水热法制石墨烯
- 格式:pdf
- 大小:988.61 KB
- 文档页数:5
石墨烯粉体制备工艺石墨烯是一种由碳原子构成的单层二维晶体材料,具有优异的电学、热学、力学和光学性质,因此在电子器件、传感器、储能材料等领域具有广泛的应用前景。
而石墨烯粉体则是将石墨烯制备成粉末状,方便在材料制备过程中添加和掺杂,以改善材料的性能。
本文将介绍几种常见的石墨烯粉体制备工艺。
1. 机械剥离法机械剥离法是一种简单易行的石墨烯粉体制备方法。
其原理是将石墨烯层层剥离,形成石墨烯粉末。
具体操作是将石墨烯样品放置于机械剥离装置中,通过机械剥离的方式将其剥离成石墨烯粉末。
该方法制备的石墨烯粉末质量较高,但制备过程中需要大量的时间和人力,且成本较高。
2. 化学气相沉积法化学气相沉积法是一种常用的石墨烯粉体制备方法。
其原理是将石墨烯前体物质在高温下分解,生成石墨烯粉末。
具体操作是将石墨烯前体物质放置于化学气相沉积装置中,通过高温分解的方式制备石墨烯粉末。
该方法制备的石墨烯粉末质量较高,且制备过程简单,但需要高温条件,且前体物质的选择和处理对制备效果有较大影响。
3. 氧化石墨烯还原法氧化石墨烯还原法是一种常用的石墨烯粉体制备方法。
其原理是将氧化石墨烯还原成石墨烯粉末。
具体操作是将氧化石墨烯样品放置于还原剂中,通过还原的方式制备石墨烯粉末。
该方法制备的石墨烯粉末质量较高,且制备过程简单,但需要还原剂的选择和处理对制备效果有较大影响。
4. 水热法水热法是一种常用的石墨烯粉体制备方法。
其原理是将石墨烯前体物质在高温高压水环境中分解,生成石墨烯粉末。
具体操作是将石墨烯前体物质放置于水热反应器中,通过高温高压水环境的作用制备石墨烯粉末。
该方法制备的石墨烯粉末质量较高,且制备过程简单,但需要高温高压条件,且前体物质的选择和处理对制备效果有较大影响。
总之,石墨烯粉体制备工艺有多种,每种方法都有其优缺点和适用范围。
在实际应用中,需要根据具体情况选择合适的制备方法,以获得高质量的石墨烯粉末。
水热法制备石墨烯/TiO2催化剂2.1 水热法制备石墨烯/TiO22.1.1实验准备主要试剂:天然石墨粉(含碳量90.0%~99.9%,国药集团化学试剂有限公司),双氧水(浓度≥30%,分析纯A.R,上海桃浦化工厂),过硫酸钾(分析纯A.R,天津市科密欧化学试剂有限公司),五氧化二磷(分析纯A.R,天津市光复科技有限公司),浓硫酸(质量分数95%~98%,分析纯A.R,白银化学试剂厂),浓盐酸(质量分数36%~38%,分析纯A.R,成都市科龙化工试剂厂),三氯化钛(质量分数15%,分析纯A.R,国药集团化学试剂有限公司),去离子水,无水乙醇(分析纯A.R,烟台市双双化工有限公司),高锰酸钾(分析纯A.R,成都市科龙化工试剂厂)。
仪器:85-2型恒温磁力搅拌器(上海司乐仪有限公司),电子天平(上海越平科学仪器有限公司),电热鼓风干燥箱(上海一恒科学仪器有限公司),KH-100B 型超声波清洗器(昆山禾创超声仪器有限公司),离心机(安徽中科中佳科学仪器有限公司)。
2.1.2实验过程(1)氧化石墨烯的制备氧化石墨烯是通过修正后的Hummer法合成。
具体步骤如下:浓硫酸50ml加入300ml烧杯,升温加热到90度;过硫酸钾10g,五氧化二磷10g加入烧杯中,磁力搅拌至完全溶解;溶液冷却到80度,向其中加入12g 石墨粉;混合物在80度保持4.5h后用2L水稀释,过滤纸过滤,清洗去除酸;过滤并真空干燥;将400ml浓硫酸加入到2L的烧杯,冷却到0度(冰水浴),再将预氧化的石墨加入。
称取高锰酸钾60g缓慢加入使温度不高于10度;加热到35度,2h后将920ml的水加入,搅拌2h,向其中加入2.8L水,再加50ml 左右的过氧化氢,溶液变成亮黄色;放置一天,移出上清液,剩余的溶液用5升10%的HCl和5L去离子水离心清洗;清洗后的氧化石墨烯溶液透析两个星期,去除其他金属离子;将透析好的溶液冷冻干燥备用。
(2)石墨烯/TiO2复合催化剂的制备称取7mg 氧化石墨烯加入20ml去离子水中,超声分散20min得到溶液A;将2mL的15wt% TiCl3加入到20ml不同浓度(本实验中分别选取0.5mol/L、0.25mol/L和0.125mol/L)的HCl溶液中,搅拌得到溶液B;将A和B溶液混合搅拌10min。
摘要:石墨烯作为一种新型二维材料,具有独特的物理化学性质,在众多领域展现出巨大的应用潜力。
本文对石墨烯的制备方法、特性、应用领域进行了综述,旨在为石墨烯材料的研究提供参考。
一、引言石墨烯是一种由单层碳原子构成的二维晶体,具有优异的力学、电学、热学和光学性能。
自2004年石墨烯被发现以来,其研究取得了显著的进展。
本文对石墨烯的制备方法、特性、应用领域进行综述,以期为石墨烯材料的研究提供参考。
二、石墨烯的制备方法1. 机械剥离法:机械剥离法是制备石墨烯的一种简单、高效的方法。
通过将石墨片在金刚石针尖下进行机械剥离,可以得到单层石墨烯。
2. 化学气相沉积法:化学气相沉积法是一种制备高质量石墨烯的方法。
该方法在高温下将碳源气体在金属催化剂上分解,形成石墨烯。
3. 水热法:水热法是一种制备石墨烯的新技术。
通过将石墨烯前驱体在高温高压下进行反应,可以得到高质量的石墨烯。
4. 微机械剥离法:微机械剥离法是一种基于微机械加工技术制备石墨烯的方法。
通过在石墨烯上施加应力,使其发生剥离,从而获得单层石墨烯。
三、石墨烯的特性1. 优异的力学性能:石墨烯具有极高的强度和韧性,是已知材料中最强的二维材料。
2. 良好的电学性能:石墨烯具有优异的电导率,是已知材料中最高的二维材料。
3. 热学性能:石墨烯具有优异的热导率,可以有效传递热量。
4. 光学性能:石墨烯具有优异的光吸收和光催化性能。
四、石墨烯的应用领域1. 电子器件:石墨烯具有优异的电学性能,可以应用于制备高性能电子器件,如场效应晶体管、晶体管等。
2. 能源存储与转换:石墨烯具有良好的电化学性能,可以应用于锂离子电池、超级电容器等能源存储与转换领域。
3. 光学器件:石墨烯具有优异的光学性能,可以应用于制备高性能光学器件,如光子晶体、光学传感器等。
4. 生物医学领域:石墨烯具有良好的生物相容性,可以应用于生物医学领域,如药物载体、生物传感器等。
五、结论石墨烯作为一种新型二维材料,具有独特的物理化学性质,在众多领域展现出巨大的应用潜力。
水热法制备石墨烯的原子结构演变
董金帆;冯柳;杨玉莹;张强;王晶;范慧清;温广武;秦禄昌
【期刊名称】《电子显微学报》
【年(卷),期】2024(43)2
【摘要】本研究通过球差校正透射电镜成像研究了氧化石墨烯还原到石墨烯的微观结构演变,并结合X射线光电子能谱和傅里叶红外光谱表征验证了还原过程含氧官能团的去除效果。
氧化石墨烯的高分辨图像结构高度不均匀,氧化过程引入的氧原子与碳原子结合,破坏了C-C键结构形成sp^(3)杂化键,使单层氧化石墨烯部分呈无序结构。
还原后石墨烯可以清晰看到大范围的蜂窝状单晶结构,表明水热还原方法去除了大量含氧官能团,恢复了大部分共轭π键和碳原子sp^(2)杂化结构,还原效果明显,碳氧比高达11.7。
【总页数】6页(P180-185)
【作者】董金帆;冯柳;杨玉莹;张强;王晶;范慧清;温广武;秦禄昌
【作者单位】山东理工大学化学化工学院;山东理工大学分析测试中心;山东理工大学材料科学与工程学院;北卡大学物理与天文系-3255
【正文语种】中文
【中图分类】TB383;TG115.215.3;Q246
【相关文献】
1.水热法快速制备荧光氧化石墨烯量子点及其在细胞成像中的应用
2.基于水热法的钛酸锂/还原石墨烯复合材料制备与性能研究
3.钛酸锂/还原石墨烯复合材料制备与
性能测试中水热法的应用4.水热法三维多孔石墨烯的制备及吸附性能研究5.水热法氧化石墨烯改性环氧树脂的制备与性能
因版权原因,仅展示原文概要,查看原文内容请购买。
一种石墨烯的制备方法
技术领域
本发明涉及一种石墨烯的制备方法,尤其是涉及一种以水热法制备石墨烯的方法。
背景技术
石墨烯是一种新型二维碳纳米材料,具有超强抗拉强度、超强热稳定性、超低热扩散系数及超高透明度等优异的性能。
随着人们对石墨烯性能的认识和应用的不断深入,石墨烯的制备方法也在不断完善和改进。
为了满足市场多种应用需求,已经有不少石墨烯的制备方法出现在工业生产中,如化学气相沉积法(CVD)、水热法(HM)、有机气相挥发法(CVD)等。
具体内容
水热法制备石墨烯的具体方法如下:
(1)将某种原料,如植物素、石墨烅和二氧化碳等,加入到一定的量的水中,搅拌均匀;
(2)将搅拌均匀的溶液置于加热装置中,加热温度调节在
200~350℃;
(3)加热一定时间,使溶液蒸发以形成石墨烯的晶核;
(4)将晶核浸入冷却液中,使晶核上的石墨烯层结晶,形成最终的石墨烯。
