[数学]抽样估计与样本量确定
- 格式:ppt
- 大小:516.46 KB
- 文档页数:43
样本量的确定方法及公式在统计学和实证研究中,样本量的确定对于获得可靠的结果非常重要。
一个足够大的样本量可以减少统计误差和提高研究的可信度。
样本量的确定需要考虑多个因素,包括所需的可靠性水平,总体大小和总体变异性等。
以下是一些常用的样本量确定方法和公式。
一、样本量计算方法:1. 参数估计方法(Parameter Estimation):用于计算总体均值、总体比例等参数的估计。
通常使用的方法有点估计和区间估计。
在参数估计方法中,一般需要考虑总体的平均数、标准差、置信水平和误差容忍度等因素。
2. 假设检验方法(Hypothesis Testing):用于检验两个总体之间差异是否显著。
常用的假设检验方法有t检验、方差分析等。
在假设检验方法中,需要考虑所需的显著性水平、效应大小、标准差等因素。
3. 相关分析方法(Correlation Analysis):用于研究两个或多个变量之间的关联关系。
常用的相关分析方法有皮尔逊相关系数、斯皮尔曼等级相关系数等。
在相关分析方法中,需要考虑相关系数、显著性水平等因素。
二、样本量计算公式:1.参数估计中的样本量计算公式:a.总体比例(Proportion):n = [(Z * Z) * P * (1-P)] / E^2其中,n表示样本量,Z表示所需的置信度对应的Z值,P表示总体比例的估计值,E表示误差容忍度。
b.总体均值(Mean):n = [(Z * s) / E]^2其中,n表示样本量,Z表示所需的置信度对应的Z值,s表示总体标准差的估计值,E表示误差容忍度。
2.假设检验中的样本量计算公式:a.均值差异(Mean Difference):n = [(Z * s) / E]^2其中,n表示样本量,Z表示所需的显著性水平对应的Z值,s表示总体标准差的估计值,E表示效应大小。
b.总体比例差异(Proportion Difference):n = [(Z * Z) * (P1* (1-P1) + P2 * (1-P2))] / E^2其中,n表示样本量,Z表示所需的显著性水平对应的Z值,P1和P2分别表示两个总体比例的估计值,E表示效应大小。
如何确定抽样方法与样本量在设计一个抽样调查时,我们通常需要做的工作是:定义总体及抽样单元、确定或构置抽样杠、选择样本量的大小、制定实施细节并实施。
在这本小册子中我们着重介绍一下定量研究的抽样和样本量这两个技术环节。
最基本的定量研究的抽样方法分为两类,一类为非概率抽样,一类为概率抽样。
一.非概率抽样非概率抽样是不能计算抽样误差的,因为它是靠调研者个人的判断来进行的抽样。
它包括偶遇抽样或者方便抽样、判断抽样、配额抽样、雪球抽样等。
偶遇抽样(方便抽样)常见的未经许可的街头随方或拦截式访问、邮寄式调查、杂志内问卷调查等都属于偶遇抽样的方式。
偶遇抽样是所有抽样技术中花费最小的(包括经费和时间)。
抽样单元是可以接近的、容易测量的、并且是合作的。
但尽管有许多优点,这种形式的抽样还是有严重的局限性。
许多可能的选择偏差都会存在,如被调查者的自我选择、抽样的主观性偏差等。
这种抽样不能代表总体的推断总体。
因此,当我们在进行街头访问或邮寄调查时,一定要谨慎对待调查结果。
判断抽样判思抽亲是基于调研者对总体的了解和经验,从总体中抽选“有代表性的”“曲型的”单位作为样本,例如从全体企业作为样本,来考察全体企业的经营状况。
如果判断准,这种方法有呆取得具有较好代表性的样本,但这种方法受主观因素影响较大。
配额抽样配额抽样是根据总体的结构特征来给调查员分派定额,以取得一个与总体结构特征大体相似的样本,例如根据人口的性别、年龄构成来给调查员规定不同性别、年龄的调查人数。
配额保证了在这些特征上样本的组成与总体的组成是一致的。
一旦配额分配好了,选择样本元素的自由度就很大了。
唯一的要求闵是所选取的元素要适合所控制的特性。
