、___、50、100。
2. 一个等差数列的前三项分别是2、5、8,那么第四项是___。
3. 两个质数的和一定是___数。
4. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是___平方厘米。
5. 下列图形中,___形的对边平行且相等。
四、简答题(每题2分,共10分)1. 请写出前五个质数。
2. 请写出前五个偶数。
3. 请解释什么是等差数列。
4. 请解释什么是面积。
5. 请解释什么是平行四边形。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,请写出这个数列的前五项。
2. 一个长方形的长是10厘米,宽是5厘米,请计算它的周长。
3. 请找出30的所有因数。
4. 请找出100以内的所有质数。
5. 请解释为什么1既不是质数也不是合数。
六、分析题(每题5分,共10分)1. 请分析等差数列的特点。
2. 请分析平行四边形的性质。
七、实践操作题(每题5分,共10分)1. 请画出一个长方形,长是10厘米,宽是5厘米。
小学等差数列练习题及答案在小学数学中,等差数列是一个非常重要的概念。
等差数列是指数列中每个相邻元素之间的差值相等的数列。
在小学阶段,学生需要通过练习来巩固和拓展对等差数列的理解。
本文将为您提供几个小学等差数列的练习题及答案,帮助学生进一步巩固对等差数列的掌握。
练习题一:1. 下列数列是否是等差数列?如果是,请写出公差;如果不是,请说明理由。
a) 2, 5, 8, 11, 14b) 12, 8, 4, 0, -4c) 6, 12, 18, 24, 302. 给定等差数列的前两项和公差,请写出这个等差数列的通项公式。
a) 前两项是3和7,公差是2b) 前两项是10和20,公差是-5c) 前两项是-1和4,公差是3练习题二:1. 下列数列中缺失的数字是多少?a) 3, 5, __, 9, 11b) __, 14, 17, 20, 23c) 8, 10, __, 14, 162. 找出等差数列中的规律,填写下个缺失的数字。
a) 2, __, __, 8, 11, 12b) 1, 4, __, 10, __, __c) __, 7, 9, __, __, 16练习题三:1. 求下列等差数列的前n项和。
a) 2, 4, 6, 8, 10, ...,n = 5b) 1, 3, 5, 7, 9, ...,n = 7c) 4, 8, 12, 16, 20, ...,n = 62. 求下列等差数列的前n项和。
a) 3, 6, 9, 12, ...,n = 4b) 2, 5, 8, 11, ...,n = 6c) -1, -4, -7, -10, ...,n = 8答案解析:练习题一:1. a) 是等差数列,公差为3b) 是等差数列,公差为-4c) 是等差数列,公差为62. a) 通项公式为An = 3 + (n-1) * 2b) 通项公式为An = 10 + (n-1) * (-5)c) 通项公式为An = -1 + (n-1) * 3练习题二:1. a) 缺失的数字为7b) 缺失的数字为11c) 缺失的数字为122. a) 缺失的数字为5, 7b) 缺失的数字为7, 13, 16c) 缺失的数字为5, 11练习题三:1. a) 前n项和为Sn = n * (2 + An) / 2 = 5 * (2 + 2*4) / 2 = 30b) 前n项和为Sn = n * (2 + An) / 2 = 7 * (2 + 2*2) / 2 = 28c) 前n项和为Sn = n * (2 + An) / 2 = 6 * (4 + 2*5) / 2 = 662. a) 前n项和为Sn = n * (2 + An) / 2 = 4 * (2 + 3*4) / 2 = 42b) 前n项和为Sn = n * (2 + An) / 2 = 6 * (2 + 5*6) / 2 = 87c) 前n项和为Sn = n * (2 + An) / 2 = 8 * (-1 + 3*-1) / 2 = -36通过以上练习题及答案解析,学生可以进一步巩固和拓展对小学等差数列的理解。
小学奥数培优等差数列含答案第四讲等差数列(一)问题解决方法若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引文】:等差序列:3,6,9,。
,96.这是一个序列,第一项为3,最后一项为96,项目数为32,公差为3。
计算等差数列的相关公式:(1)通用术语公式:哪个术语=第一项+(术语数量-1)×公差(2)项目数量公式:项目数量=(最后一项-第一项)÷公差+1(3)总和公式:总和=(第一项+最后一项)×项目数量÷2注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差分序列的求和公式。
例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项[提示]仔细观察后,我们可以发现后一项与相邻前一项之间的差值为3,因此这是一个以4为第一项、公差为3的等差序列,可以根据等差序列的项数公式进行求解。
解决方案:根据算术顺序的项目编号公式:项目编号=(最后一项-第一项)÷公差+1,项目编号=(25-4)÷3+1=8,因此这个数列共有8项。
引申1.有一个顺序:2,6,10,14,。
,106.这个序列中有多少项?。
答:这个数列共有27项2.有一个系列:5,8,11,。
,92,95,98. 这个系列有多少个项目?答:这个数列共有19项3.在算术序列中,第一项=1,最后一项=57,公差=2。
这个算术序列中有多少项?答:这个算术顺序有29项。
例题2有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?提示:仔细观察后,可以发现后一项和相邻前一项之间的差值等于5,因此这是一个等差序列,第一项为2,公差为5。
可根据等差序列的通用项公式求解:根据等差序列的通用项公式:哪个项=第一项+(项数-1)×公差,可用,第100项=2+(1oo-1)×5=497,所以这个等差数列的第100项是497。
