三电平光伏并网逆变器的设计和仿真
- 格式:docx
- 大小:36.84 KB
- 文档页数:2
T型三电平并网逆变器的设计与实现T型三电平并网逆变器是一种新型的并网逆变器,通过使用T型拓扑结构和PWM控制技术,实现了高效率、低损耗和低谐波输出的特点。
在太阳能电池、风能等可再生能源并网系统中,T型三电平并网逆变器可以有效提高系统的性能并减少对电网的影响。
1.T型三电平并网逆变器的设计原理T型三电平并网逆变器采用T型拓扑结构,其中包括两个IGBT功率开关管和一个中性点电容。
逆变器的输出端连接一个LC滤波器,用以减小输出波形的谐波。
逆变器的PWM控制采用了三电平调制技术,通过控制IGBT功率开关管的导通与关断,实现对输出电压的精确控制。
T型三电平并网逆变器的工作原理如下:当逆变器的DC电压输入为Vdc时,通过PWM控制技术,将DC电压变换为交流电压输出。
在每个半个周期中,逆变器的输出电压可以取三个水平值:-Vdc、0和Vdc。
通过控制IGBT功率开关管的导通与关断,可以实现输出电压的平滑变化,从而减小输出波形的谐波含量。
在设计T型三电平并网逆变器时,首先需要确定逆变器的功率容量、输入电压范围和输出电压频率等参数。
然后选择合适的功率开关器件、驱动电路和控制策略,设计逆变器的拓扑结构和控制电路。
在逆变器的实现过程中,需注意以下几点:(1)功率开关器件选择:逆变器的功率开关器件需要能够承受高频率、高电压和高电流的工作环境。
常用的功率开关器件包括IGBT、MOSFET等。
(2)驱动电路设计:驱动电路需要能够精确控制功率开关器件的导通与关断,防止出现交叉导通和短路现象。
常用的驱动电路包括光耦隔离、反嵌极电路等。
(3)PWM控制策略:逆变器的PWM控制需要根据需求设计合适的调制算法,以实现输出电压的精确控制和谐波抑制效果。
(4)滤波器设计:逆变器的输出端连接一个LC滤波器,用以减小输出波形的谐波含量。
滤波器的参数需要根据系统的输出频率和电压等参数进行优化设计。
在实际应用中,T型三电平并网逆变器可以广泛应用于太阳能电池、风能等可再生能源系统中,提高系统的效率和稳定性。
三电平光伏并网逆变器共模电压SVPWM抑制策略研究发布:2011-09-07 | 作者: | 来源: mahuaxiao | 查看:436次 | 用户关注:摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。
在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进,调整了有效矢量的选择范围,并对开关次序进行优化。
该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。
仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。
1引言目前,多电平变流器以其突出的优点在高压大摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。
在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进, 调整了有效矢量的选择范围, 并对开关次序进行优化。
该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。
仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。
1 引言目前, 多电平变流器以其突出的优点在高压大功率变流器中得到了日益广泛的应用,它不仅能减少输出波形的谐波,也易于进行模块化设计[1, 2]。
二极管中点箝位式(NPC)三电平拓扑结构即是高压大功率变频器的主流拓扑结构之一[3] 。
然而在三电平变流器的应用中, 也出现了一些问题,特别是共模电压问题。
目前,变频器共模电压的抑制方法主要有两种:一是外加无源滤波器等,或有源滤波器[4-6],这类方法会导致体积和成本显著增加,且不易应用于高压大容量场合;二是通过控制策略从源头减小共模电压,文献[7]、[8]提出一种SPWM消除共模电压的调制方法。