以上就是本发明涉及的一种以水热法制备石墨烯的方法。
第33卷㊀第1期沈㊀阳㊀化㊀工㊀大㊀学㊀学㊀报Vol.33㊀No.12019.03JOURNALOFSHENYANGUNIVERSITYOFCHEMICALTECHNOLOGYMar.2019收稿日期:㊀2016-12-09作者简介:㊀赵威(1992-)ꎬ男ꎬ安徽阜阳人ꎬ硕士研究生在读ꎬ主要从事石墨烯复合材料制备的研究.通讯联系人:㊀张辉(1972-)ꎬ女ꎬ辽宁兴城人ꎬ副教授ꎬ博士ꎬ主要从事纳米复合材料的研究.文章编号:㊀2095-2198(2019)01-0077-06水热法制备石墨烯/二硫化钼复合物及其电化学性能的研究赵㊀威ꎬ㊀张㊀辉(沈阳化工大学材料科学与工程学院ꎬ辽宁沈阳110142)摘㊀要:㊀以氧化石墨烯分散液㊁硫代乙酰胺与水合钼酸铵为原料ꎬ采用水热法制备了石墨烯/二硫化钼复合物.通过扫描电镜(SEM)㊁红外光谱(FT ̄IR)㊁紫外可见光谱(UV ̄Vis)和X射线衍射分析(XRD)对复合物进行形貌及结构分析ꎬ发现石墨烯与二硫化钼形成团簇状复合物.循环伏安法(CV)等电化学测试表明:石墨烯的加入提高了石墨烯/二硫化钼复合物的比电容.当石墨烯与二硫化钼质量比为1ʒ1时ꎬ比电容最大为0 47F/g.关键词:㊀石墨烯ꎻ㊀二硫化钼ꎻ㊀水热制备doi:10.3969/j.issn.2095-2198.2019.01.014中图分类号:㊀O613 71㊀㊀㊀文献标识码:㊀A㊀㊀MoS2为六方晶系层状结构ꎬ可以形象地比作两层硫原子中间夹着一层钼原子的三明治结构ꎬ片层之间在(001)方向上通过范德华力进行层叠[1].除了来源于天然矿物外ꎬMoS2还可以通过单质Mo和S的高温固相反应㊁硫代钼酸铵和MoS3等硫化物前驱体的热分解[2]或氢气还原[3]㊁化学气相沉积㊁溶剂剥离法[4-6]㊁水热反应[7-9]等方法获得.在上述方法中ꎬ水热反应体系所需要的反应条件比较简单ꎬ实施比较方便.MoS2被广泛应用于固体润滑剂㊁半导体材料㊁插层材料及锂电池等[7].石墨烯(GrapheneꎬG)是由碳六元环组成的二维周期蜂窝状结构ꎬ是构成零维富勒烯㊁一维碳纳米管和三维石墨的结构基础[10].石墨烯材料还兼有石墨和碳纳米管等材料的一些优良性质ꎬ例如高热导性[11]和高机械强度[12]等ꎬ以石墨烯制备的纳米复合物也表现出许多优异的性能[13].二硫化钼具有与石墨烯类似的二维层状结构ꎬ推测其与石墨烯也具有某些相似的物理或化学性质ꎬ将两者复合可以发挥复合物的表面效应㊁协同效应ꎬ使复合物综合性能得以提高ꎬ有望成为一种很有前景的超级电容器电极材料.本文以氧化石墨烯(GrapheneOxideꎬGO)分散液㊁水合钼酸铵与硫代乙酰胺为反应物ꎬ采用水热法制备石墨烯/二硫化钼复合物.在一步反应中ꎬ实现氧化石墨烯的还原与复合物的合成ꎬ进而研究石墨烯/二硫化钼复合物微观结构及其电化学性质.1㊀实验方法1 1㊀材㊀料石墨ꎬ8000目ꎬ青岛亨得利ꎻ硫代乙酰胺ꎬTAAꎬ天津大茂ꎻ钼酸铵ꎬ天津大茂ꎻ浓硫酸ꎬ质量分数98%ꎬ天津瑞金特ꎻ硝酸钠ꎬ分析纯ꎬ天津大茂ꎻ高锰酸钾ꎬ分析纯ꎬ沈阳市新西ꎻ过氧化氢ꎬ质量分数30%ꎬ天津博迪ꎻ水合肼ꎬ体积分数80%ꎬ天津瑞金特.1 2㊀氧化石墨烯的合成氧化石墨烯(GO)的合成采用的是改进的Hummers法.将1g石墨㊁1g硝酸钠及23mL浓㊀78㊀沈㊀阳㊀化㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年硫酸加入三口圆底烧瓶中ꎬ置于冰水混合物中搅拌30minꎬ再升温至15ħꎬ持续0 5hꎬ期间分4次ꎬ每次加入1g高锰酸钾.再升温至35ħꎬ持续1h.用分液漏斗缓慢滴入40mL去离子水.随后将温度升至95ħꎬ恒温1h.再降温至60ħꎬ加入40mL过氧化氢ꎬ及100mL去离子水ꎬ持续1h.自然冷却至室温ꎬ用去离子水离心洗涤至中性ꎬ在50ħ下干燥.1 3㊀水热法制备石墨烯/二硫化钼复合物将一定量氧化石墨烯粉末分散于去离子水中ꎬ超声处理后得到一定浓度的氧化石墨烯分散液.将70 5mg水合钼酸铵㊁60 0mg的硫代乙酰胺和5mL氧化石墨烯分散液用去离子水稀释至20mLꎬ混合均匀ꎬ加入到容积25mL的内衬为聚四氟乙烯的不锈钢反应釜中ꎬ在190ħ下加热24h.将制得的水凝胶状物用去离子水冲洗干净ꎬ低温干燥ꎬ得到石墨烯与二硫化钼的质量比为1ʒ1复合物(Graphene/molybdenumdisul ̄fidecompositesꎬG/MoS2).改变氧化石墨烯分散液用量可得到石墨烯与二硫化钼的质量比分别为2ʒ1和4ʒ1的复合物.此外ꎬ采用上述水热法分别制备了还原氧化石墨烯(G)和二硫化钼(MoS2).1 4㊀石墨烯/二硫化钼复合物电极的制备将所需量的样品与乙炔黑㊁聚四氟乙烯乳液按质量比80ʒ15ʒ5调成糊状ꎬ用压片机压在泡沫镍条上(10mmˑ50mm)ꎬ干燥24h后ꎬ再用绝缘胶封装ꎬ干燥.1 5㊀表征与测试采用扫描电子显微镜(JEOLJSM ̄6360LV)㊁傅里叶红外光谱仪(NEXUS ̄470)㊁X射线衍射仪(D8 ̄Advance)表征样品的微观结构及组成分析.采用电化学工作站(AUTOLABPGSTAT100)进行电化学性能测试ꎬ测试体系采用三电极体系ꎬ待测电极为工作电极ꎬ泡沫镍电极为对电极ꎬ饱和甘汞电极为参比电极.测试电位为-0 7~-0 1Vꎬ电解质为1mol/L的KCl水溶液ꎬ扫描速率为10mV/s㊁20mV/s㊁50mV/s和100mV/s.2㊀结果分析与讨论2 1㊀复合物的微观形貌及结构分析图1(a)为氧化石墨烯(GO)SEM图ꎬ图中可以明显看到石墨片层得到有效剥离ꎬ石墨片层边缘呈现不规则多边形形状.图1(b)为水热法还原得到的石墨烯(G)ꎬ可以观察到褶皱的片层结构ꎬ观察不到石墨大量堆积的情况ꎬ与GO的SEM图相比ꎬ剥离程度有进一步的增加.由图1(c)可看出:石墨烯/二硫化钼复合物(G/MoS2)呈现出团簇状ꎬ这一点与Hu等人[8]所做的研究结果类似.复合物表面呈现大量褶皱ꎬ片层间存在连接ꎬ形成网状结构ꎬ增大了片层间距和形成孔洞的直径ꎬ进而增加双电层电容量.图1㊀氧化石墨烯ꎬ石墨烯和石墨烯/二硫化钼复合物的SEM图Fig 1㊀SEMimagesofgrapheneoxideꎬgrapheneandgraphene/MoS2composites㊀第1期赵㊀威ꎬ等:水热法制备石墨烯/二硫化钼复合物及其电化学性能的研究79㊀㊀㊀由图2可知:热解石墨衍射峰2θ为26 7ʎꎬ经氧化后生成的氧化石墨烯(GO)衍射峰2θ为11 0ʎ.由布拉格方程2dsinθ=λꎬ计算出对应石墨(Graphite)的(200)晶面间距为0 33nmꎬ氧化石墨烯的(100)晶面间距为0 88nmꎬ说明了石墨已经氧化为氧化石墨烯.氧化石墨烯经水热还原后ꎬ11 0ʎ处的氧化石墨烯(100)衍射峰已经消失ꎬ说明羰基㊁羧基㊁羟基和过氧键结构已经被还原ꎬ即GO被有效还原为石墨烯(G).图2㊀石墨㊁氧化石墨烯与石墨烯的XRD谱图Fig 2㊀XRDpatternsofgraphiteꎬgrapheneoxideꎬandgraphene㊀㊀图3中二硫化钼(MoS2)与石墨烯(G)均由由水热法制得ꎬ呈现出明显的有序结构ꎬ而石墨烯/二硫化钼原位复合产物(G/MoS2)仅观察到较弱的石墨烯的(200)晶面衍射峰ꎬ而没有观察到MoS2的衍射峰结构ꎬ可以证明复合物中主要结构为石墨烯片层为骨架的团簇结构ꎬMoS2分散在石墨烯片层之间.图3㊀二硫化钼㊁石墨烯与石墨烯/二硫化钼复合物的XRD谱图Fig 3㊀XRDpatternsofmolybdenumdisulfideꎬgrapheneandgraphene/MoS2composites㊀㊀图4为氧化石墨烯和石墨的红外光谱图.与石墨相比ꎬ氧化石墨烯表面生成了很多含氧亲水基团ꎬ1045cm-1㊁1226cm-1分别为C OH㊁C O C的振动吸收峰ꎬ1720cm-1处为羰基C==O伸缩振动吸收峰.3400cm-1是羟基O H伸缩振动吸收峰ꎬ在3000~3700cm-1出现的峰形宽化是由于氧化石墨烯所吸附的水分子缔合所致.此外ꎬ1623cm-1处为氧化石墨烯碳碳骨架C==C伸缩振动吸收峰.图4㊀石墨和氧化石墨烯的IR光谱图Fig 4㊀IRpatternsofgraphiteandgrapheneoxide㊀㊀由图5中c和d可知:氧化石墨烯经水热还原后ꎬ在1734cm-1处的羰基C==O伸缩振动和1055cm-1处的C OH振动吸收峰都已经减弱甚至消失不见ꎬ说明含氧基团基本被脱去ꎬ还原程度较高.图5中b为石墨烯/二硫化钼复合物的红外光谱图ꎬ可以看出含氧官能团基本被还原ꎬ在3415cm-1附近存在较弱的羟基O H伸缩振动吸收峰ꎬ这可能是由于残留的少量的未被还原的羟基和吸附的水分子引起的.