第三章转录及转录调控
- 格式:ppt
- 大小:6.83 MB
- 文档页数:135
分⼦⽣物学第三章RNA转录第三章 RNA 转录(RNA transcription)3.1. Basic concept3.2. Trancription survey3.3. Promoter in Eukaryotes and Prokaryotes3.4. Transcription Termination3.5. Pre-RNA processing in Eukaryotes3.1. 基本概念(P64) Basic concept●基因表达的第⼀步●以D. S. DNA 中的⼀条单链作为转录的模板某⼀基因只以⼀条单链DNA 为模板进⾏转录(不对称转录)●在依赖DNA 的RNA 聚合酶的作⽤下●按A U ,C G 配对的原则,合成RNA 分⼦●模板单链 DNA 的极性⽅向为3’ → 5’, ⽽⾮模板单链DNA 的极性⽅向与RNA 链相同,均为5’ → 3’.● RNA 的转录包括promotion, elongation, termination 三个阶段●从启动⼦(promoter )到终⽌⼦(terminator )的DNA序列称为转录单位(transcriptional unit )●原核⽣物中的转录单位多为 polycistron in operon真核⽣物中的转录单位多为monocistron, No operon●转录原点记为+1,其上游记为负值,下游记为正值● RNA 的主要种类及功能:mRNA ——携带编码多肽的遗传信息tRNA ——将核苷酸信息转化为aa 信息转运aa 进⼊核糖体rRNA ——参与多肽合成3.2.RNA 转录概况3.2.1转录的基本过程1. 模板识别:RNApol 与启动⼦相互识别并结合的过程(形成封闭的⼆元复合物)启动⼦(promoter ):DNA 分⼦上结合RNApol 并形成转录起始复合物的区域,通常也包括促进这⼀过程的调节蛋⽩结合位点rich A/T ,易发⽣DNA 呼吸现象形成单链区2转录起始:启动⼦区解链,转录起始(封闭的⼆元复合物开放的⼆元复合物三元复合物)通常在这⼀过程中RNApol 移动较慢,且易发⽣脱落——流产式起始 ——决定启动⼦的强弱3延伸:延伸过程中的延宕现象(Eukaryotes ):Euk genome G/C 分布不均匀σ脱离全酶(Pro )/RNApol 脱离转录起始复合物(Euk )4终⽌:在终⽌⼦(terminator )处停⽌转录3.2.2 RNApolymerase1 RNA polymerase in Prokaryotes (以E.coli 为例)1)构成核⼼酶(core enzyme):2αββ’DNA3’----TACTCAT----5’ RNA 5’----AUGAGUA----3’5’---ATGAGTA----3’ Non-template (sense strand)template (antisense strand)全酶(holoenzyme)2αββ’σα:核⼼酶组建因⼦/ 启动⼦识别β:RNA合成的活性中⼼β’:与β共同构成活性中⼼σ:识别启动⼦,增加酶与DNA的亲和⼒σ因⼦可减少RNApol与⾮启动⼦DNA序列的亲和⼒,⽽增加RNApol与启动⼦的亲和⼒,⼀旦转录起始,σ因⼦将脱离RNApol再次引导新的RNApol进⾏转录ρ:参与转录终⽌2)Rifamycin(利福霉素)及Streptolydigin(利链菌素)对Pro转录的影响Rif可结合β,阻⽌NTP的进⼊I位点(Initiation site )(⼀旦形成三元复合物Rif不再起抑制作⽤);利链菌素结合β的延伸位点(Elongation site),抑制延伸。
SECTION 5转录和转录水平的调控重点:转录的反应体系,原核生物RNA聚合酶和真核生物中的RNA聚合酶的特点,RNA的转录过程大体可分为起始、延长、终止三个阶段。