该方式是通过异相调制来消除开关共模电压,但是存在直流电压利用率低、线性调制区过小的问题。
针对SPWM调制的电压利用率低、不利于运用于各种调制比工况下的缺点,本文从三电平逆变器共模电压形成机理出发,提出了一种基于优化电压空间矢量(SVPWM)方法, 可有效抑制三电平逆变器输出共模电压。
摘要近年来,三电平逆变器在大容量、高压的场合得到了越来越多的应用。
在其众多的控制策略中,SVPWM算法具有调制比大、能够优化输出电压波形、易于数字实现、母线电压利用率高等优点。
本文首先对三电平逆变器技术的发展状况进行了综述,分析了三电平逆变器的几种拓扑结构,控制策略以及各自的优缺点。
其次,以二极管箝位式三电平逆变器为基础,阐述了三电平逆变器的工作原理、数学模型,分析了空间电压矢量控制策略的原理,对三电平逆变器空间电压矢量的控制算法进行了改进,引进了大扇区和小三角形的判断方法,给出了扇区和小三角形区域的判断规则、合成参考电压矢量的相应输出电压矢量作用时间和作用顺序以及开关信号的产生方法。
最后,采用MATLAB/Simulink进行仿真分析,一个一个模块的搭建仿真模块,然后把各个模块连接起来,实现了对三电平逆变器的SVPWM控制算法的仿真,观察系统的输出波形,分析波形,并进行比较,验证了算法的可行性。
关键词:三电平逆变器空间电压矢量控制(SVPWM) MATLAB仿真ABSTRACTRecently, three-level inverter in the large capacity and high pressure situation got more and more applications fields. Among many of modulation strategies, SVPWM has been one of the most popular research points. The main advantages of the strategy are the following: it provides larger under modulation range and offers significant flexibility to optimize switching waveforms, it is well suited for implementation on a digital computer, it has higher DC voltage utilization ratio. Initially, summing up the development condition of three-level inverter technology, analyzed the structure of three-level inverter topological, the control strategy and their respective advantages and disadvantages.Secondly, the paper based on the ground-clam -p diode type three-level inverter, expounds the work principle of three-level inverter, and analyzes the principle of the SVPWM. By improving the three-level inverter SVPWM control algorithm, this paper introduces the estimation method of the big sectors and the small triangles, and proposes the judgment rules for large sector and triangle region and puts forward