说明在水热反应中ꎬ氧化石墨烯已被还原为石墨烯ꎬ硫代乙酰胺与钼酸铵反应产生二硫化钼.图5㊀二硫化钼㊁石墨烯/二硫化钼复合物㊁石墨烯与氧化石墨烯的红外光谱Fig 5㊀IRpatternsofMoS2ꎬgraphene/MoS2compositesꎬgrapheneꎬandgrapheneoxide㊀80㊀沈㊀阳㊀化㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年㊀㊀通过紫外 ̄可见光吸收光谱可以研究氧化石墨烯及石墨烯的共轭效应.由图6可知氧化石墨烯在314nm处有一个特征吸收峰ꎬ该峰为芳环的C==C的π-π跃迁吸收ꎬ氧化石墨烯还原为石墨烯后ꎬ其最大吸收峰发生明显的蓝移ꎬ由图6可知石墨烯的吸收峰在277nm左右ꎬ石墨烯/二硫化钼复合物的最大吸收峰在280nm左右.石墨烯与石墨烯/二硫化钼复合物的吸收曲线类似ꎬ说明二硫化钼未形成长程有序结构ꎬ对复合物的紫外吸收影响较小.图6㊀氧化石墨烯㊁石墨烯㊁石墨烯/二硫化钼复合物紫外 ̄可见光谱图Fig 6㊀UV ̄Vispatternsofgrapheneoxideꎬgrapheneꎬandgraphene/MoS2composites2 2㊀石墨烯/二硫化钼复合物的电化学性能石墨烯/二硫化钼复合物在不同质量配比[m(G)ʒm(MoS2)=1ʒ1㊁2ʒ1㊁4ʒ1]下的循环伏安曲线见图7.可以看出循环伏安曲线近似矩形ꎬ在比电容最大的图7(a)尤为明显ꎬ且复合电极表现出优良的重复性能ꎬ当循环至第25圈时ꎬ即扫描速率第二次到达100mV/s时ꎬ仍能表现出与第2圈相似的循环伏安曲线ꎬ这说明复合物电极具备良好的可逆充放电性能.图7㊀不同质量比的石墨烯/二硫化钼的循环伏安曲线Fig 7㊀Cyclicvoltammetrycurvesofgraphene/MoS2compositesatdifferentmassratio㊀㊀图8中ꎬ当扫描速率为100mV/s㊁50mV/s㊁20mV/s㊁10mV/s和100mV/s(2ndꎬ重新设为100mV/s)ꎬ不同质量比的复合物的比电容大小随扫描速率的增加ꎬ表现相似的变化趋势ꎬ即先增加再减小.当扫描速率重新设为100mV/s时ꎬ比电容较第1次100mV/s时有所增加ꎬ这可能是由于开始的扫描循环使电极活性物质得以充分浸润㊁活化.当扫描速率为20mV/s时ꎬ石墨烯与二硫化钼质量之比为1ʒ1㊁2ʒ1和4ʒ1的石墨烯/二硫化钼复合物比电容分别为0 47F/g㊁0 43F/g和0 25F/gꎬ比参考文献[14]结论中涂布法二硫化钼比电容0 11F/g和电泳沉积法二硫化钼比电容0 32F/g均有一定提高.这说明在复合物中石墨烯起到增加整体比电容的作用ꎬ即由于石墨烯优良的导电性提高了二硫化钼的比电容ꎬ这也可以通过交流阻抗测试(EIS)曲线结果得以证实.随着石墨烯含量的增加ꎬ与纯二硫化钼相比ꎬ复合物比电容的增幅逐渐减小ꎬ这可能是石墨烯与二硫化钼两者间分散㊀第1期赵㊀威ꎬ等:水热法制备石墨烯/二硫化钼复合物及其电化学性能的研究81㊀均匀性下降ꎬ增加了电解质中带电离子进入电极内部的难度.图8㊀扫描速率与比电容的关系Fig 8㊀Relationshipbetweenscanrateandspecificcapacibility㊀㊀图9为石墨烯/二硫化钼复合物的交流阻抗曲线.中高频区的半圆反映的是电子转移内阻抗ꎬ即传荷阻抗ꎻ低频区的直线反映扩散阻抗ꎬ对应的是电极极化和浓差极化.质量比为4ʒ1的石墨烯/二硫化钼复合物的等效阻抗较小ꎬ高频部分半径也最小ꎬ一般来说传荷阻抗小的对应电极极化越弱ꎬ电化学反应越容易发生ꎬ即石墨烯由于其优良的导电性降低了电极内部电子的转移阻抗.低频部分ꎬ质量比为1ʒ1的石墨烯/二硫化钼复合物的斜率较大.这是由于石墨烯与二硫化钼的协同效应ꎬ使带电离子从电解液迁移至复合物电极表面时具有更快的传质速率.图9㊀不同质量比的石墨烯/二硫化钼复合物的EIS曲线Fig 9㊀EIScurvesofgraphene/MoS2compositesatdifferentmassratio3 结论与展望石墨烯作为21世纪的新兴材料具有多方面优良的性质ꎬ尤其是在超级电容器及锂电池负极材料等方面具有广泛的应用前景.本文主要研究了石墨烯/二硫化钼原位复合物的制备及其电化学性质.研究发现水热法制备的石墨烯/二硫化钼复合物呈现团簇状ꎬ石墨烯为骨架ꎬ二硫化钼以无序结构分布其中.当石墨烯与二硫化钼质量比为1ʒ1时ꎬ比电容最大为0 47F/g(扫描速率为20mV/s).虽然二硫化钼具有一定比双电层电容量ꎬ但由于其本身较差的导电性ꎬ导致其导电应用受到限制ꎬ通过加入具有类似二维结构且具有良好导电性的石墨烯ꎬ进而使石墨烯/二硫化钼复合物的比电容较二硫化钼有明显提高.参考文献:[1]㊀AZHAGURAJANMꎬKAJITATꎬITOHTꎬetal.InSituVisualizationofLithiumIonIntercalationintoMoS2SingleCrystalsUsingDifferentialOpticalMi ̄croscopywithAtomicLayerResolution[J].J.Am.Chem.Soc.ꎬ2016ꎬ138(10):3355-3361.[2]㊀RAOCNRꎬPISHARODYKPR.TransitionMetalSulfides[J].ProgressinSolidStateChemistryꎬ1976ꎬ10(4):207-270.[3]㊀WORSLEYMAꎬSHINSJꎬMERRILLMD.Ul ̄tralowDensityꎬMonolithicWS2ꎬMoS2ꎬandMoS2/GrapheneAerogels[J].ACSNanoꎬ2015ꎬ9(5):4698-4705.[4]㊀BISSETTMAꎬKINLOCHIAꎬDRYFERA.Char ̄acterizationofMoS2GrapheneCompositesforHigh ̄PerformanceCoinCellSupercapacitors[J].ACSAppl.Mater.Interfacesꎬ2015ꎬ7(31):17388-17398.[5]㊀OᶄNEILLAOꎬKHANUꎬCOLEMANJN.Prepara ̄tionofHighConcentrationDispersionsofExfoliatedMoS2withIncreasedFlakeSize[J].Chem.Mater.ꎬ2012ꎬ24(12):2414-2421.[6]㊀CUNNINGHAMGꎬLOTYAMꎬCUCINOTTACSꎬetal.SolventExfoliationofTransitionMetalDichal ̄cogenides:DispersibilityofExfoliatedNanosheetsVariesOnlyWeaklybetweenCompounds[J].Nanoꎬ2012ꎬ6(4):3468-3480.[7]㊀田野ꎬ何俣ꎬ尚静.水热法合成MoS2层状材料及其结构表征[J].化学学报ꎬ2004ꎬ62(18):1807-1810.[8]㊀HULRꎬRENYMꎬYANGHXꎬetal.Fabricationof3DHierarchicalMoS2/PolyanilineandMoS2/CArchitecturesforLithium ̄IonBatteryApplications[J].ACSAppl.Mater.Interfacesꎬ2014ꎬ6(16):㊀82㊀沈㊀阳㊀化㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年14644-14652.[9]㊀ZHOUWJꎬZHOUKꎬHOUDMꎬetal.Three ̄Di ̄mensionalHierarchicalFrameworksBasedonMoS2NanosheetsSelf ̄AssembledonGrapheneOxideforEfficientElectrocatalyticHydrogenEvolution[J].ACSAppl.Mater.Interfacesꎬ2014ꎬ6(23):21534-21540.[10]GEIMAKꎬNOVOSELOVKS.TheRiseofGra ̄phene[J].Nat.Mat.ꎬ2007ꎬ6(3):183-191. [11]BALANDINAAꎬGHOSHSꎬBAOWZꎬetal.Su ̄periorThermalConductivityofSingle ̄LayerGra ̄phene[J].Nano.Lett.ꎬ2008ꎬ8(3):902-907. [12]LEECꎬWEIXDꎬKYSARJWꎬetal.MeasurementoftheElasticPropertiesandIntrinsicStrengthofMonolayerGraphene[J].Scienceꎬ2008ꎬ321(5887):385-388.