小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2 项数=(末项-首项)公差+1 末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项- 首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+ 1,便可求出(2)根据公式:末项=首项+公差(项数-1 )解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67 个数,第201 个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从1 00~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。
要求和可以利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1 到2000 的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1 的所有两位数的和。
分析一:在两位数中,被1 0除余1最小的是1 1 ,的是91 。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们可以根据求和公式来计算。
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【考点】两个数的大小比较 【难度】2星 【题型】填空 【关键词】希望杯,五年级,一试 【解析】 方法一:<与1相减比较法>1- 20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b 大【答案】b 例题精讲知识点拨教学目标比较与估算【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是.【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<111111111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111< 【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
人教版新课标六年级数学上册奥数题1. 小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下.小明容许了,只经过简单一转手,这辆山地车就让小明赚了105元.那么,小明这辆山地车的原价是元.【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2. 瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100 克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%. A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%. 【分析】方法一:方程.设B种酒精的浓度为x,那么A种酒精的浓度为2x,于是可以得到:故A的浓度为.方法二:比例.1000 X 15%=150 〔克〕,混合后溶液中纯酒精为〔1000+400+10.X 14%=210 〔克〕,210-150=60 〔克〕,A 和B 共含酒精60克,A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60 + 3=20 〔克〕,那么A的浓度为20%.3. A、B两杯食盐水各有40克,浓度比是3: 2.在B中参加60 克水,然后倒入A中克.再在A、B中参加水,使它们均为100 克,这时浓度比为7: 3.【分析】比例思想.两杯中的食盐水总量相同,浓度比为3:2,那么含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量.倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10统一份数.3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A 倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐.4 .经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的, 那么为了使人类有不断开展的潜力,地球上最多能养活多少亿人【分析】每亿人每年消耗资源量为1份.新生资源量:〔份〕即为保证不断开展,地球上最多养活70亿人.5 .有三块草地,面积分别是5, 15, 25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,那么第三块草地可供〔〕头牛吃60天.【分析】设每头牛每天的吃草量为1份.第一块草地,5亩原有草量+5亩30天长的草=10X 30=300〔份〕,那么每亩面积=原有草量+每亩面积30天长的草=300+ 5=60 〔份〕:第二块草地,15亩原有草量+15亩45天长的草=28X45=1260份〕,即每亩面积原有草量+每亩面积45天长的草=1260+ 15=84份〕.所以每亩面积每天长草量〔84-60〕 +〔45-30〕=1.6〔份〕.每亩原有草量=60-30X 1,6=12 〔份〕.第三块草地面积是25亩,60天新生长的草量为:6X60X 25=2400 〔份〕.所以第三块草地可供〔2400+12X 25〕+60=45 〔头〕牛吃60天.6 .有一块草地,每天都有新的草长出.这块草地可供9头牛吃12天, 或可供8头牛吃16天.开始只有4头牛在这块草地上吃草,从第7 天起又增加了假设干头牛来吃草,又吃了6天吃完了所有的草.假设草的生长速度每天都相同,每头牛每天的吃草量也相同,那么从第7天起增加了头牛来吃草【分析】设每头牛每天的吃草量为1份.每天长草:〔8X16-9X12〕 + 〔16-12〕 =5 〔份〕原有草:108-5X12=48份〕吃12天需要牛的头数:[48+ 〔5-4〕 X6] +6+5=14世〕增加牛的头数:14-4=10 〔头〕7 .放满一个水池,如果同时翻开1, 2号阀门,那么12分钟可以完成;如果同时翻开1, 3号阀门,那么15分钟可以完成;如果单独翻开1号阀门,那么20分钟可以完成;那么,如果同时翻开1, 2, 3号阀门, 分钟可以完成.