这种抽样方法的目的是使样本对总体具有更好的代表性,但仍不一定能保证样本就是有代表性的。
如果与问题相关联的某个特征是十分困难的。
另外,用这种方法进行选择严格控制调查员和调查过度程的条件下,可使配额抽样获得与某些概率抽样非常接近的结果。
抽样方法及样本量的确定在社会科学研究中,抽样方法及样本量的确定是非常重要的环节。
抽样方法是指从总体中选择一部分样本进行研究,以代表总体特征的一种方法。
而样本量的确定则涉及到研究的可靠性和有效性。
本文将探讨抽样方法的选择以及样本量的确定。
一、抽样方法的选择1. 简单随机抽样简单随机抽样是一种基本的抽样方法,它通过随机选择样本,确保每个个体都有相等的机会被选中。
这种方法适用于总体分布均匀且规模较小的情况。
例如,当我们想要研究某个小城市的居民对某一政策的态度时,可以使用简单随机抽样方法。
2. 分层抽样分层抽样是将总体划分为若干层次,然后从每个层次中随机选择样本。
这种方法适用于总体具有明显的层次结构的情况。
例如,当我们想要研究一个城市的不同社区对某一政策的态度时,可以将城市划分为不同的社区层次,然后从每个社区中随机选择样本。
3. 整群抽样整群抽样是将总体划分为若干个群组,然后随机选择一部分群组作为样本进行研究。
这种方法适用于总体群组之间差异较大的情况。
例如,当我们想要研究某个国家的不同地区对某一政策的态度时,可以将国家划分为不同的地区群组,然后随机选择一部分地区进行研究。
二、样本量的确定确定样本量的大小是保证研究结果准确性和可靠性的关键因素。
样本量过小可能导致结果的不可靠,样本量过大则可能浪费资源。
确定样本量的大小需要考虑以下几个因素:1. 总体大小总体大小是影响样本量确定的一个重要因素。
当总体较大时,样本量可以相对较小;当总体较小时,样本量应相对较大。
2. 置信水平置信水平是指研究结果的可靠程度。
常见的置信水平有95%和99%。
置信水平越高,样本量需要越大。
3. 允许误差允许误差是指研究结果与总体特征之间的差异。
允许误差越小,样本量需要越大。
4. 方差方差是指总体内个体之间的差异程度。
方差越大,样本量需要越大。
综合考虑以上因素,可以使用统计学方法计算出合适的样本量。
常见的计算方法有公式法和抽样方差法。
新视角108 经济理论研究抽样调查样本量的确定侯志强1,2 吴启富3(1.北方工业大学,北京100041;2.中国人民大学统计学院,北京100872;3.首都经济贸易大学统计学院,北京100026)摘要:样本量确定是抽样调查中的一个重要内容。
确定样本量需要综合考虑费用与精度。
抽样方式也是影响样本量的一个重要因素。
简单随机抽样估计总体比例确定样本量需要同时考虑两个精度要求,即估计量方差上限与估计量离散系数上限。
分层随机抽样的样本量还受各层样本量分配方式的影响。
复杂抽样的样本量需要借助抽样设计效应才能计算。
样本量经过调整后才能满足实际调查的需要。
关键词:抽样调查;样本量;费用;精度;设计效应一、引言抽样调查是按照随机原则从总体中抽取部分个体进行观察并据此对总体参数作出一定可靠程度推断的科学。
抽取个体的数量称为样本量。
在一定抽样方式下,样本容量越大,估计精度就越高,所需费用也就越大。
因此,样本量受费用与精度的双重制约。
简单随机抽样样本量的确定是其它抽样方式样本量确定的基础。
在简单随机抽样中,经常需要估计几个总体比例,有些总体比例较大,有些则较小,但许多人总是根据估计量方差上限这个唯一的精度要求确定所谓的“保守”样本量,殊不知当所要估计的总体比例很小时,这个“保守”的样本量根本谈不上“保守”。
本文试图解决这个问题,并探讨其它抽样方式下样本量的确定问题。
二、简单随机抽样样本量的确定在简单随机抽样下,若给定费用要求,则可通过费用函数确定样本量。
通常的费用函数为C T =c 0+c 1n (1)其中,C T 表示总费用,c 0表示固定费用,c 1表示调查一个样本单元的平均费用,n 表示样本量。
