第10章 抽样估计与样本量确定
- 格式:ppt
- 大小:12.98 MB
- 文档页数:49
样本量的确定1. 二值分布(估计比例时的样本容量)这种情况下,表明可能的采样结果只有两种情况,即是与非的问题。
比如调查某一批产品的合格率。
样本量的确定主要受以下几个因素影响:置信水平α、所能接受的抽样偏差e (估计值与真实值的最大偏差)、总体数量N ;通过置信水平即可查表确定z 。
通常情况下置信水平选择95%。
抽样偏差为±5%,不过也不完全一定,抽样偏差的确定还是要考虑实际情况,比如最小的调查估计值p=5%,此时抽样偏差就应该小于5%。
这时,就可以确定样本量:222(1)(1)z p p n z p p e N-=-+P 值的确定:用以前类似样本得到的结果来近似,如果完全不知道就设p=,因为此时方差最大,可求得一个比较保守的样本容量。
样本容量和在p=时运用简单随机抽样估计p 值得到的抽样偏差e如果总体容量N 非常大,可近似为无穷,那么上面这个公式可简化成:22(1)z p p n e -=事实上当总体容量很小时,不会采用抽样调查,而是普查了。
2. 正态分布(估计均值时的样本容量)在这种情况下,表明采样的结果是具有多样性的,并不局限在0、1上。
比如对某一城市老年人的患病年龄进行统计。
这个时候,样本量同样受如下几个因素影响:置信水平α、所能接受的抽样偏差e (估计值与真实值的最大偏差)、总体数量N 。
样本量为:22222z S n z S e N=+S 表明的是总体标准差,这个可以用以前类似样本得到的S 或是实验调查样本的S 来近似。
同样,如果总体容量N 非常大,可近似为无穷,那么上面这个公式可简化成:222z S n e=理论基础:根据数理统计知识,样本均值对总体均值可构造如下统计量:xX uσ-,他满足标准正态分布,查表即可得到某一显著性水平下这个统计量的值,这里面的x σ表示总体均值估计量的标准误差。
在无放回简单随机抽样情况下,总体均值估计量的标准误差表达式:x σ=如果误差界限设为e ,那么:(1)n Sez N N=-解得:22222z S n z S e N=+对于二值分布,p 的总体方差为:2(1)S p p =-此时:222(1)(1)z p p n z p p e N-=-+当然,这里只考虑了简单随机抽样,对于分层抽样和整群抽样,需要再乘以一个设计效应,分层抽样效率高于简单随机抽样,效应因子小于1,整群抽样效率低于简单随机抽样,效应因子大于1.总体大小对于样本量也是有影响的,当总体个数越小时,影响越明显。
《市场调查与预测》课程教学大纲烟台南山学院《市场调查与预测》课程教学大纲课程名称:市场调查与预测课程代码:1739041课程类型:专业核心课学分:3.5 总学时:64 理论学时:48 实践学时:16先修课程:市场营销学适用专业:市场营销一、课程性质、目的和任务本课程是市场营销专业的专业核心课。
通过本课程的学习,应使学生比较全面系统地掌握市场调研的基础理论和基本方法,在市场营销活动中经常应用的调查、测量方法,同时具备分析基础数据和撰写调查报告的能力。
培养学生严谨的市场调查研究的态度和职业素质。
二、教学基本要求1.知识、能力、素质的基本要求本课程是市场营销专业课程,通过对市场调查的基本概念、调查内容、调查方法技巧、调查过程特点及其每一阶段的具体操作(包括调查方案企划设计、调查抽样、调查实施、调查资料整理设计分析、调查报告书撰写)等方面知识技能的讲解分析与实践训练使学生能够理解掌握现代市场调查的专业知识与专业操作技能技巧,并能比较熟练且规范地开展各种类型的市场调查。