【分析】根据题意可知,1, 2号阀门的效率之和为,1, 3号阀门的效率之和为,1号阀门的效率为,所以1, 2, 3号阀门的效率之和为,所以,如果同时翻开1, 2, 3号阀门,10分钟可以完成.8 .一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,在三人合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工.完成这项工程共用天.【分析】甲的工作效率是 ,乙的工作效率是,丙的工作效率是, 三人工作3天完成.,剩下的乙、丙继续工作需要天.所以一共要用6天.9 .有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时.甲、乙同时开始各搬运一个仓库的货物.开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完.那么丙帮甲小时,帮乙小时.【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束, 共搬运了两个仓库的货物,所以它们完成工作的总时间为小时.在这段时间内,甲、乙各自在某一个仓库内搬运,丙那么在两个仓库都搬运过.甲完成的工作量是,所以丙帮甲搬了的货物,丙帮甲做的时间为小时,那么丙帮乙做的时间为小时.10 .某人将他所有的钱的给他的儿子,给他的女儿,剩下的钱那么全给他的妻子.假设他的妻子得到元,请问此人原来有多少元【分析】〔元〕.11 .四位小朋友合购一个价值600元的生日礼物送给同学.第一位小朋友付的钱是其他小朋友付的总数的;第二位小朋友付的钱是其他小朋友付的总数的;第三位小朋友付的钱是其他小朋友付的总数的.请问第四位小朋友付多少钱【分析】〔元〕12 .实验小学六年级有学生152人.现在要选出男生人数的和女生5人,到国际数学家大会与专家见面.学校根据上述要求选出假设干名代表后,剩下的男、女生人数相等.问:实验小学六年级有男生多少人【分析】〔人〕13 .某次测试共有9道题,做对1〜9题的人数分别占参加测试人数的82%, 65%, 92%, 93%, 68%, 98%, 70%, 60%, 72%.如果做对5道或5道以上为及格,那么这次测试的及格率至少〔〕.【分析】不妨设参加测试的人数为100,那么做错l〜9题的人数分别为18人,35人,8人,7人,32人,2人,30人,40人,28人, 共做错18+35+8+7+32+2+30+40+28=200 道〕.一人做错5道或5道以上为不及格,,因此.100人中至多有40人不及格,至少有100 -40=60及格,及格率至少是60%.14 .有5堆苹果,较小的3堆平均有18个苹果,较大的2堆苹果数之差为5个.,较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个.最大堆与最小堆平均有22个苹果.问:每堆各有多少苹果【分析】最大堆与最小堆共22X2 = 44个苹果较大的2堆与较小的2堆共44X2+7-5 = 90个苹果所以中间的一堆有:〔18X3+26X 3 — 90〕 +2 = 21个苹果较大的2堆有:26X 3-21=57个苹果,最大的一堆有:〔57+ 5〕 +2=31个苹果,次大的2堆有:57-31=26个苹果较小的2堆有:18X 3-21=33个苹果次小的一堆有:〔33+7〕+2 = 20个苹果最小的一堆有:20- 7= 13个苹果15 .小张、小李和小黄三人乘飞机出差,三人携带的行李重量都超过了可免费携带行李的重量,需另付行李托运费,三人其付90元.而三人行李共重65千克,如果三人的行李只由一人携带,除免费局部外,应另付行李托运费810元.求每人可免费携带的行李重量.【分析】设每人可免费携带x千克行李.如果65千克行李由三人携带,三人可免费携带3x千克行李,三人共付90元托运费,那么超重行李每千克付90+ (65 -3x);如果65千克行李由一人携带,一人可免费携带x千克行李,付810元托运费,那么超重行李每千克付810+ (65 -x).可列出方程所以每人可免费携带的行李重量是20千克.。
人教版新课标六年级数学上册奥数题1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。
小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。
那么,小明这辆山地车的原价是________元。
【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。
已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。
【分析】方法一:方程。
设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。
方法二:比例。
1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。
两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。
倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。
3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。
4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。