the corresponding output sequence of the synthesis reference voltage vector and optimizes the function sequence of switch vector.Finally ,using MATLAB/SIMULINK to carry on the simulation analysis. Building the simulation system model to realized to three-level inverter SVPWM control algorithm, and to confirmed the algorithm feasibility.Keywords:Three-level inverter; space voltage vector control (SVPWM); MATLAB simulation目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 课题目的及意义 (1)1.2 国内外研究现状 (1)1.2.1 拓扑结构 (2)1.2.2 控制策略 (5)1.3 课题任务要求 (6)1.4课题重点内容 (6)2 三电平逆变器的原理 (7)2.1二极管箝位型三电平逆变器 (8)2.1.1二极管箝位型逆变电路的工作原理 (8)2.1.1 二极管箝位型逆变电路的控制要求 (11)2.1.2 三电平逆变器的数学模型 (11)2.2 三电平SVPWM控制技术 (14)2.2.1三相静止坐标系到两相静止坐标系的变换 (14)2.2.1 SVPWM控制原理 (16)3 三电平SVPWM算法研究 (19)3.1 参考矢量的位置判断 (19)3.1.1 扇区判断 (19)3.1.2 小三角形的判断 (20)3.2 输出矢量的确定 (21)3.3计算各个矢量的作用时间 (21)3.4 空间电压矢量作用顺序 (23)4 三电平逆变器的MATLAB仿真 (26)4.2 扇区的判断 (27)4.3 小三角形判断 (28)4.4 时间计算 (29)4.5 矢量的作用顺序 (29)4.5.1七段式SVPWM时间分配 (29)4.5.2矢量状态次序 (29)4.6 矢量状态到开关状态 (33)5 三电平逆变器的仿真结果分析 (35)总结 (46)参考文献 (48)致谢 (49)1 绪论1.1 课题目的及意义从20世纪90年代以来,以高压IGBT、IGCT为代表的性能优异的复合器件的发展受人关注,并在此基础上产生了很多新型的高压大容量变换拓扑结构。
基于光伏发电系统的三电平逆变器设计2024基于光伏发电系统的三电平逆变器设计2024光伏发电系统是一种将太阳能转换为电能的装置,主要由光伏电池组成。
为了将光伏电池产生的直流电转换为交流电,需要使用逆变器。
逆变器的主要功能是将直流电压转换为交流电压,并将其输入电网供电。
而三电平逆变器是一种高效且可靠的逆变器拓扑结构。
三电平逆变器采用波形近似于正弦波的电压输出,相对于传统的两电平逆变器拥有较低的谐波含量,因此能够提供更高的电能转换效率。
此外,三电平逆变器还具有较低的电磁干扰和更好的适应性,适用于各种电力系统。
在设计三电平逆变器时,需要考虑以下几个关键方面:1.拓扑结构选择:三电平逆变器主要有H桥和NPC两种拓扑结构。
H桥拓扑结构相对简单,但需要较高的开关功率器件;NPC拓扑结构则能够提供更高的效率和输出质量,但需要更复杂的电路控制。
2.控制策略设计:控制策略可以分为PWM和MPC两种。
PWM控制策略使用脉宽调制技术,可以实现高效的电能转换,但可能会产生较高的谐波。
MPC控制策略则通过最优化算法实现控制,能够减小谐波含量,但计算复杂度较高。
3.电力开关器件选择:逆变器中的电力开关器件对其性能和可靠性起着重要作用。
目前常用的电力开关器件有晶闸管、功率MOS管和IGBT等,需要根据具体需求选择合适的器件。
4.控制电路设计:逆变器的控制电路需要根据不同的控制策略进行设计。
常见的控制电路包括PWM生成电路、比较器和滤波电路等。