2.教学模式基本要求本课程在学科体系上属于市场营销的一个分支,但其内容又与多种学科相融合,涉及《市场营销学》、《心理学》、《统计学》等多学科的知识,所以,在本课程的教学过程中,应注意其学科特点与学习方法,重点系统论述市场调研与预测的基本理论、方法和技术。
3.考核方法基本要求成绩评定包括平时考查、期中考试和期末考试3种形式。
平时考查成绩占总成绩的20%,期中考试占总成绩的20%,期末考试成绩占总成绩的60%。
其中平时过程性考查主要课堂出勤10分;课后作业、课堂讨论、课内实践等综合评定10分。
平时考核要求作业最少8次,少一次作业扣2分,作业完成质量不高每次扣1分,扣完10分为止;旷课一次扣2分,迟到一次扣1分,扣完10分为止。
三、教学内容及要求第1篇市场调查设计总论第1章市场调研职能1.教学内容1.1 市场调研及其基本分类 1.2 市场调研的功能与价值1.3 市场调研的局限 1.4 市场调研的历史与现状2.教学要求了解市场、市场信息的概念;了解市场调研的历史与现状;理解市场调研的功能与价值;掌握市场调研的含义及基本分类。
第十章审计抽样201202审计抽样方法的运用是审计工作理论和实践的重大突破。
在有限的审计资源条件下,极大地提高了审计工作的效率,降低了审计费用,收集到充分适当的审计证据。
审计抽样的方法由最初的判断抽样发展到统计抽样,而统计抽样比起判断抽样,一定程度上又大大提高了审计结论的可靠性,控制和降低了抽样风险。
一、审计抽样的概念审计抽样是指注册会计师对具有审计相关性的总体中低于百分之百的项目实施审计程序,使所有抽样单元都有被选取的机会,为注册会计师针对整个总体得出结论提供合理基础。
审计抽样的基本目标是在有限的审计资源条件下,收集充分适当的审计证据,以形成和支持审计结论。
审计抽样的应用,极大地提高了审计工作的效率,降低了审计费用。
审计抽样不同于详细审计。
详细审计是指对审计对象总体中的全部项目进行审计,并根据审计结果形成审计意见。
那种从审计对象总体中选取部分项目进行审计,并对所选项目本身发表审计意见的方法也不属于审计抽样。
审计抽样应当具备三个基本特征:(1)对某类交易或账户余额中低于百分之百的项目实施审计程序;(2)所有抽样单元都有被选取的机会;(3)审计测试的目的是为了评价该账户余额或交易类型的某一特征。
审计人员拟实施的审计程序将对运用审计抽样产生重要影响。
有些审计程序可以使用审计抽样,有些审计程序则不宜使用审计抽样。
现详细说明:(一)风险评估程序审计人员应当实施下列风险评估程序以了解被审计单位及其环境:①询问被审计单位管理层和内部其他相关人员;②分析程序;③观察和检查。
审计人员在实施上述风险评估程序时通常不涉及审计抽样。
原因是:一方面,审计人员实施风险评估程序的目的是了解被审计单位及其环境,识别和评估重大错报风险,而不需要对总体取得结论性证据;另一方面,风险评估程序实施的范围较为广泛,且所获取的信息具有较强的主观色彩,因此通常不涉及使用审计抽样方法。
但是,如果审计人员在了解控制的设计和确定其是否得到执行时,一并计划和实施控制测试,则会涉及审计抽样方法,但此时审计抽样仅适用于控制测试。
如何确定抽样方法与样本量在设计一个抽样调查时,我们通常需要做的工作是:定义总体及抽样单元、确定或构置抽样杠、选择样本量的大小、制定实施细节并实施。
在这本小册子中我们着重介绍一下定量研究的抽样和样本量这两个技术环节。
最基本的定量研究的抽样方法分为两类,一类为非概率抽样,一类为概率抽样。
一.非概率抽样非概率抽样是不能计算抽样误差的,因为它是靠调研者个人的判断来进行的抽样。
它包括偶遇抽样或者方便抽样、判断抽样、配额抽样、雪球抽样等。
偶遇抽样(方便抽样)常见的未经许可的街头随方或拦截式访问、邮寄式调查、杂志内问卷调查等都属于偶遇抽样的方式。