[13]STANKOVICHSꎬDIKINDAꎬDOMMETTGH.Graphene ̄basedCompositeMaterials[J].Natureꎬ2006ꎬ442(7100):282-286.[14]韩雪松.MoS2电化学储能性能的研究[D].天津:天津理工大学ꎬ2013:47-48.PreparationandElectrochemicalInvestigationofGraphene/MolybdenumDisulfideCompositesObtainedbyHydrothermalMethodZHAOWeiꎬZHANGHui(ShenyangUniversityofChemicalTechnologyꎬShenyang110142ꎬChina)Abstract:㊀Graphene/molybdenumdisulfidecompositeswerepreparedbyhydrothermalmethodwithgra ̄pheneoxideaqueousdispersionꎬthioacetamideandammoniummolybdateasrawmaterials.ThestructureandmorphologyofthesampleswerecharacterizedbySEMꎬFT ̄IRꎬUV ̄VisꎬandXRD.Itwasfoundthattheobtainedgraphene/molybdenumdisulfiedcompositeshasbeenformedintoclusters.Cyclicvoltamme ̄try(CV)andotherelectrochemicalmeasurementsshowedthatthespecificcapacitanceofgraphene/molyb ̄denumdisulfidecompositesincreasedwiththeadditionofgraphene.Thehighestspecificcapacitanceofthecompositeswas0 47F/gꎬwhenthemassratioofgraphenetomolybdenumdisulfidewas1ʒ1.Keywords:㊀grapheneꎻ㊀molybdenumdisulfideꎻ㊀hydrothermalpreparation。
水热还原石墨烯
水热还原法是一种通过简单易得的水作为溶剂,在一定的反应条件温度和水气化产生的压强下,提供热能为动力能,在密闭的不锈钢外壳内为聚四氟乙烯材料反应釜中进行的由反应为还原组装形成产物的一种合成手段。
它是制备三维石墨烯常用的手段之一,也是氧化石墨烯还原的一种独特的合成方法,具有简单、快速和环境友好的特点,只需要一个高压釜与聚四氟乙烯衬里的容器。
在水热还原的过程中,通过控制反应的温度和时间,可以得到具有优良性能的石墨烯材料。
例如,在180℃下还原12小时的反应产物GO-HT-12h,其放电比电容为221F/g,能量密度为7.7Wh/kg,进行1000次恒电流充放电循环后,质量比电容仍然保持90%以上。
这表明,水热还原条件下制备的石墨烯电极材料作为超级电容器的电极材料具有很大的优势。
此外,水热还原还可以与其他方法相结合,以调节石墨烯材料的比表面积和层间距。
例如,利用多壁碳纳米管的直径优势将复合的石墨烯材料的层间距打开,从而控制石墨烯材料的比表面积。
这种方法为石墨烯材料与其他的碳材料和过渡金属氧化物材料的复合开辟了一条路径。
总的来说,水热还原法是一种有效的石墨烯制备方法,具有广泛的应用前景。
生物质水热石墨化【最新版】目录1.生物质的概述2.水热石墨化的概念3.生物质水热石墨化的应用4.我国在生物质水热石墨化研究方面的进展正文1.生物质的概述生物质是指来源于生物体的有机物质,包括植物、动物和微生物等。
生物质能源是一种可再生能源,具有可再生、低碳、清洁等优点。
近年来,随着环境问题日益严重,生物质能源在全球范围内得到了广泛关注和应用。
2.水热石墨化的概念水热石墨化是一种通过水热法制备石墨烯的技术。
水热法制备石墨烯通常以生物质为原料,通过生物质在水热条件下的反应,生成石墨烯。
这种方法具有成本低、环境友好等优点,因此在制备石墨烯方面具有广泛的应用前景。
3.生物质水热石墨化的应用生物质水热石墨化在许多领域都具有广泛的应用。
其中,最主要的应用领域包括能源、环境、材料等。
(1)能源领域:生物质水热石墨化可以用于制备生物质能源,如生物质石墨烯、石墨烯基超级电容器等。
这些能源具有可再生、低碳、清洁等特点,对于缓解能源危机和减少环境污染具有重要意义。
(2)环境领域:生物质水热石墨化可以用于制备环保材料,如石墨烯基吸附剂、石墨烯基催化剂等。
这些环保材料具有高效的吸附和催化性能,对于水污染治理、大气污染治理等方面具有重要应用价值。
(3)材料领域:生物质水热石墨化可以用于制备高性能材料,如石墨烯基复合材料、石墨烯基功能材料等。
这些材料具有轻质、高强度、高导电性等特点,对于航空航天、新能源汽车、电子信息等领域具有广泛的应用前景。
4.我国在生物质水热石墨化研究方面的进展我国在生物质水热石墨化研究方面取得了显著的成果。
近年来,我国科研人员在生物质水热石墨化的原料选择、反应条件优化、石墨烯制备方法等方面进行了深入研究,并取得了一系列创新成果。
此外,我国政府对生物质水热石墨化研究也给予了大力支持,通过政策引导、资金投入等措施,推动了该领域的快速发展。
总之,生物质水热石墨化作为一种具有广泛应用前景的技术,在我国得到了广泛的关注和研究。
石墨烯气凝胶水热法原理Graphene aerogels (GAs) are a promising material due to their unique properties, such as high surface area, good electrical conductivity, and mechanical strength. In recent years, water-based synthesis methods, such as the hydrothermal method, have been widely used to produce graphene aerogels.水热法合成石墨烯气凝胶是一种具有独特特性的材料,如高比表面积、良好的电导率和机械强度。
近年来,水基合成方法,如水热法,已被广泛用于生产石墨烯气凝胶。
The water-based synthesis of graphene aerogels typically involves the use of graphene oxide (GO) as a precursor, which is then reduced to graphene in the presence of a reducing agent during the hydrothermal process. During the water-based synthesis, the GO sheets are dispersed in water and form a stable colloidal solution, which is then subjected to hydrothermal treatment to form a three-dimensional porous structure.水基合成石墨烯气凝胶通常涉及使用氧化石墨烯(GO)作为前体,然后在水热过程中在还原剂存在的情况下还原为石墨烯。
一步水热法制备石墨烯硫正极材料与电化学性能研
究的开题报告
一、选题背景及研究意义
随着新能源领域的发展,锂离子电池作为一种高效、环保的电池逐
渐走入人们的生活。
锂离子电池的正极材料是目前制约其性能的关键因
素之一。
石墨烯硫材料作为一种新型正极材料,具有比传统钴系、铁系、锂钴酸锂等正极材料更高的比容量、更低的成本、更好的安全性等优势。
因此,石墨烯硫材料的研究和开发具有重要的意义。
二、研究内容及目标
本文旨在探究一步水热法制备石墨烯硫正极材料的方法,并对其电
化学性能进行研究。
首先,石墨烯材料将通过水热法改性,然后再与硫
粉进行反应制备石墨烯硫材料;其次,通过扫描电子显微镜、透射电子
显微镜、X射线衍射仪等技术对所制备材料的形貌、晶体结构等进行表征,分析其结构与性能之间的关系;最后,将利用充放电测试等手段对所制
备的石墨烯硫材料的电化学性能进行评价分析。
三、研究方法及步骤
1.制备石墨烯:利用石墨烯氧化物和还原剂NaBH4相互作用,在水溶液中进行还原反应,得到石墨烯。