5.保护措施设计:为了确保逆变器的安全运行,需要设计相应的保护措施。
例如过压保护、过流保护和短路保护等。
综上所述,基于光伏发电系统的三电平逆变器设计需要综合考虑拓扑结构选择、控制策略设计、电力开关器件选择、控制电路设计和保护措施设计等因素。
通过合理的设计和优化,可以实现高效、可靠的光伏发电系统。
《电气工程综合训练III》报告设计题目:三相并网逆变器分析、设计与仿真专业班级:学生姓名:学生学号:指导老师:许完成日期:2016年1月13日江苏大学·电气信息工程学院1.训练题目:三相并网逆变器分析、设计与仿真2.训练目标:通过本课程的综合训练,掌握电力电子变换器及其控制系统的数学建模、性能分析、参数设计和基于PSIM软件的仿真验证,为后续毕业设计及未来工作与科研奠定一定的电气工程综合实践基础。
3.训练内容:三相并网逆变器的并网原理与数学模型,基于PI控制器的矢量控制策略及参数设计,三相SVPWM调制技术,三相软件PLL技术及参数设计,三相并网逆变器系统的PSIM仿真分析。
N4.训练要求:独立完成训练内容,正确分析工作原理,合理设计相关参数,正确搭建仿真模型,有效获得仿真结论,作业封面全班统一,文字图表布局整齐,采用A4纸张打印并装订。
一、新能源发电与并网技术新能源是指传统能源之外的各种形式能源,包括太阳能、风能、水能、地热能、生物质能和海洋能。
新能源发电是指某些中小型发电装置靠近用户侧安装,它既可以独立于公共电网直接为少量用户提供电能,也能直接接入配网,与公共电网一起为用户提供电能。
新能源发电主要包括:光伏发电系统、风力发电系统、燃料电池、水能发电系统、海洋能发电系统、地热能发电系统、生物质发电装置以及储能装置等。
根据用户及使用目的的不同,新能源发电可用于备用电站、电力调峰、冷热电联供以及边远地区的独立供电等多种用途。
中小容量燃气轮机发电、风力发电机组以及以直流电形式存在的太阳能光伏电池、燃料电池等分布式电源发出的电能无法直接供给交流负荷,须经一定的接口并网。
分布式发电并网接口方式分电力电子逆变器接口和常规旋转电机接口类,前者在体积、重量、变换效率、可靠性、电性能等方面均优于后者,目前主要装置是并网逆变器。
逆变器的拓扑结构是关键,关系到逆变器的效率和成本。
一方面新能源大规模并网要求电网不断提高适应性和安全稳定控制能力,主要体现在:电网调度需要统筹全网各类发电资源,使全网的功率供给与需求达到实时动态平衡,并满足安全运行标准;电网规划需要进行网架优化工作,通过确定合理的大规模新能源基地的网架结构和送端电源结构,实现新能源与常规能源的合理布局和优化配置;输电环节需要采用高压交/直流送出技术,提升电网的输送能力,降低输送功率损耗。
光伏发电并网系统建模与仿真【摘要】:为开展太阳能光伏发电并网系统的研究,本文通过电压空间矢量脉宽调制SVPWM技术其谐波小、直流侧电压利用率高、算法简单、等特点应用于光伏发电系统中的方法,能够提高对光伏电池输出直流电压的利用,从而达到改善整个光伏发电系统的性能。
【关键词】:光伏并网系统; SVPWM技术1.光伏并网发电系统结构三相光伏并网发电系统包括以下三个部分:光伏阵列模块、逆变器、控制器和电网,图1是光伏并网发电系统结构图,图中光伏电池板接受太阳光照射,将太阳能转换成直流电,经并网逆变器逆变为交流电与配电网络并网运行.图1 光伏并网发电系统结构图1.1。
光伏电池数学模型光伏电池是光伏电源的最小单元,通常将一系列小功率的光伏电池组成光伏组件,再根据功率等级通过串并联形成光伏阵列、得到光伏电源。
光伏电池的基本结构是能够将光能转换为电能的PN结,图2显示了其精确的等效模型,由光生电流源、二极管、串联和并联电阻组成。
光伏电池产生的光生电流Iph与光照强度λ成正比,流经二极管的电流、I d随着结电压Ud及逆向饱和电流Isat的不同而变化。