偶遇抽样是所有抽样技术中花费最小的(包括经费和时间)。
抽样单元是可以接近的、容易测量的、并且是合作的。
但尽管有许多优点,这种形式的抽样还是有严重的局限性。
许多可能的选择偏差都会存在,如被调查者的自我选择、抽样的主观性偏差等。
这种抽样不能代表总体的推断总体。
因此,当我们在进行街头访问或邮寄调查时,一定要谨慎对待调查结果。
判断抽样判思抽亲是基于调研者对总体的了解和经验,从总体中抽选“有代表性的”“曲型的”单位作为样本,例如从全体企业作为样本,来考察全体企业的经营状况。
如果判断准,这种方法有呆取得具有较好代表性的样本,但这种方法受主观因素影响较大。
配额抽样配额抽样是根据总体的结构特征来给调查员分派定额,以取得一个与总体结构特征大体相似的样本,例如根据人口的性别、年龄构成来给调查员规定不同性别、年龄的调查人数。
配额保证了在这些特征上样本的组成与总体的组成是一致的。
一旦配额分配好了,选择样本元素的自由度就很大了。
唯一的要求闵是所选取的元素要适合所控制的特性。
这种抽样方法的目的是使样本对总体具有更好的代表性,但仍不一定能保证样本就是有代表性的。
如果与问题相关联的某个特征是十分困难的。
另外,用这种方法进行选择严格控制调查员和调查过度程的条件下,可使配额抽样获得与某些概率抽样非常接近的结果。
抽样方法及样本量的确定在社会科学研究中,抽样方法及样本量的确定是非常重要的环节。
抽样方法是指从总体中选择一部分样本进行研究,以代表总体特征的一种方法。
而样本量的确定则涉及到研究的可靠性和有效性。
本文将探讨抽样方法的选择以及样本量的确定。
一、抽样方法的选择1. 简单随机抽样简单随机抽样是一种基本的抽样方法,它通过随机选择样本,确保每个个体都有相等的机会被选中。
这种方法适用于总体分布均匀且规模较小的情况。
例如,当我们想要研究某个小城市的居民对某一政策的态度时,可以使用简单随机抽样方法。
2. 分层抽样分层抽样是将总体划分为若干层次,然后从每个层次中随机选择样本。
这种方法适用于总体具有明显的层次结构的情况。
例如,当我们想要研究一个城市的不同社区对某一政策的态度时,可以将城市划分为不同的社区层次,然后从每个社区中随机选择样本。
3. 整群抽样整群抽样是将总体划分为若干个群组,然后随机选择一部分群组作为样本进行研究。
这种方法适用于总体群组之间差异较大的情况。
例如,当我们想要研究某个国家的不同地区对某一政策的态度时,可以将国家划分为不同的地区群组,然后随机选择一部分地区进行研究。
二、样本量的确定确定样本量的大小是保证研究结果准确性和可靠性的关键因素。
样本量过小可能导致结果的不可靠,样本量过大则可能浪费资源。
确定样本量的大小需要考虑以下几个因素:1. 总体大小总体大小是影响样本量确定的一个重要因素。
当总体较大时,样本量可以相对较小;当总体较小时,样本量应相对较大。
2. 置信水平置信水平是指研究结果的可靠程度。
常见的置信水平有95%和99%。
置信水平越高,样本量需要越大。
3. 允许误差允许误差是指研究结果与总体特征之间的差异。
允许误差越小,样本量需要越大。
4. 方差方差是指总体内个体之间的差异程度。
方差越大,样本量需要越大。
综合考虑以上因素,可以使用统计学方法计算出合适的样本量。
常见的计算方法有公式法和抽样方差法。
样本量的确定方法 The pony was revised in January 2021样本量的确定方法(2008-10-14 09:12:34)一、样本单位数量的确定原则一般情况下,确定样本量需要考虑调查的目的、性质和精度要求。
以及实际操作的可行性、经费承受能力等。