人教版【精选】小学数学六年级上册奥数测试题图文百度文库一、拓展提优试题1.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).2.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.3.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.4.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.5.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.6.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.7.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.8.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.9.根据图中的信息可知,这本故事书有页页.10.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.11.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.12.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.13.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.14.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.2.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.3.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.4.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.5.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.6.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.7.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.8.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.9.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.10.解:==,答:这三个分数中最大的一个是.故答案为:.11.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.12.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.13.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30014.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
第四讲等差数列(一)解题方法若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引例】:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷2注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项【提示】仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
引申1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
答:这个数列共有27项2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?答: 这个数列共有19项3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?答:这个等差数列共有29项。
例题2 有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?提示:仔细观察可以发现,后项与其相邻的前项之差等于5,所以这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答解:由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得,第100项=2+(1OO-1)×5=497,所以这个等差数列的第100项是497。
奥数六年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若a、b、c是不为0的实数,且a/b = c/d,那么下列哪个选项是正确的?A. a = c, b = dB. a = d, b = cC. ad = bcD. ac = bd2. 一个等差数列的前三项分别是2、5、8,那么第10项是多少?A. 27B. 29C. 31D. 333. 下列哪个数是合数?A. 23B. 29C. 31D. 374. 一个长方体的长、宽、高分别是3、4、5,那么它的对角线长度是多少?A. 6B. 8C. 10D. 125. 若一个等腰三角形的底边长是10,腰长是13,那么这个三角形的高是多少?A. 12B. 15C. 18D. 20二、判断题(每题1分,共5分)1. 任何两个奇数相加的和一定是偶数。
()2. 一个等差数列的任何两项的差都是相同的。
()3. 一个数的平方和它的立方一定相等。
()4. 任何两个质数相乘的积一定是合数。
()5. 一个等腰直角三角形的两条腰的长度一定相等。
()三、填空题(每题1分,共5分)1. 一个正方形的边长是4,那么它的面积是______。
2. 一个等差数列的第1项是3,公差是2,那么第5项是______。
3. 若a、b、c是不为0的实数,且a/b = c/d,那么ad = ______。
4. 一个等腰三角形的底边长是8,腰长是10,那么这个三角形的高是______。
5. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述等腰三角形的性质。
3. 请简述质数和合数的区别。
4. 请简述勾股定理。
5. 请简述等比数列的定义。
五、应用题(每题2分,共10分)1. 一个等差数列的第1项是2,公差是3,求前10项的和。
2. 一个长方体的长、宽、高分别是2、3、4,求它的对角线长度。
3. 一个等腰直角三角形的斜边长是10,求它的面积。