图2 光伏电池的等效电路相应的U -I 特性为:()[1]s q U IR sAkTph d shU IR I I I eR ++=---(1.1)式中,玻尔兹曼常数k=1.38×10-23J/K;q=1.6×10—19C ,为电子的电荷量;T 为温度;R sh 和R s 为并联和串联电阻;A 为二极管的理想因子,1≤A ≤2,当光伏电池输出高电压时A =1,当光伏电池输出低电压时A =2;ph I 和d I 分别为光生电流和流过二极管的反向饱和漏电流,ph I 和d I 是随环境变化的量,需根据具体的光照强度和温度确定。
工程上光伏电池的应用模型通常只采用供应厂商提供的几个重要参数,包括标准参数(光照强度21000/b S W m =,环境温度25b T C =︒), sc I (光伏电池短路电流),m I (光伏电池最大功率点电流),oc V (光伏电池开路电压)m V (光伏电池最大功率点电压).根据以上参数,在工程精度的要求范围之内,建立工程应用的光伏电池数学模型,需要对表达式(2.1)做简化,随着外界环境的变化,推算出当前环境下(电池温度为 T ,光照强度为 S )的光伏电池参数scc I ,occ V ,mm I ,mm V ,并求得此时光伏电池的I —U 特性曲线。
三电平光伏逆变器设计随着光伏发电技术不断发展,逆变器作为太阳能发电系统中不可或缺的一部分,扮演着转换直流电为交流电的重要角色。
而三电平光伏逆变器作为一种新型的逆变器,具有高效、稳定、可靠的优点,成为当前光伏发电系统中的热门选择。
下面就来分步骤阐述三电平光伏逆变器的设计过程。
1、理解三电平逆变器的技术原理三电平光伏逆变器是通过使用两个拓扑结构来实现输出电压的三电平控制的。
通过添加一些电子元件和设计一些关键参数来最大程度地利用系统的资源,进而实现逆变器输出的三电平控制。
2、选择适合的电路拓扑在设计三电平光伏逆变器时,需根据需要选择合适的电路拓扑。
自底向上考虑,从典型的全桥电路开始,继续向上选择更高效、更灵活的电路拓扑。
较为常见的三电平逆变器拓扑有:全桥拓扑、直接开关拓扑,以及升压器电容电压分压拓扑等。
3、确定光伏逆变器的功率和电压等级等关键参数光伏逆变器的功率和电压等级是设计过程中需要密切关注的关键参数。
在进行这些参数的选择时,需结合实际使用情况,尽量以系统成本低、功率密度高、效率高的方向为导向。
4、选择适合的电压电容电阻元器件在选择元器件时,需注意电压等级、损耗、靠谱性、温度等参数。
优秀的元器件可以提高光伏逆变器的效率,提升逆变器的可靠性,减少开发成本和维护成本。
5、设计适合的控制策略和算法控制策略和算法是三电平光伏逆变器设计的核心。
为了确保逆变器的性能和稳定性,需要设计出一种适合的控制策略和算法结合系统的实际情况进行调节和优化,使逆变器在各种电压、电流工况下具有稳定性。
综上,对于三电平光伏逆变器的设计,需要考虑到技术原理、电路拓扑、关键参数、元器件选择以及控制策略和算法等方面,并不断优化和调整,以此来达到设计一个高效稳定、具有较强可靠性的三电平光伏逆变器的目标。
三相逆变器设计与仿真首先,三相逆变器的设计需要考虑的关键技术包括:控制策略、功率电子器件选择和电路拓扑结构设计。
控制策略是三相逆变器设计的核心。
常用的控制策略包括:SPWM (Sinusoidal Pulse Width Modulation)控制和SVPWM(Space Vector Pulse Width Modulation)控制。
SPWM控制是将正弦波进行离散采样,计算每个采样点的占空比,从而实现输出交流电流的控制。
而SVPWM控制则是通过对三相电压向量空间的矢量合成来实现电压输出的控制。
在设计过程中,需要根据具体应用场景和系统要求选择合适的控制策略。
功率电子器件的选择对逆变器的性能和效率有很大影响。
目前常用的功率器件有IGBT(Insulated Gate Bipolar Transistor)和MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)。
IGBT具有工作电压高、开关速度快等优点,适用于高功率逆变器设计。
而MOSFET则具有开关速度快、体积小等优点,适用于低功率逆变器设计。
在设计过程中,应根据具体应用场景和逆变器功率需求选择合适的功率电子器件。
电路拓扑结构设计对逆变器的效率和可靠性有很大影响。