2.制备石墨烯硫材料:将所得石墨烯与硫粉在水热条件下反应,得
到石墨烯硫材料。
3.表征及评价:利用SEM、TEM、XRD等技术对所制备材料的晶体
结构、形貌等进行表征,利用充放电测试等方法对其电化学性能进行评价。
四、预期结果及创新点
预计本研究将成功制备出一种高性能的石墨烯硫正极材料,并进一步探究其制备工艺和电化学性能之间的关系。
此外,本研究还将采用一步水热法制备石墨烯硫材料的方法,为石墨烯硫材料的大规模制备提供一种新的方法,具有较高的实用价值和应用前景。
A facile method of preparing mixed conducting LiFePO 4/graphene composites for lithium-ion batteriesLi Wang a ,b ,1,Haibo Wang b ,1,Zhihong Liu b ,Chen Xiao b ,Shanmu Dong b ,Pengxian Han b ,Zhongyi Zhang b ,Xiaoying Zhang b ,Caifeng Bi a ,⁎,Guanglei Cui b ,⁎a Ocean University of China,Qingdao,266003,PR ChinabQingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,Qingdao,266101,PR Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 23April 2010Received in revised form 25September 2010Accepted 28September 2010Keywords:LiFePO 4GrapheneMixed conducting NetworkLithium-ion batteriesIn this work,mixed (electron and ion)conducting LiFePO 4/graphene composites have been prepared through a facile hydrothermal route followed by heat treatment.It was found that the LiFePO 4particles adhered to the surface of graphene and/or embedded in the graphene nanosheets.As a result,an effective three-dimensional conducting network was formed by bridging graphene nanosheets,which can facilitate electron transport effectively and thus improve the kinetics and rate performance of LiFePO 4.The LiFePO 4/graphene (92:8wt.)composites exhibited a discharge capacity of 160.3mAh g −1at 0.1C and 81.5mAh g −1at 10C,respectively.The comparative investigation on LiFePO 4/graphene composites and LiFePO 4proved that establishing a mixed conducting network with graphene has a potential to enhance the speci fic capacity and rate capability of LiFePO 4.©2010Elsevier B.V.All rights reserved.1.IntroductionIn recent years,LiFePO 4has been extensively studied as the cathode-active material for lithium-ion batteries because of low-cost,low toxicity and relatively high theoretical speci fic capacity of 170mAh g −1[1].However,one of major problem to limit the commercialization of LiFePO 4is poor rate capability which can be attributed to its intrinsically low electronic conductivity (10−9S cm −2)[2]and lithium-ion diffusivity (10−14–10−16cm 2s −1)[3].Considerable efforts have been made to solve this problem,which include:i)surface coating or admixing with electronically conductive materials [4–10],ii)doping LiFePO 4with foreign atoms [11]and iii)decreasing the particle size [12].A concept of establishing a mixed conducting network formed by carbonaceous materials has been demonstrated to improve the rate performance of lithium intercalation materials effectively,because the carbon network provides pathway for electron transfer,and lithium-ion diffusion,resulting in an improvement of the conductivity and electrochemical properties [13–17].Graphene,with one-atom thick layer 2D structure [18],is emerging as a novel nanostructured carbon material with a potential for electrochemical energy storage device applications due to its unique characteristics of high electrical conductivity,large surface area and chemical stability.Recently,graphene was used as support materials to improve the electrochemical performance of anodematerials in lithium-ion batteries [19–22].More recently,Ding et al.reported LiFePO 4/graphene composites with excellent electrochem-ical properties prepared through a co-precipitation method [23].The hydrothermal technique is widely and facilely used to explore advanced materials,especially lithium-ion intercalation materials [24].In this work,we report preparation of the LiFePO 4/graphene mixed conducting network through a hydrothermal route followed by heat treatment.This composite showed an enhanced electrochemical performance as cathode materials in lithium-ion batteries when compared with pristine LiFePO 4.2.Experimental2.1.Preparation of samplesGraphite oxide (GO)was prepared according to the method reported by Hummers [25]from graphite powder (Aldrich,powder,b 20μm,synthetic).LiFePO 4/graphene (8wt.