一、常用公式1. (1)1232n n n ⨯+++++=L ; 2. 2222(1)(21)1236n n n n ⨯+⨯+++++=L ;3. ()2223333(1)1231234n n n n ⨯+++++=++++=L L ;4. ()()()213572112311321n n n n n +++++-=++++-++-++++=L L L ;5. 等比数列求和公式:0111111(1)1n n n a q S a q a q a q q --=++⋅⋅⋅+=-(1q ≠);6. 平方差公式:()()22a b a b a b -=+-;7. 完全平方公式:()2222a b a ab b +=++,()2222a b a ab b -=-+;用文字表述为:两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:()2222a b a ab b ±=±+.为便于记忆,可形象的叙述为:“首平方,尾平方,2倍乘积在中央”.二、常用技巧1. 1001abcabc abc =⨯;2.10101ababab ab =⨯;3. ··10.1428577=,··20.2857147=,··30.4285717=,··40.5714287=,··50.7142857=,··60.8571427=;4. 1111111111123321n n n ⨯=L L L L 123123个个,其中9n ≤.一、前n 项和【例 1】 222213519++++L【考点】公式法之求和公式 【难度】2星 【题型】计算 【解析】 222213519++++L2222222(12319)(2418)=++++-+++L L 222119203941296=⨯⨯⨯-⨯+++L ()12470910196=-⨯⨯⨯2470285=-2185=公式法计算例题精讲知识点拨【答案】2185【巩固】 222222222221245781011131416++++++++++【考点】公式法之求和公式 【难度】3星 【题型】计算 【解析】 原式22222222(1216)(3691215)=+++-++++L2222222221617335611(1216)3(12345)96614964951001⨯⨯⨯⨯=+++-⨯++++=-⨯=-=L 【答案】1001【例 2】 计算:36496481400+++++L【考点】公式法之求和公式 【难度】3星 【题型】计算 【解析】 原式222267820=++++L ()2222222221232012345=++++-++++L11202141561166=⨯⨯⨯-⨯⨯⨯ 2870552815=-=【答案】2815【例 3】 计算:3333333313579111315+++++++【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 原式()333333333123414152414=++++++-+++L L ()()223331515181274⨯+=-⨯+++L22576002784=-⨯⨯8128=【答案】8128【巩固】 计算:333313599++++=L ___________.【考点】公式法之求和公式 【难度】3星 【题型】填空 【解析】 与公式()()222333112124n n n n ++++=++=L L 相比,333313599++++L 缺少偶数项,所以可以先补上偶数项.原式()()333333312310024100=++++-+++L L()2233331100101212504=⨯⨯-⨯+++L 22322111001012505144=⨯⨯-⨯⨯⨯ ()22250101251=⨯-⨯12497500=【答案】12497500【例 4】 计算:33312320061232006+++⋅⋅⋅++++⋅⋅⋅+【考点】公式法之求和公式 【难度】3星 【题型】填空 【解析】 原式()212320061232006+++⋅⋅⋅+=+++⋅⋅⋅+1232006=+++⋅⋅⋅+()12006200612=⨯⨯+2013021=【答案】2013021【例 5】 计算:2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯=L 。
小学奥数等差数列等差数列是数学中的一种基本数列类型。
它由若干个数排成一列,其中每个数称为一项。
数列中的第一个数称为首项(用a1表示),最后一个数称为末项(用an表示),数列中数的个数称为项数(用n表示)。
如果从第二项开始,后项与其相邻的前项之差都相等,那么这个数列就是等差数列。
这个差值称为公差(用d表示)。
例如,3,6,9,12,15就是一个公差为3的等差数列。
等差数列有三个重要的公式。
第一个是通项公式,它可以用来计算等差数列中任意一项的值。
通项公式为:ana1n-1)×d。
其中,n表示要求的项数。
第二个公式是项数公式,它可以用来计算等差数列中项数的值。
项数公式为:n=(ana1d+1.最后一个公式是求和公式,它可以用来计算等差数列中前n项的和。
求和公式为:a1a2ana1ann÷2.举个例子,如果我们要求等差数列3,5,7,9,11的第10项和第100项,以及前100项的和,我们可以先确定首项a 13和公差d=2,然后代入通项公式计算得到a1021和a100201.再利用求和公式计算前100项的和,得到.总之,等差数列是数学中非常基础的数列类型,掌握其定义和相关公式对于研究数学和物理等科目都非常重要。
1、有一个数列,4、10、16、22……52,这个数列共有13项。
2、一个等差数列,首项是3,公差是2,项数是10.它的末项是21.3、等差数列1、4、7、10……的第30项是88.4、在1、2两数之间插入一个数,使其成为一个等差数列,插入的数为2,等差数列为1、2、3.拓展:1、在12与60之间插入3个数,使这5个数成为一个等差数列,插入的数为24、36、48,等差数列为12、24、36、48、60.2、在6和38之间插入7个数,使他们成为等差数列,这9个数的和为267.例3:有10个朋友聚会,见面时如果每人都要和其余的人握一次手,那么共握了45次手。
练:1、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了1275次手。