根据调查经验,市场潜力和推断等涉及量比较严格的调查需要的样本量比较大,而一般广告效果等人们差异不是很大或对样本量要求不是很严格的调查,样本量相对可以少一些。
实际上确定样本量大小是比较复杂的问题,即要有定性的考虑,也要有定量的考虑;从定性的方面考虑,决策的重要性、调研的性质、数据分析的性质、资源、抽样方法等都决定样本量的大小。
但是这只能原则上确定样本量大小。
具体确定样本量还需要从定量的角度考虑。
从定量的方面考虑,有具体的统计学公式,不同的抽样方法有不同的公式。
归纳起来,样本量的大小主要取决于:(1)研究对象的变化程度,即变异程度;(2)要求和允许的误差大小,即精度要求;(3)要求推断的置信度,一般情况下,置信度取为95%;(4)总体的大小;(5)抽样的方法。
也就是说,研究的问题越复杂,差异越大时,样本量要求越大;要求的精度越高,可推断性要求越高时,样本量也越大;同时,总体越大,样本量也相对要大,但是,增大呈现出一定对数特征,而不是线形关系;而抽样方法问题,决定设计效应的值,如果我们设定简单随机抽样设计效应的值是1;分层抽样由于抽样效率高于简单随机抽样,其设计效应的值小于1,合适恰当的分层,将使层内样本差异变小,层内差异越小,设计效应小于1的幅度越大;多阶抽样由于效率低于简单随机抽样,设计效应的值大于1,所以抽样调查方法的复杂程度决定其样本量大小。
对于不同城市,如果总体不知道或很大,需要进行推断时,大城市多抽,小城市少抽,这种说法原则上是不对的。
实际上,在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。
二、样本量的确定方法如何确定样本量,基本方法很多,但是公式检验表明,当误差和置信区间一定时,不同的样本量计算公式计算出来的样本量是十分相近的,所以,我们完全可以使用简单随机抽样计算样本量的公式去近似估计其他抽样方法的样本量,这样可以更加快捷方便,然后将样本量根据一定方法分配到各个子域中去。
市场调研中的样本选择与样本量确定市场调研在确定目标受众和进行市场分析时起到了至关重要的作用。
其中,样本选择和样本量的确定是市场调研过程中必不可少的环节。
本文将就样本选择和样本量确定的原则和方法进行探讨,以帮助读者更好地进行市场调研。
一、样本选择的原则和方法在市场调研中,样本选择是一项极为重要的工作,其结果的准确性直接影响到调研结果的可靠性。
以下是样本选择的原则和方法。
1. 代表性原则样本选择的首要原则是代表性。
样本的代表性要求能够真实反映总体的特征和分布情况。
为了确保样本代表性,我们需要根据所研究的对象的特点,选择具有相似特征的人群或单位作为样本。
2. 随机性原则样本选择中的随机性原则是指每个个体或单位都有相同的机会被选择为样本,避免主观或偏见的干扰。
常用的随机化方法有简单随机抽样、分层抽样、整群抽样等,根据实际情况选择适当的方法。
3. 多样性原则样本选择中的多样性原则是指样本需要具有一定的多样性,可以覆盖不同地区、不同性别、不同年龄、不同职业等因素。
这样可以提高样本选择的可靠性和代表性。
二、样本量的确定样本量的确定是市场调研中关键的一环。
合理的样本量可以保证调研结果具有一定的可信度和统计学意义。
以下是样本量确定的原则和方法。
1. 总体大小原则样本量的确定需要考虑总体的大小。
当总体较大时,相同的误差水平需要较大的样本量,以保证结果的精度。
相反,当总体较小时,相同的误差水平需要较小的样本量。
2. 信心水平和置信度原则样本量的确定还涉及到信心水平和置信度的考虑。
信心水平是指调研结果的可靠程度,常见的信心水平有95%和99%。
置信度是指在样本误差范围内,对总体的估计结果。
3. 调查方法和目标变量原则样本量的确定还需要根据调查方法和所要研究的目标变量来确定。