真核RNA的转录后加工,包括各种RNA前体的加工过程。
基因表达调控的基本概念、特点、基本原理.乳糖操纵子的结构、负性调控、正性调控、协调调节、转录衰减、SOS反应。
难点:转录模板的不对称性极其命名,原核生物及真核生物的转录起始,真核生物的转录终止,mRNA前体的剪接机制(套索的形成及剪接),第Ⅰ、Ⅱ类和第Ⅳ类内含子的剪接过程,四膜虫rRNA前体的加工,核酶的作用机理。
真核基因及基因表达调控的特点、顺式作用元件和反式作用因子的概念、种类和特点. 以及它们在转录激活中的作用。
一.模板和酶:要点1.模板RNA的转录合成需要DNA做模板,DNA双链中只有一股链起模板作用,指导RNA合成的一股DNA链称为模板链(template strand),与之相对的另一股链为编码链(coding strand),不对称转录有两方面含义:一是DNA链上只有部分的区段作为转录模板(有意义链或模板链),二是模板链并非自始至终位于同一股DNA单链上.2.RNA聚合酶转录需要RNA聚合酶。
原核生物的RNA聚合酶由多个亚基组成:α2ββ’称为核心酶,转录延长只需核心酶即可。
α2ββ'σ称为全酶,转录起始前需要σ亚基辨认起始点,所以全酶是转录起始必需的。
真核生物RNA聚合酶有RNA-pol Ⅰ、Ⅱ、Ⅲ三种,分别转录45s-rRNA; mRNA(其前体是hnRNA);以及5s-rRNA、snRNA 和tRNA。
3.模板与酶的辨认结合转录模板上有被RNA聚合酶辨认和结合的位点。
在转录起始之前被RNA聚合酶结合的DNA部位称为启动子.典型的原核生物启动子序列是-35区的TTGACA序列和-10区的Pribnow盒即TATAAT序列。
真核生物的转录上游调控序列统称为顺式作用元件,主要有TATA盒、、CG盒、上游活化序列(酵母细胞)、增强子等等。
第三章基因表达调控【本章要求】1.掌握基因表达的概念,表达的特点及基本规律,调控的方式和意义。
2.掌握基因表达的基本要素:顺式作用元件和反式作用因子及调节蛋白的相互作用。
3.掌握乳糖操纵子的结构及其调节原理。
4.了解真核基因表达调控的基本原则。
【内容提要】基因表达调控的基本内容是介绍细胞或个体生长过程中基因表达的方式、规律及调节机制,以及这些表达规律、调节机制与发育、分化的关系,个体与环境的适应。
基因表达就是指基因转录和翻译的过程。
并非所有基因表达过程都产生蛋白质分子,有些基因只转录合成RNA分子,如rRNA、tRNA等。
这些基因转录合成RNA的过程也属于基因表达。
原核生物,如细菌调节基因表达是为适应环境变化,调节代谢、维持细胞生长与分裂。
真核生物,如动物乃至人类在环境变化及个体生长、发育的不同阶段调节基因的表达既为调节代谢、适应环境,也为维持生长、发育与分化。
基因表达的规律性可分为阶段特异性和组织特异性两种:1.阶段特异性:按功能需要,原核生物某一特定基因的表达随时间、环境而变化,严格按特定时间顺序发生,这就是基因表达的时间特异性。
多细胞真核生物从受精卵到组织器官形成经历不同发育阶段。
在各个发育阶段,相应基因严格按一定时间顺序开启和关闭,表现为与分化、发育阶段一致的时间性。
因此,多细胞生物基因表达的时间特异性又称阶段特异性。
2.组织特异性:在多细胞真核生物中,同一基因在同一发育阶段的不同组织器官表达水平是不一样的;在发育、分化的特定时期内,不同基因在同一组织细胞内表达水平也不一样,即基因在不同组织空间表达不同,这就是基因表达的空间特异性,又称组织特异性。
原核生物基因表达无组织特异性。
不同基因功能不同,调控机制不同,基因表达的方式也不同。
有些基因在生物个体生命全过程的几乎所有细胞中持续表达,称为基本的基因表达。
这类基因通常被称之为管家基因。
基本的基因表达并非绝对一成不变,其表达也是在一定机制控制下进行的。
基因表达调控的分子机制和调控网络基因表达调控是细胞中最基本的过程之一,在生物体内存在着复杂的基因调控网络。