小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手,多多赢得小印章!分析:以下答案仅供参考!(1) 先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、…… 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、…… 从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用a 1表示;末项:一个数列的最后一项,通常用a n 表示,它也可表示数列的第n 项. 每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变得差,通常用d 来表示;和 :一个数列的某些项的和,常用S n 来表示 .(3) 三个重要的公式:① 通项公式:末项=首项+(项数-1)×公差1(1)n a a n d =+-⨯回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:(),()n m a a n m d n m -=-⨯② 项数公式:项数=(末项-首项)÷公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到: 1()1n n a a d =-÷+ (1na a 若);1n ()1n a a d =-÷+(1n a a 若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、……、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组. 当然,我们还可以有其他的配组方法.③ 求和公式:和=(首项+末项)×项数÷21()2n n s a a n =+⨯÷对于这个公式的得到我们可以从两个方面入手:(思路1)1+2+3+…+98+99+100=101×50=5050(思路2)这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:(1)4+8+12+…+32+36=(4+36)×9÷2=20×9=180 ,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20×9 ;(2)65+63+61+…+5+3+1=(1+65)×33÷2=33×33=1089 ,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33×33 .如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项 .中项定理也可用在速算与巧算中.譬如:计算:124.68+324.68+524.68+724.68+924.68分析:这是一列等差数列,项数是奇数,中间数是524.68,所以可以用5×524.68=2623.4 .等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点.一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透.【复习2】某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.问:这个剧一共有多少个座位?分析:首项:70-(25-1)×2=22 ,座位总数:(22+70)×25÷2=1150.【复习3】小明从1月1日开始写大字。
等差数列学生姓名年级学科授课教师日期时段核心内容等差数列课型一对一/一对N 教学目标认识等差数列,认识首项、通项、项数、公差和相应公式,求和公式重、难点等差数列的解答课首沟通和学生交谈。
了解学生是否接触过等差数列。
引起学生好奇心,增强学习兴趣知识梳理若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项。
最后一项称为末项。
数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
后项与前项的差称为公差。
在这一讲要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1导学一:求项数知识点讲解 1:项数公式:项数=(末项-首项)÷公差+1例 1. 有一个数列:4,10,16,22.…,52这个数列共有多少项?我爱展示1.等差数列中,首项=1、末项=39、公差=2,这个等差数列共有多少项?2.有一个等差数列:2、5、8、11、…,101这个等差数列共有多少项?3.已知等差数列11、16、21、26、…,1001这个等差数列共有多少项?导学二:求通项知识点讲解 1:第n项=首项+(项数-1)×公差例 1. 有一等差数列:3、7、11、15、……,这个等差数列的第100项是多少?我爱展示1.一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2.求1、4、7、10……这个等差数列的第30项。
3.求等差数列2、6、10、14……的第100项导学三:求数列之和知识点讲解 1:如果我们把1、2、3、4、…、99、100与列100、99、…、3、2、1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2 倍,再除以2就是所求数列的和。
本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
六年级奥数-等差数列
1、求首项是5,末项是93,公差是4的等差数列的和。
2、求首项是13,公差是5的等差数列的前30项的和。
3、某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有______个座位。
4、某建筑工地堆放着一些钢管,最上面一层有3根,最下面一层有29根,而且下面的每一层比上面的一层多2根,这些钢管一共多少根?
5.巧算下列各题:
①5000-2-4-6-…-98-100
②103+99+103+96+105+102+98+98+101+102
6、在所有的两位数中,十位数比个位数大的数共有多少个?
7、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下。
问:时钟一昼夜打多少?