不同的调查方法和目标变量会对样本量的要求产生不同的影响。
一般来说,较为复杂的调查方法和目标变量需要更大的样本量。
三、总结市场调研中的样本选择和样本量的确定是确保调研结果可靠性的重要环节。
【转】如何确定样本量调查一般分为普查和抽样调查,只有抽样调查才涉及到样本量的问题。
例如某企业有100名员工,在进行员工满意度调查时就无需抽样,只要全部调查即可。
那么,样本量是不是越大越好呢?当然不是,调查是要消耗大量人力财力和时间的,并且,从统计学上讲,当样本量达到一定程度以后,再增加样本,对于提高调查效果的作用(样本对于总体的估计效应)就不大了,反而会增加经费和时间。
那么是不是随便确定一个样本量就可以呢?当然也不行。
样本量的大小受许多因素制约,如调研的性质、总体指标的变异程度、调研精度、样本设计、回答率、项目经费和时间等。
市场潜力等涉及量比较严格的调查所需样本量较大,而产品测试,产品定价,广告效果等人们间彼此差异不是特别大或对量的要求不严格的调查所需样本量较小些;探索性研究,样本量一般较小,而描述性研究,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当更大;如果需要特别详细的分析,如做许多分类等,也需要大样本。
针对子样本分析比只限于对总样本分析,所需样本量要大得多;总体指标的差异化越大,需要的样本量就越高;调研的精度越高,样本量越大。
简单随机抽样设计,设计效应等于1;分层抽样设计,设计效应一般小于等于1;整群或多阶抽样设计,设计效应一般大于等于1。
在实际中,在确定样本量时,不考虑时间和费用这两个极为重要的因素是不可思议的。
最终确定的样本量必须与可获得的经费预算和允许的时限保持一致。
最终样本量的确定需要在精度、费用、时限和操作的可行性等相互冲突的限制条件之间进行协调。
它还可能需要重新审查初始样本量、数据需求、精度水平、调查计划的要素和现场操作因素,并作必要的调整。
通常,统计调查机构和客户寻求在最有效使用费用的基础上(例如缩短访问时间),使用户能对所需的样本量提供经费支持。
注意一个误区:"大城市多抽,小城市少抽",这种说法原则上是不对的。
第10章审计抽样习题参考答案1.审计抽样的含义是什么?【答】审计抽样是指从某一特定的审计对象(审计总体)中,按一定方式抽取一部分具有代表性的样本进行审查,并用样本的审查结果推断审计总体特征的审计方法。
2.什么是抽样风险?抽样风险具体表现为哪几种形式,各自对审计结果有何影响?【答】抽样风险:由于采用抽样审查方法,即并非对总体中100%的项目进行审查,而只是对抽取的样本进行审查,并以样本特征推断总体特征,由此得出的审计结论与总体实际情况之间必然存在着差异。
表现形式及影响:(1)控制测试中的抽样风险。
控制测试中的抽样风险主要1有两种,一是过度依赖风险;二是依赖不足风险。
过度依赖风险是指在对内部控制有效性进行测试时,通过样本的考察,得出依赖内部控制的结论,但总体的实际情况可能并不符合这一结论。
即在审计师选取的内部控制样本中,其有效性好于总体水平,这样对样本考察的结果将导致审计师对内部控制给予过度的依赖。
依赖不足风险,指对内部控制有效性进行测试时,基于对样本的考察得出了不能依赖内部控制的结论,但总体的实际情况却是可以依赖的,即对内部控制应该依赖而未予依赖。
(2)实质性测试中的抽样风险。
实质性测试中的抽样风险也有两种:一是误拒风险;二是误受风险。
误拒风险,指在对账户余额的正确性进行测试时,实际上某项余额正确,而审计师通过考察样本却得出该余额不正确的结论,即将事实上正确的余额看成是错误的余额。