%)composites (denoted as LFPG-8%)were prepared by a facile hydrothermal process [24].Typically,appropriate quantities of FeSO 4·7H 2O,H 3PO 4and ascorbic acid were dissolved into 35mL of deionized water.Then LiOH solution was added dropwise into the conical flask while stirring.The molar ratio of the Li:Fe:P was 3:1:1.After vigorous magnetic stirring for 5min,GO (the weight ratio of GO to LiFePO 4was 8:92)was added into the mixed solution and kept stirring for several minutes.The mixed solution was transferred into a 50mL Te flon-lined stainless steel autoclave,which was heated at 200°C for 5h.After the solution cooled down to room temperature,the precipitate powder was centrifuged and washed several times withSolid State Ionics 181(2010)1685–1689⁎Corresponding authors.Tel.:+8653280662746;fax:+8653280662744.E-mail address:cuigl@ (G.Cui).1These authors contributed equally to thiswork.0167-2738/$–see front matter ©2010Elsevier B.V.All rights reserved.doi:10.1016/j.ssi.2010.09.056Contents lists available at ScienceDirectSolid State Ionicsj ou r n a l h o me pa g e :ww w.e l s ev i e r.c o m/l o c a t e /s s ideionized water and acetone.Then the obtained powder was dried at 60°C for 4h under vacuum oven,followed by sintering at 600°C for 2h under a H 2/Ar (5:95,v/v)atmosphere.As a reference,LiFePO 4(without GO addition)was also prepared following the same procedure.2.2.CharacterizationThe crystal structure of the as-prepared film was examined by X-ray diffraction (XRD)spectrometer instrument.The XRD patterns were recorded in a Bruker-AXS Micro-diffractometer (D8ADVANCE)with Cu K αradiation (λ=1.5406Å)from 10°to 80°at a scanning speed of 0.33°min −1.X-ray tube voltage and current were set at 40kV and 40mA,respectively.Resonance Raman spectra were recorded on a JY HR800Raman spectrophotometer (Horiba Jobin Yvon,France)with 532nm diode laser excitation.The morphologies were observed by transmission electron microscopy (TEM,JEOL 2010F).2.3.Electrochemical measurementsElectrochemical performance was performed using two-electrode Swagelok type cells assembled in an argon-filled glovebox.The working electrodes were prepared by mixing active materials,super Pand poly(vinylidene fluoride)(PVDF)in a weight ratio of 70:20:10and pasted on an aluminum foil then dried in vacuum oven at 120°C for 8h.Lithium foil was used as the counter electrode and separated by a glass-fiber separator.The electrolyte was 1.0mol L −1LiPF 6in a mixture of ethylene carbonate (EC)and dimethyl carbonate (DMC)(1:1,v/v).The cells were charged and discharged over a voltage range of 2.0–4.2V (vs Li +/Li)at different rates and carried out with a LAND battery testing system.Cyclic voltammetry (CV)was con-ducted by using an IM6instrument at a scanning rate of 0.1mV s −1between 2.0and 4.2V.Electrochemical impedance spectroscopy measurements were carried out at a discharge state with a sinusoidal signal of 5mV over a frequency range from 100kHz to 100mHz.10203040506070LFPG-8%2θ/degreeGOLiFePO 425.025.526.026.527.0Fig.1.XRD patterns of GO,LiFePO 4and LFPG-8%composites (the inset is the selected part between 25and 27°).1200130014001500160017001800I n t e n s i t y (a .u .)GRaman Shift (cm -1)DFig.2.Raman spectrum of LFPG-8%composites.Fig.3.TEM images of (a)graphene,(b)LiFePO 4,and (c)LFPG-8%composites.1686L.Wang et al./Solid State Ionics 181(2010)1685–16893.Results and discussionXRD patterns of oxide graphite (GO),LiFePO 4and