那么,样本量为n =C T -c 0c 1 (2)通过式(2)可以确定样本量的上限,即总费用所允许的最大样本量,记为n U 。
简单随机抽样的样本量还可通过精度确定,通常规定估计量方差的上限。
例如,已知总体方差为 2,需估计总体均值X —,其简单估计量为样本均值x —,则在重复抽样条件下,估计量方差为D (x —)= 2n (3)若要求估计量x —的方差不许超过常数V ,则有2n≤V (4)从而样本量满足n ≥ 2V (5)通过式(5)可以确定样本量的下限,即精度所允许的最小样本量,记为n L 。
【转】如何确定样本量调查一般分为普查和抽样调查,只有抽样调查才涉及到样本量的问题。
例如某企业有100名员工,在进行员工满意度调查时就无需抽样,只要全部调查即可。
那么,样本量是不是越大越好呢?当然不是,调查是要消耗大量人力财力和时间的,并且,从统计学上讲,当样本量达到一定程度以后,再增加样本,对于提高调查效果的作用(样本对于总体的估计效应)就不大了,反而会增加经费和时间。
那么是不是随便确定一个样本量就可以呢?当然也不行。
样本量的大小受许多因素制约,如调研的性质、总体指标的变异程度、调研精度、样本设计、回答率、项目经费和时间等。
市场潜力等涉及量比较严格的调查所需样本量较大,而产品测试,产品定价,广告效果等人们间彼此差异不是特别大或对量的要求不严格的调查所需样本量较小些;探索性研究,样本量一般较小,而描述性研究,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当更大;如果需要特别详细的分析,如做许多分类等,也需要大样本。
针对子样本分析比只限于对总样本分析,所需样本量要大得多;总体指标的差异化越大,需要的样本量就越高;调研的精度越高,样本量越大。
简单随机抽样设计,设计效应等于1;分层抽样设计,设计效应一般小于等于1;整群或多阶抽样设计,设计效应一般大于等于1。
在实际中,在确定样本量时,不考虑时间和费用这两个极为重要的因素是不可思议的。
最终确定的样本量必须与可获得的经费预算和允许的时限保持一致。
最终样本量的确定需要在精度、费用、时限和操作的可行性等相互冲突的限制条件之间进行协调。
它还可能需要重新审查初始样本量、数据需求、精度水平、调查计划的要素和现场操作因素,并作必要的调整。
通常,统计调查机构和客户寻求在最有效使用费用的基础上(例如缩短访问时间),使用户能对所需的样本量提供经费支持。
注意一个误区:"大城市多抽,小城市少抽",这种说法原则上是不对的。
抽样样本量的确定
确定样本量的方法有很多种,下面将介绍其中几种常用的方法:
1.点估计方法:这种方法假设总体参数已知或已经进行过先前的研究,通过计算得到一个点估计值,并根据误差容忍度和置信水平来计算样本量。
例如,如果要估计一个总体比例的点估计值,可以通过以下公式计算样本量:n=(Z^2*p*(1-p))/E^2,其中Z为置信水平对应的标准正态分布的分
位数,p为总体比例的估计值,E为允许的误差容忍度。
2.回归分析方法:当研究中涉及到自变量和因变量之间的关系时,可
以使用回归分析方法来确定样本量。
这个方法基于回归模型的统计力学,
通过指定预期的效应大小、误差容忍度和显著性水平来计算样本量。
3.探索性研究方法:对于探索性研究,通常没有先验的参数估计值可
以使用,因此无法使用点估计方法来确定样本量。
在这种情况下,研究者
可能需要基于经验或者判断来确定样本量。
除了以上几种方法,还有一些特殊的情况需要考虑,如多层抽样、群
组随机化实验等,这些情况下样本量的确定方法可能会有所不同。
总之,确定样本量需要综合考虑多个因素,并利用相关的统计方法来
进行计算。
在实际应用中,需要根据具体情况选择合适的方法,并确保样
本量足够大以获得可靠的统计结果。
抽样调查的样本容量的确定方法摘要:确定样本容量是抽样调查中重要的环节,影响到抽样估计的精确度和调查的成本和效益。