误受风险,指实际上某项余额是错误的,而审计师考察样本后却得出该项余额正确的结论,即将事实上错误的余额误作为正确的予以接受。
3.什么是非抽样风险?非抽样风险的具体表现形式有哪些?【答】非抽样风险:非抽样风险是指由于采用抽样审查方法之外的其他原因所造成的风险。
例如,审计程序设计不当、审计方法选择不合理、审计师工作疏忽、审计师专业判断存在瑕疵等原因,导致审计目标难以实现。
具体表现形式:非抽样风险一般难以量化,可以通过审计程序和审计方法的2科学、周密设计以及审计工作的适当督导将其消除或减少。
抽样样本量的确定
确定样本量的方法有很多种,下面将介绍其中几种常用的方法:
1.点估计方法:这种方法假设总体参数已知或已经进行过先前的研究,通过计算得到一个点估计值,并根据误差容忍度和置信水平来计算样本量。
例如,如果要估计一个总体比例的点估计值,可以通过以下公式计算样本量:n=(Z^2*p*(1-p))/E^2,其中Z为置信水平对应的标准正态分布的分
位数,p为总体比例的估计值,E为允许的误差容忍度。
2.回归分析方法:当研究中涉及到自变量和因变量之间的关系时,可
以使用回归分析方法来确定样本量。
这个方法基于回归模型的统计力学,
通过指定预期的效应大小、误差容忍度和显著性水平来计算样本量。
3.探索性研究方法:对于探索性研究,通常没有先验的参数估计值可
以使用,因此无法使用点估计方法来确定样本量。
在这种情况下,研究者
可能需要基于经验或者判断来确定样本量。
除了以上几种方法,还有一些特殊的情况需要考虑,如多层抽样、群
组随机化实验等,这些情况下样本量的确定方法可能会有所不同。
总之,确定样本量需要综合考虑多个因素,并利用相关的统计方法来
进行计算。
在实际应用中,需要根据具体情况选择合适的方法,并确保样
本量足够大以获得可靠的统计结果。
样本量的确定方法.样本量的计算公式为:样本量= (Zα/2 * σ / E)²,其中Zα/2为置信水平对应的标准正态分布值,σ为总体标准差,E 为允许的误差。
2)对于比例类型的变量,样本量的计算公式为:样本量= (Zα/2)² * p * (1-p) / E²,其中Zα/2为置信水平对应的标准正态分布值,p为总体比例,E为允许的误差。
2.分层抽样确定样本量,需要先将总体划分为若干层,然后根据每层的变异程度和大小,计算出每层的样本量,最后将各层样本量相加得到总样本量。
3.整群抽样确定样本量,需要先将总体分为若干群,然后根据群内变异程度和群大小,计算出每群的样本量,最后将各群样本量相加得到总样本量。
总之,样本量的确定需要综合考虑多个因素,包括调查目的、性质、精度要求、实际操作的可行性和经费承受能力等,同时需要根据不同的抽样方法和变量类型选择相应的样本量计算公式。
本文介绍了如何确定抽样调查方案的样本量。
对于已知数据为绝对数的情况,需要根据期望调查结果的精度、置信度、总体标准差估计值和总体单位数来计算样本量。
计算公式为n=σ/(e/Z+σ/N)。
如果是很大总体,则公式变为n=Zσ/e。
例如,如果希望平均收入误差在正负人民币30元之间,调查结果在95%的置信范围以内,置信度为1.96,估计总体标准差为150元,总体单位数为1000,则样本量为88.对于已知数据为百分比的情况,需要根据调查结果的精度值百分比、置信度、比例估计的精度和总体数来计算样本量。
计算公式为n=P(1-P)/(e/Z+ P(1-P)/N)。
如果不考虑总体,则公式为n=ZP(1-P)/e。
一般情况下,取样本变异程度最大值0.5作为P的取值。
例如,如果希望平均收入误差在正负0.05之间,调查结果在95%的置信范围以内,置信度为1.96,估计P为0.5,总体单位数为1000,则样本量为278.确定样本量后,需要进行样本量分配。