LFPG-8%are shown in Fig.1(inset is the selected part of LiFePO 4and LFPG-8%between 25and 27°).The strong re flection peaks located at around 11°of GO disappeared in the LFPG-8%composites,which mean that the GO has been reduced.All the Bragg peaks can be indexed as a well-crystallized LiFePO 4phase with an orthorhombic structure with the space group of Pnma [26],which proved that introduction of graphene has no effect on the structure of LiFePO 4.It is also shown from the inset of Fig.1that no diffraction peak (002)of graphite (located at around 24.5°)was observed,which is consistent with previous studies of graphene [27].Therefore,it was concluded that the LiFePO 4particles attached onto these graphene prevented most of the restack of graphene into graphite or graphite nanosheets,which was corroborated by the diffraction pattern.Further information for the structure of LFPG-8%can be supported by the Raman spectra (Fig.2).The peaks at about 1350cm −1(D band)and 1595cm −1(G band)are observed in the composites.The G line is assigned to the E 2g phonon of Csp 2atoms,while the D line is a breathing mode of k-point phonons of A1g symmetry [28].The broadening of D and G bands with a strong D line indicates a localized in-plane sp 2domains and disordered graphitic crystal stacking of graphene nanosheets [29].Therefore,the Raman results consistent with the XRD results further demon-strated the formation of graphene nanosheet composites.Some representative transmission electron micrographs of gra-phene,LiFePO 4and LFPG-8%composites are shown in Fig.3.The typical morphology of agglomerated graphene layers was observed.From Fig.3,it can be seen that the LiFePO 4particles are homogenously adhered to the surface of the graphene surface and/or embedded in the graphene nanosheets.Scheme 1represents the structure of mixed conducting LFPG composites,in which the bridging graphene nanosheets can form an effective conducting network.At the same time,a porous structure between LiFePO 4and graphene nanosheets was formed by the random hybrid composite,which can facilitate the penetration of the electrolyte to the surface of active materials,resulting in the superior rate capability and higher reversible capacities in comparison with the LiFePO 4.Cyclic voltammetry was performed in order to investigate the effect of graphene on the electrochemical properties of LiFePO 4by using a scanning rate of 0.1mV s −1(Fig.4).The CV of LiFePO 4/graphene composites show more symmetrical and sharper shape of the anodic/cathodic peaks,which indicates the better electrochemical activity [30].Furthermore the potential separation between anodic and cathodic peaks is 0.191V,whereas that of the LiFePO 4was 0.341V.The well-de fined peaks and smaller peak potential separation indicate the higher electrochemical reactivity and lower ohmic resistance of LFPG-8%composites.Typical charge/discharge pro files of LiFePO 4and LFPG-8%compo-sites at a current rate of C/10(one lithium per formula unit in 10h)are shown in Fig.5.As can be seen,the LFPG-8%composites exhibit a remarkable improved capacity of 160.3mAh g −1,while that of LiFePO 4is only 123.7mAh g −1.Furthermore,the polarization between the charge and discharge plateaus is reduced from 82mV to 39mV for the LFPG-8%composites,indicating that the kinetics of the LiFePO 4is indeed improved by graphene addition.A possible reason is that graphene nanosheets act as a conducting pathway between the LiFePO 4particles.AC impedance measurements are performed on both the samples at the discharged state and the Nyquist plots are shown in Fig.6.The plots were a combination of a depressed semicircle in the high frequency region and a spike in the low frequency