自动控制原理72 典型非线性环节及其对系统的影响
- 格式:pdf
- 大小:2.96 MB
- 文档页数:14
自动控制原理非线性分析知识点总结自动控制原理是工程领域中的一门重要学科,它研究的是如何通过设备和技术手段,使得系统的运行能够自动控制并满足特定的性能要求。
非线性分析则是探讨系统在非线性条件下的行为特性。
在这篇文章中,我们将对自动控制原理中的非线性分析知识点进行总结。
一、非线性系统的定义与特点非线性系统是指系统的输出与输入之间的关系不是简单的比例关系,而是呈现出非线性的特征。
与线性系统相比,非线性系统具有以下几个特点:1. 非线性叠加性:系统的输出并不是输入信号的简单叠加,而是受到系统自身状态和非线性特性的影响。
2. 非线性失稳性:非线性系统可能会出现失稳现象,即系统的输出会趋向于无穷大或无穷小。
3. 非线性动态行为:非线性系统在输入信号发生变化时,其输出信号的变化可能是不连续的,出现跳跃、震荡等现象。
二、非线性系统的分析方法1. 相平面分析法:通过绘制相平面图,可以直观地了解系统的非线性行为。
相平面图可以显示出系统的轨迹、奇点等信息,帮助我们分析系统的稳定性和动态特性。
2. 频域分析法:利用频域分析方法,我们可以对非线性系统进行频谱分析,找出系统的频率响应和频率特性。
通过分析系统的幅频特性和相频特性,我们可以判断系统的稳定性和动态性能。
3. 时域响应分析法:时域分析是对系统的输入信号与输出响应进行时间上的观察和分析。
通过观察和分析系统的阶跃响应、脉冲响应、频率响应等,可以推断出系统的稳定性和动态特性。
4. 广义函数法:广义函数是处理非线性系统时常用的一种数学方法。
通过引入广义函数,我们可以简化非线性系统的数学描述,方便进行分析与计算。
5. 数值模拟方法:对于复杂的非线性系统,我们可以利用计算机进行仿真和数值模拟,通过对系统的模拟实验,得到系统的动态行为和性能参数。
三、非线性系统的稳定性分析1. 稳定性概念:稳定性是衡量系统响应的一种重要指标。
对于非线性系统,我们通常关注的是渐近稳定性和有界稳定性。
第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。
本质非线性和非本质非线性。
典型非线性特性。
非线性系统的特点。
两种分析非线性系统的方法——描述函数法和相平面法。
(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。
谐波线性化的概念。
描述函数定义和求取方法。
描述函数法的适用条件。
(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。
借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。
(5)相平面法的基本概念非线性系统的数学模型。
相平面法的概念和内容。
相轨迹的定义。
(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。
(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。
(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。
用相平面法分析非线性系统,非线性系统相轨迹的组成。
改变非线性特性的参量及线性部分的参量对系统稳定性的影响。
2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。
8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。
应用线性系统控制理论,能够方便地分析和设计线性控制系统。
如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。
线性系统控制理论不能很好地分析非线性系统。
因非线性特性千差万别,无统一普遍使用的处理方法。
非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。
非线性系统:含有非线性环节的系统。
非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。
自动控制原理非线性系统知识点总结自动控制原理是现代控制领域中的核心学科,广泛应用于各个工程领域。
在自动控制原理课程中,非线性系统是一个重要的研究对象。
非线性系统具有较复杂的动态行为,与线性系统相比,其稳定性和性能分析更为困难。
在本文中,我们将对非线性系统的知识点进行总结。
1. 静态非线性系统静态非线性系统是最简单的非线性系统,其输出仅与输入的幅值相关。
常见的静态非线性函数有幂函数、指数函数、对数函数等。
分析静态非线性系统时,通常采用泰勒级数展开或者离散化的方法。
2. 动态非线性系统动态非线性系统是具有时间相关性的非线性系统。
其中最基本的形式是非线性微分方程。
在动态非线性系统中,常见的动力学行为有极值、周期、混沌等。
在分析动态非线性系统时,可以采用相位平面分析、Lyapunov稳定性分析等方法。
3. 线性化由于非线性系统分析的困难性,常常采用线性化的方法来近似描述非线性系统的行为。
线性化方法可以将非线性系统在某一操作点上进行线性近似,从而得到一个线性系统。
采用线性化方法时,需要注意选取适当的操作点,以保证线性化模型的准确性。
4. 系统稳定性非线性系统的稳定性是研究非线性系统的重点之一。
与线性系统相比,非线性系统的稳定性分析更为困难。
常用的方法有Lyapunov稳定性分析、输入输出稳定性分析等。
在稳定性分析时,需要考虑非线性系统的各种动力学行为,比如局部极大值点、周期分岔点、混沌行为等。
5. 非线性反馈控制非线性反馈控制是应用最广泛的非线性控制方法之一。
非线性反馈控制利用非线性函数对系统的输出进行修正,以实现系统的稳定性和性能要求。
其中,常见的非线性反馈控制方法有滑模控制、自适应控制、模糊控制等。
6. 非线性系统的鲁棒性鲁棒性是研究非线性系统控制的重要性能指标之一。
鲁棒控制能够保证系统在存在不确定性或者干扰的情况下,仍然保持稳定性和性能要求。
常见的鲁棒控制方法有H∞控制、鲁棒自适应控制等。
7. 非线性系统的最优控制最优控制是针对非线性系统的性能指标进行优化设计的方法。
自动控制原理总经典总结自动控制原理》总复控制系统控制系统是由受控对象和控制器组成的系统,用于控制和调节被控量。
根据不同的角度,控制系统可以分为恒值系统和随动系统、线性系统和非线性系统、连续系统和离散系统、定常系统和时变系统等。
线性系统线性系统是指系统的输出与输入之间存在线性关系的系统。
建模时可以采用求传函或脉冲传函的方法,分析时可使用根轨迹法、频率特性法等方法。
非线性系统非线性系统是指系统的输出与输入之间不存在线性关系的系统。
建模时可以采用描述函数法或相平面法,稳定性分析时可以求奇点和极限环,运动时间可以通过振幅和频率计算得出。
控制系统的基本概念控制系统的基本术语包括自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
掌握这些基本概念可以帮助理解控制系统的基本组成和工作原理。
基本控制方式控制系统的基本方式包括开环控制系统、闭环控制系统和复合控制系统。
开环控制系统没有反馈,闭环控制系统则通过反馈控制来实现对被控量的调节,复合控制系统则是开环控制和闭环控制的组合。
数学模型数学模型是用数学表达式描述控制系统的工作原理和特性的模型。
建模时可以采用物理系统的微分方程描述、拉普拉斯变换及反变换、传递函数及典型环节的传递函数、脉冲响应函数等方法。
图形表示可以采用结构图、信号流图等方法。
基本要求研究自动控制原理需要掌握控制系统的基本概念、基本控制方式、数学模型等知识。
同时,需要了解控制系统的分类和典型输入信号,并能够正确理解数学模型的特点和概念。
掌握这些知识可以帮助理解控制系统的工作原理和实际应用。
2.了解动态微分方程建立的一般方法和小偏差线性化方法。
3.掌握使用拉普拉斯变换解微分方程的方法,并对解的结构、运动模态、特征根的关系、零输入响应、零状态响应等概念有清晰的理解。
4.正确理解传递函数的定义、性质和意义,并熟练掌握系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。