常见的三相逆变器拓扑包括:全桥逆变器、半桥逆变器和三电平逆变器。
全桥逆变器拓扑结构简单,适用于小型逆变器设计;半桥逆变器则可以减小功率器件的开关压力,提高能量转换效率;三电平逆变器则可以实现更高质量的输出电压波形。
在设计过程中,需要根据具体需求选择合适的电路拓扑结构。
针对三相逆变器的设计和仿真,可以借助于电路设计和仿真软件进行。
常见的软件包括PSIM、MATLAB/Simulink等。
通过使用这些软件,可以进行电路搭建、参数设置和性能仿真,从而验证设计方案的可行性和优劣。
在进行三相逆变器的设计和仿真时,还需注意以下几个方面。
三电平逆变器控制算法的研究及仿真的开题报告一、研究背景和意义随着功率电子技术的发展,逆变器已被广泛应用于各种领域,包括交流电机驱动、电力转换、太阳能和风力发电等。
逆变器的控制算法是逆变器性能的关键,其在功率电子系统中的应用更是至关重要。
三电平逆变器是一种高性能的逆变器,可以实现高质量的输出波形和低谐波失真。
因此,三电平逆变器已经成为工业和商业应用的重要逆变器之一。
它能够满足工业应用中对高性能、高效率和低噪声的要求,是目前电力电子领域中的研究热点之一。
本项目旨在研究三电平逆变器控制算法,提高逆变器的性能和可靠性,对现代工业生产具有重要意义。
二、研究内容和方法(一)研究内容1. 三电平逆变器的基本原理和结构2. 三电平逆变器控制算法的研究现状和发展趋势3. 基于PID控制的三电平逆变器控制算法设计4. 结合Matlab/Simulink平台进行逆变器控制算法的设计和仿真5. 仿真实验结果分析和总结,对三电平逆变器控制算法的性能进行评估和优化(二)研究方法1. 文献研究法:对三电平逆变器控制算法的研究现状和发展趋势进行综合分析,并结合相关文献资料进行深入探讨。
2. 系统设计法:针对三电平逆变器的结构和控制算法进行系统设计,包括模型建立、控制器设计等。
3. 算法仿真法:使用Matlab/Simulink软件平台对所设计的控制算法进行仿真实验,模拟不同工况下的控制性能并进行分析。
三、预期成果和意义本项目预期将能够:1. 建立较为完整和准确的三电平逆变器控制模型,实现针对不同负载的优化控制。
2. 结合PID控制,设计高性能的逆变器控制算法。
3. 使用Matlab/Simulink平台进行仿真实验,分析三电平逆变器控制算法在不同工况下的性能表现。
4. 对逆变器的性能和可靠性进行深入评估和分析,为三电平逆变器的应用提供理论依据和技术支持。
本项目的成功实施将对电力电子领域的研究和应用产生积极的影响,促进工业和商业应用的发展。
t型三电平逆变器的工作原理及simulink仿真
T型三电平逆变器是一种传统的多电平逆变器,它是将输入直流电压转换为具有多个电平的交流电压的电力电子设备之一。
它可以通过改变其输出电压的电平数量,提高交流电的质量,以满足不同类型的电动机所需的变频要求。
其基本结构如下图所示:
和三个电容(C1,C2和C3)构成。
具体过程如下:
1.首先,开关S2 和S4 打开,将电源的正极接到C1 和反极接到C2。
2.然后,开关S1 和S3 打开,将C1 和C2 带入电路,使得电压出现在
C1-C2 上,从而产生一个有效电平和一个零电平
3.接下来,开关S2 和S4 关闭,经过一个半波周期的时间后,S3 和S1 关闭。
4.最后,开关S2 和S4 打开,将电源正极连接到C3 且反极连接到C2。
将C3 带入电路,形成另一个有效电平和一个零电平
这样,该电路就可以形成一个三电平交流输出电压波形。
使用Simulink进行仿真时,可以选择MATLAB Simulink Power System Toolbox 库中的T型三电平逆变器模块,将其拖拽到仿真工作区域中,然后设置输入电压、输出负载以及其他参数,即可进行仿真。
如下图所示:
,0(0),-1(-Udc/2),仿照两电平可以定义Sx=1、0、-1,就可以类似得到三电平的矢量表达式:
由于三电平每相桥臂都有三个输出状态,所以共有27个矢量,其组合方式如矢量图所示:
二、三电平逆变器仿真