8、已知:a=1+3+5+……+99+101,b=2+4+6+……+98+100,则a、b两个数中,较大的数比较小的数大_________.。
六年级奥数习题及答案等差数列1、下面是按律排列的一串数,其中的第1995是多少 ?2、在从 1开始的自然数中,第100个不能够被 3除尽的数是多少?3、把 1988表示成 28个偶数的和,那么其中最大的那个偶数是多少?4、在大于 1000的整数中,找出所有被34除后商与余数相等的数,那么些数的和是多少?5、盒子里装着分写有 1、2、3、⋯⋯ 134、 135的色卡片各一,从盒中任意摸出若干卡片,并算出若干卡片上各数的和除以17的余数,再把个余数写在另一黄色的卡片上放回盒内,若干次的操作后,盒内剩下两色卡片和一黄色卡片,已知两色的卡片上写的数分是 19和97,求那黄色卡片上所写的数。
6、下面的各算式是按律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,⋯⋯,那么其中第多少个算式的果是 1992?7、如,数表中的上、下两行都是等差数列,那么同一列中两个数的差 ( 大数减小数 ) 最小是多少 ?8、有 19个算式:那么第19个等式左、右两的果是多少?9、已知两列数: 2 、 5、8、 11、⋯⋯、 2+(200- 1) ×3; 5 、 9、 13、 17、⋯⋯、 5+(200- 1) ×4。
它都是200,两列数中相同的数共有多少?10、如,有一个1米的下三角形,在每条上从点开始,每隔2厘米取一个点,尔后以些点端点,作平行将大正三角形切割成多2厘米的小正三角形。
求⑴ 2厘米的小正三角形的个数,⑵所作平行段的度。
11、某工厂 11月份工作忙,星期日不休息,而且从第一天开始,每天都从厂派相同人数的工人到分厂工作,直到月底,厂剩工人240人。
若是月底厂工人的工作量是8070个工作日 ( 一人工作一天1个工作日 ) ,且无人少勤,那么,月由厂派到分厂工作的工人共多少人?12、小明一本英,第一次,第一天35,今后每天都比前一天多5,果最后一天只了 35便完了 ; 第二次,第一天 45,今后每天都比前一天多 5,果最后一天只需 40就可以完,本有多少 ?13、 7个小共种100棵,各小种的数都不一样样,其中种最多的小种了18棵,种最少的小最少种了多少棵?14、将 14个互不一样样的自然数,从小到大依次排成一列,已知它的和是170,若是去掉最大数和最小数,那么剩下的和是150,在原来排成的次序中,第二个数是多少?1 / 31 / 3参照答案以下:1.解答: 2、 5、8、 11、 14、⋯⋯。
等差数列学生姓名年级学科授课教师日期时段核心内容等差数列课型一对一/一对N 教学目标认识等差数列,认识首项、通项、项数、公差和相应公式,求和公式重、难点等差数列的解答课首沟通和学生交谈。
了解学生是否接触过等差数列。
引起学生好奇心,增强学习兴趣知识梳理若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项。
最后一项称为末项。
数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
后项与前项的差称为公差。
在这一讲要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1导学一:求项数知识点讲解 1:项数公式:项数=(末项-首项)÷公差+1例 1. 有一个数列:4,10,16,22.…,52这个数列共有多少项?我爱展示1.等差数列中,首项=1、末项=39、公差=2,这个等差数列共有多少项?2.有一个等差数列:2、5、8、11、…,101这个等差数列共有多少项?3.已知等差数列11、16、21、26、…,1001这个等差数列共有多少项?导学二:求通项知识点讲解 1:第n项=首项+(项数-1)×公差例 1. 有一等差数列:3、7、11、15、……,这个等差数列的第100项是多少?我爱展示1.一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2.求1、4、7、10……这个等差数列的第30项。
3.求等差数列2、6、10、14……的第100项导学三:求数列之和知识点讲解 1:如果我们把1、2、3、4、…、99、100与列100、99、…、3、2、1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2 倍,再除以2就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
例 1. 求等差数列2,4,6,…,48,50的和我爱展示1. 2+6+10+14+18+222. 5+10+15+20+…+195+2003. 9+18+27+36+…+261+270导学四:多个数列求和例 1. 计算(2+4+6+...+100)-(1+3+5+ (99)我爱展示1. (2001+1999+1997+1995)-(2000+1998+1996+1994)2. (2+4+6+...+2000)-(1+3+5+ (1999)3. (1+3+5+...+1999)-(2+4+6+ (1998)导学五:等差数列解答知识点讲解 1:某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例 1. 刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?例 2. 某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?例 3. 有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?例 4. 求1 ~ 99 这99个连续自然数的所有数字之和。
我爱展示1.刘师傅做一批零件,第一天做了30个,以后的每天都比前一天多做2个,第15天做了58个,正好做完。