了解基因表达调控的分子机制和调控网络有助于我们理解生物个体发育、生长、繁殖及其遗传表现和疾病的发生和预防。
一、基因表达调控的概念基因表达是指遗传物质DNA中的编码信息被转录成RNA分子,继而翻译成蛋白质的过程。
这一过程对于生命的维持和发展至关重要,但细胞必须对基因表达的时机、平衡及位置进行调控。
基因表达调控包括转录调控、转录后调控、RNA降解调控等多个阶段,其中转录调控是最为重要的过程之一。
二、基因转录调控转录是指将DNA的一段序列复制成RNA分子的过程。
转录起始位点、转录因子、调控元件和染色质结构等因素共同影响着基因转录过程。
1. 转录起始位点转录起始位点是RNA合成过程中RNA聚合酶开始合成RNA分子的位置。
对于同一基因的不同部位产生的RNA分子可能存在差异性,这与不同启动子带来的转录起始位点差异有关。
同时,不同启动子可能调控同一基因产生的RNA分子的时间和空间。
2. 转录因子转录因子是能够结合DNA并调控基因转录的蛋白质,其作用是通过与DNA结合发挥功能,例如活化或抑制RNA聚合酶的活性。
与转录因子相关的众多因素,如启动子、增强子、沉默子等,共同参与了基因的转录调控。
3. 调控元件调控元件是指参与基因调控的非编码DNA序列。
与调控元件相邻的基因区域上存在的序列、基因和启动子等元素并不确定性较小,以及调控元件自身结构的复杂性导致了基因的表达水平和区域性都具有特殊性。
4. 染色质结构染色质是DNA和蛋白质复合物的结合体,其结构特点决定了基因表达的调控。
染色质可以是紧密缠绕的,不利于RNA合成酶和基因转录调控因子的结合,也可以是松散的,有利于RNA合成酶和基因转录调控因子的结合。
三、转录后调控转录后调控是指RNA分子被翻译成蛋白前的异构物,以及mRNA稳定性的调控。
转录后调控对在空间和时间上的基因表达有着重要的作用,包含了RNA剪切、RNA编辑、RNA间稳定性的调控等过程。
原核生物的转录及调控课件 (一)原核生物是一类简单的单细胞生物,其转录和调控机制相对于真核生物来说要简单许多。
本文将会从原核生物转录和调控的基本知识入手,分别对其进行相关的讲解。
一、原核生物的转录机制原核生物的转录和真核生物相比较于简单,它的基因位置并没有核膜的保护,直接暴露在细胞浆中,基因间没有间隔,这意味着原核生物较容易完成基因转录任务并且速度快。
原核生物的转录分为三个阶段:启动、延伸和终止。
启动阶段是通过RNA聚合酶(enzyme)与启动子(promoter)的结合来完成的。
当RNA聚合酶与启动子结合后,它会在SO基因(即甲基接收酶基因)上找到对应的开始密码子(subunit)。
发生开放读取框架(ORF),这时RNA聚合酶就能够开始向下一个框架(ORF)复制。
与真核生物不同的是,原核生物只有一个RNA聚合酶,大部分基因的转录都是由这种聚合酶完成的。
二、原核生物的调控机制原核生物的基因调控是非常重要的一部分。
它们使用许多方法来对其基因表达进行调控,以适应环境变化和其它外部信号的影响。
原核生物的基因调控主要分为两种方式:正调控和负调控。
1. 正调控:这种方式是使得信号物质(Messenger)能够结合到转录因子上,进而使其能够附着到启动子(promoter)上面。
这些信号物质可以直接或间接地影响基因的表达,以达到对细胞的调节效果。
在真核生物中,常见的正调控因子有启动子结合蛋白(TBP)。
2. 负调控:在负调控中,信号物质通过阻止转录因子的结合,来预防其结合到启动子上来。
这将使得该基因的表达能够被阻止,因此,其效果可能与正调控相反。
在原核生物中这种现象是非常常见的。
总结在原核生物中,转录和调控的机制相对比较简单。
它们基因转录的速度较快,在基因调控时使用正调控和负调控来达到有目的地外部信号的调节效果。
虽然其调控机制相对单一,但是作为生物学的基础研究,其在基因转录和调控方面的应用可能带来重要突破。