由两电平SVPWM原理推导三电平SVPWM原理,仍然要分为三步:
(1)区域判断,判断出合成矢量的三个基本矢量
(2)时间计算,也就是每个矢量的作用时间即占空比
(3)时间状态分配,将矢量状态转换到时间状态,及桥臂的开关状态
仿真原理图
SVPWM控制框图:
桥臂输出端线电压及相电压波形。
光伏并网发电系统的建模与数字仿真一、电力系统数字仿真概述系统数字仿真是一门新兴学科,是计算机科学、计算数学、控制理论和专业应用技术等学科的综合。
生产和科学技术的发展使完成某种特定功能的各事物相互之间产生了一定的联系,形成各种各样的系统。
为研究、分析和设计系统,需要对系统进行试验。
由于电力系统数字仿真具有不受原型系统规模和结构复杂性的限制,能保证被研究、试验系统的安全性和具有良好的经济性、方便性等许多优点,正被愈来愈多的科技人员所关注,并已在研究、试验、工程、培训等多方面获得广泛的应用。
电力系统数字仿真技术(器)的研究、开发,包括数学模型、仿真软件、模型结构、仿真算法分析方法等,不断有新的成果涌现。
各种培训仿真器和研究用实时仿真器的研制和应用也大大推动了电力系统数字仿真技术的发展。
随着电力系统的发展和一些最新的计算机技术、人工智能技术、新的数值计算方法和实时仿真技术在电力系统数字仿真中的应用,数字仿真对电力工业的发展将会做出更大的贡献。
1.1系统仿真的含义仿真(simulation)这个词被引入科技领域,受到广大科技人员的认可,但是其含义在许多科技文献中说法并不一致。
其中认为仿真的广义定义为“仿真是用模型研究系统”。
精确的定义为“仿真是用数值模型研究系统在规定时间内的工作特征”。
有的论著把在数字计算机上的“活的”模型做试验称为系统数字仿真。
1.2系统数字仿真的用途由于系统数字仿真作为一种研究、试验和培训手段具有极好的经济性和实用性,几乎可以应用于任何一种工程与非工程领域。
就工程领域应用而言,它的应用范围主要在以下几个方面:a.系统规划、设计与试验;b.系统动态特征的分析与研究;c.系统在运行中的辅助决策、管理与控制;d.系统运行人员的教学培训,例如载体的操纵、系统的控制与操作、系统过程的博奕决策等。
1.3系统数字仿真的特点a.不受原型系统规模和结构复杂性的限制;b.保证被研究和试验系统的安全性;c.系统数字仿真试验具有很好的经济性、有效性和方便性;d.可用于对设计中未来系统性能的预.1.4建立数学模型和仿真模型的任务建立数学模型的任务是根据系统仿真目的和原型与模型的数学相似原则构造模型的数学描述。
《电气工程综合训练III》报告设计题目:三相并网逆变器分析、设计与仿真专业班级:学生姓名:学生学号:指导老师:许完成日期:2016年1月13日江苏大学·电气信息工程学院1.训练题目:三相并网逆变器分析、设计与仿真2.训练目标:通过本课程的综合训练,掌握电力电子变换器及其控制系统的数学建模、性能分析、参数设计和基于PSIM软件的仿真验证,为后续毕业设计及未来工作与科研奠定一定的电气工程综合实践基础。
3.训练内容:三相并网逆变器的并网原理与数学模型,基于PI控制器的矢量控制策略及参数设计,三相SVPWM调制技术,三相软件PLL技术及参数设计,三相并网逆变器系统的PSIM仿真分析。
N4.训练要求:独立完成训练内容,正确分析工作原理,合理设计相关参数,正确搭建仿真模型,有效获得仿真结论,作业封面全班统一,文字图表布局整齐,采用A4纸张打印并装订。
一、新能源发电与并网技术新能源是指传统能源之外的各种形式能源,包括太阳能、风能、水能、地热能、生物质能和海洋能。
新能源发电是指某些中小型发电装置靠近用户侧安装,它既可以独立于公共电网直接为少量用户提供电能,也能直接接入配网,与公共电网一起为用户提供电能。
新能源发电主要包括:光伏发电系统、风力发电系统、燃料电池、水能发电系统、海洋能发电系统、地热能发电系统、生物质发电装置以及储能装置等。
根据用户及使用目的的不同,新能源发电可用于备用电站、电力调峰、冷热电联供以及边远地区的独立供电等多种用途。
中小容量燃气轮机发电、风力发电机组以及以直流电形式存在的太阳能光伏电池、燃料电池等分布式电源发出的电能无法直接供给交流负荷,须经一定的接口并网。