这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?4.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?5.有10只盒子,44只羽毛球。
能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?6.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?7.假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?8.求1~199这199个连续自然数的所有数字之和。
9.求1~999这999个连续自然数的所有数字之和。
10.求1~3000这3000个连续自然数的所有数字之和。
课后作业1. 有一串数:1、4、7、10、……求它的第100项2. 1+2+3-4-5-6+7+8+9-10-11-12+……+182+1833.在小于100的自然数中,被7除余3的数的和是多少?4.红光电影院有22排座位,后一排都比前一排多2个座位,最后一排42个座位。
那么这个电影院一共有多少个座位?5.小明和小强比赛口算,计算:1+2+3+4+……,当计算到规定的那个加数时,小明的得数是60,小强的得数是66,老师说他们两人的得数有一个错了。
问:他们谁算错了,错在哪里?6.100这个自然数最多能写成多少个不同的自然数的和?7.每相邻的3个圆点组成一个小三角形,如图,问图中这样的小三角形个数多还是圆点个数多?8.一堆相同的立方体堆积如图,第1层1个,第2层3个,第3层6个,…第10层有多少个?9.能不能把44颗花生分给10只猴子,使每只猴子分的花生颗数都不同?10.若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒子中。
其中只有一个盒子是空的,然后他外出了,小光从每个有棋子的盒子里各拿了一个棋子放在空盒子内,再把盒子重新排了一下,小明回来没有发现有人动过棋子,问共有多少个盒子?多少棋子?11. [单选题] (大联考题)1000+999-998-997+996+…+104+103-102-101=()A.225B.900C.1000D.400012. [单选题] (大联考题)一列数1,2,2,3,3,3,4,4,4,4,…中的第34个数为()。
A.6B.7C.8D.913. (小联考题)一种新的运算,已2*3=2+3+4=9,4*2=4+5=9,3*4=3+4+5+6=18,则7*6= 。
14.(大联考题)电视台要播放一部30集电视连续剧,如果要求每天安排播出的集数互不相等,该电视剧最多可以播放()天.15.[单选题] (2011年中大附模拟试题)如右图,图中有()条线段。
A.5B.10C.15D.2016.(希望杯五年级)将100块糖分成5份,使每一份的数量依次多2,那么最少的一份有糖块,最多的一份有糖块。
17.(希望杯五年级)有26个连续的自然数,如果前13个数的和是247,那么,后13个数的和是18. (卓越杯五年级)1+3+5+…+99=()19. (希望杯四年级第一试)计算:1+11+21+…+1991+2001+2011=.20. (希望杯四年级第一试)小兰将连续偶数2、4、6、8、10、12、14、16、…逐个相加,得结果2012.验算时发现漏加了一个数,那么,这个漏加的数是()21. (希望杯培训题) 2015-2014+2013-2012+…+3-2+1。
22.(希望杯培训题) 5个连续奇数的和是2015,求其中最大的奇数。
23.(希望杯培训题)一堆木材的最上层有12根,最下层有26根。
每相邻两层中下层比上层多1根,问:这堆木材有多少根?24.(希望杯培训题)若连续8个偶数的和为2008,则这8个偶数中,最小的是多少?1、完成本堂课的课后作业2、本堂课中的错题要写到错题本上,下节课会对错题进行练习。
导学一知识点讲解 1:项数公式:项数=(末项-首项)÷公差+1例题1.9解析:项数=(52-4)÷6+1=9,即这个数列共有9项。
我爱展示1.20解析:(39-1)÷2+1=202.34解析:(101-2)÷3+1=343.199解析:(1001-11)÷5+1=199导学二知识点讲解 1:第n项=首项+(项数-1)×公差例题1.399解析:3+4×(100-1)=399我爱展示1.21解析:3+(10-1)×2=212.88解析:1+(30-1)×3=883.398解析:2+(100-1)×4=398导学三知识点讲解 1:例题1.650.解析:项数:(50-2)÷2+1=25总和:(2+50)×25÷2=650.我爱展示1.72解析:(2+22)×6÷2=722.4100解析:(200-5)÷5+1=40;(5+200)×40÷2=41003.4185解析:(9+270)×30÷2=4185导学四例题1.50解析:(2+4+6+...+100)-(1+3+5+ (99)=(2+100)×50÷2-(1+99)×50÷2=102×50÷2-100×50÷2=50我爱展示1.4解析:(2001-2000)+(1999-1998)+(1997-1996)+(1995-1994)=42.1000解析:(2+2000)×1000÷2-(1+1999)×1000÷2=10003.1000解析:(1+1999)×1000÷2-(2+1998)×999÷2=1000导学五知识点讲解 1:例题1.495解析:根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:(30+60)×11÷2=495(页)2.1275解析:假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。
依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:50+49+48+…+2+ 1=(50+1)×50÷2=1275(次)3.8解析:先求28×2=56 ,再推算56=7×(7+1),确定项数 7+1=84.900解析:(9+9)×(100÷2)=900。