单位标志变异程度、抽样极限误差、抽样推断的可靠度、抽样类型和方法等影响到样本容量地确定。
样本容量的确定可以根据由抽样误差、抽样极限误差和概率度推算出来的公式计算,也可以根据建立在过去抽取满足统计方法要求的样本量所累积下来的经验法则来确定。
关键词:样本容量;抽样调查;抽样误差;极限误差抽样调查是根据随机原则,从总体中抽取部分实际数据构成样本,同时运用概率估计方法,依据样本信息推断总体数量特征的一种非全面统计调查。
根据抽选样本的方法,抽样调查可以分为等概率抽样和非概率抽样两类。
等概率抽样又称为随机抽样,是按照概率论和数理统计的原理,从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征做出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。
样本是从总体中抽出的部分单位的集合,样本中所包含的单位数被称为样本容量,一般用 n 表示。
确定样本容量是制定抽样调查方案中的一个非常重要的环节。
1.确定样本容量的必要性1.1 样本容量大小影响抽样估计的精确度抽样估计的精确度是指样本的统计量与其所代表的总体值的接近程度。
调查结果相对于总体真实值的精确度与样本容量直接相关。
样本容量越大,抽样误差相对就会减少,估计精度就会提高;若样本容量太小,抽样误差就会增大,从而影响抽样估计的精确度。
1.2 样本容量大小影响抽样调查的成本和效益样本量的设计通常受到研究经费及调查时间的限制。
根据数理统计规律,样本量增加呈直线递增的情况下(样本量增加一倍,成本也增加一倍),而抽样误差只是样本量相对增长速度的平方根递减。
若样本容量过大,调查单位增多,不仅增加人力、财力和物力的耗费,增加调查费用,而且还影响到抽样调查的时效性,从而不能充分发挥抽样调查的优越性。
因此,为节省调查费用,体现出抽样调查的优越性,在确定样本容量时,应在满足抽样调查对估计数据的精确度的前提下,尽量减少调查单位数,确保必要的抽样数目。
样本量的确定方法.样本量的计算公式为:样本量= (Zα/2 * σ / E)²,其中Zα/2为置信水平对应的标准正态分布值,σ为总体标准差,E 为允许的误差。
2)对于比例类型的变量,样本量的计算公式为:样本量= (Zα/2)² * p * (1-p) / E²,其中Zα/2为置信水平对应的标准正态分布值,p为总体比例,E为允许的误差。
2.分层抽样确定样本量,需要先将总体划分为若干层,然后根据每层的变异程度和大小,计算出每层的样本量,最后将各层样本量相加得到总样本量。
3.整群抽样确定样本量,需要先将总体分为若干群,然后根据群内变异程度和群大小,计算出每群的样本量,最后将各群样本量相加得到总样本量。
总之,样本量的确定需要综合考虑多个因素,包括调查目的、性质、精度要求、实际操作的可行性和经费承受能力等,同时需要根据不同的抽样方法和变量类型选择相应的样本量计算公式。
本文介绍了如何确定抽样调查方案的样本量。
对于已知数据为绝对数的情况,需要根据期望调查结果的精度、置信度、总体标准差估计值和总体单位数来计算样本量。
计算公式为n=σ/(e/Z+σ/N)。
如果是很大总体,则公式变为n=Zσ/e。
例如,如果希望平均收入误差在正负人民币30元之间,调查结果在95%的置信范围以内,置信度为1.96,估计总体标准差为150元,总体单位数为1000,则样本量为88.对于已知数据为百分比的情况,需要根据调查结果的精度值百分比、置信度、比例估计的精度和总体数来计算样本量。
计算公式为n=P(1-P)/(e/Z+ P(1-P)/N)。
如果不考虑总体,则公式为n=ZP(1-P)/e。
一般情况下,取样本变异程度最大值0.5作为P的取值。
例如,如果希望平均收入误差在正负0.05之间,调查结果在95%的置信范围以内,置信度为1.96,估计P为0.5,总体单位数为1000,则样本量为278.确定样本量后,需要进行样本量分配。