分布式发电并网接口方式分电力电子逆变器接口和常规旋转电机接口类,前者在体积、重量、变换效率、可靠性、电性能等方面均优于后者,目前主要装置是并网逆变器。
逆变器的拓扑结构是关键,关系到逆变器的效率和成本。
一方面新能源大规模并网要求电网不断提高适应性和安全稳定控制能力,主要体现在:电网调度需要统筹全网各类发电资源,使全网的功率供给与需求达到实时动态平衡,并满足安全运行标准;电网规划需要进行网架优化工作,通过确定合理的大规模新能源基地的网架结构和送端电源结构,实现新能源与常规能源的合理布局和优化配置;输电环节需要采用高压交/直流送出技术,提升电网的输送能力,降低输送功率损耗。
光伏并网逆变器控制与仿真设计
为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。
根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD 中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。
近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。
并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。
太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。
在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT) 功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。
逆
变器的主电路拓扑直接决定其整体性能。
因此,开发出简洁、高效、高性价比的电路拓扑至关重要。
1 逆变器原理
该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如
1.1 两电平逆变器
传统的逆变器通常也称为两电平变换器,并网逆变器一般使用桥式电路,这种拓扑结构比较简单。
太阳能光电池具有电流源型特性,光伏阵列串联大电感后相当于电流源,以这种方式并接入电网,称为电流源并网。
为改善并网电流,在交流侧需要加滤波电容器,光伏电池要串联电感才能接在相应的直流母线上。
由于大电感的存在,使直流回路电流不易变化,在逆变器开关动作时,。
三电平光伏并网逆变器的设计和仿真三电平光伏并网逆变器是一种逆变器,可将光伏发电系统产生的直流电转换为交流电并注入电网中。
相较于传统的两电平逆变器,三电平逆变器具有较低的谐波畸变、较高的效率以及较低的损耗。
本文将主要介绍三电平光伏并网逆变器的设计和仿真。
首先,我们需要了解三电平光伏并网逆变器的工作原理。
该逆变器采用全桥拓扑结构,通过PWM控制技术将直流电转化为交流电。
在三电平拓扑中,单个逆变器开关可以处于三个可能的状态之一,产生三个不同的输出电平。
通过合理的控制逆变器开关状态,可以实现更接近纯正弦波形的输出。
接下来,我们需要进行三电平光伏并网逆变器的设计。
设计的关键步骤包括选择逆变器拓扑、选择开关器件以及设计控制策略。
逆变器拓扑的选择可以参考现有的研究成果和文献,如全桥拓扑、H桥拓扑等。
开关器件的选择需要考虑功率损耗、效率、成本等因素。
对于控制策略的设计,可以采用比例积分控制器,根据输入输出电流电压进行调节和控制。
设计完成后,我们可以使用电路仿真软件进行三电平光伏并网逆变器的仿真。
常用的电路仿真软件包括PSIM、Simulink等。
通过仿真,可以验证逆变器的性能以及输出波形是否满足要求。
在仿真过程中,需要输入逆变器的直流电源电压、负载的电阻值以及逆变器的控制信号等参数,以获取准确的仿真结果。
总结起来,三电平光伏并网逆变器的设计和仿真需要进行逆变器拓扑选择、开关器件选择以及控制策略设计等关键步骤,并可以通过电路仿真
软件进行验证。
这种逆变器在光伏发电系统中具有重要的应用价值,可以提高发电系统的效率和稳定性。