region.Previous explanation on the impedance spectra is that the high frequency semicircle is related to the migration of the Li +ions at the electrode/electrolyte interface and charge transfer process.The spike is attributed to the Warburg impedance of long-range Li-ion diffusion [31].Recently,J.Jamnik et al.gave a new explanation on the semicircle that the high frequency impedance semicircle is related to the contact impedance between the metal current collector and the electrode material according to their experimental results andtheoreticalScheme 1.Schematic illustration of the structure of the LFPG mixed conducting network [32].C u r r e n t (m A /g )Voltage (V vs Li +/Li)Fig.4.Cyclic voltammogram of LFPG-8%(solid line)and LiFePO 4(dash line)electrodes at a scan rate of 0.1mV/s in a potential window from 2.0to 4.2V in the EC/DMC solution containing 1M LiPF 6.V l o t a g e (V v s L i +/L i )Specific capacity (mAh/g)Fig.5.Typical charge and discharge pro files of LFPG-8%(□)and LiFePO 4(○)electrodes at a current density of C/10between the voltage limits of 2and 4.2V in the EC/DMC solution containing 1M LiPF 6(the inset shows the flat region magni fied).1687L.Wang et al./Solid State Ionics 181(2010)1685–1689analysis [32,33].Compared with that of LiFePO 4,a smaller depressed semicircle has been shown for LFPG-8%composites,indicating much lower interface impedance between the metal current collector and electrode materials,which may be bene ficial to the rate performance of LFPG-8%composites.Comparison of the rate performance of LiFePO 4and LFPG-8%composites are shown in Fig.7.After the cells have been cycled at a rate of C/10for 10cycles,the current densities are increased stepwise to 10C.Obviously,the LFPG-8%composite exhibits better electro-chemical performance.The highly stable reversible capacity of 81.5mAh g −1has been obtained at the highest current densities of 10C,while only a value of 30.6mAh g −1for LiFePO 4.It is incomprehensible that a very slow increase in the capacity difference was observed (40mAh/g for C/10and 45mAh/g for 10C,respective-ly),which indicates that there are still some other reasons such as interface,polarization and contact in fluencing the electrochemical performance besides the improved ionic/electronic networks [32].In order to get full evaluation on the role of graphene in the composites,the amount of carbon black in the electrode and the graphene ratio in the LiFePO 4/graphene composites were reduced for comparison,respectively.As shown in Fig.8for LFPG-8%,it can be found that when the weight ratio of carbon black in the electrode reduced from 20to 10wt.%,only very slight inferior but fair capacityand rate performance were observed.When the weight ratio of graphene in the composite was further reduced to 3%(denoted as LFPG-3%),the electrochemical performance of the LFPG-3%electrode is inferior to that of LFPG-8%,but is still much better than that of the pristine LiFePO 4electrode.However,there are some anomalies for LFPG-3%especially at a current density of 10C.It is highly possible that LFPG-3%could not build a stable and effective mixed (electron and ion)transportation network at a less amount of graphene (3%).These results clearly show that graphene nanosheets play an important role in improving the speci fic capacity and rate perfor-mance of LiFePO 4.4.ConclusionsIn summary,mixed conducting LiFePO 4/graphene composites have been prepared through a facile hydrothermal route followed by heat treatment.By a comparative study on the electrochemical performance of LiFePO 4and LiFePO 4/graphene composites,we have demonstrated that the speci fic capacity and rate capability of the composites are signi ficantly improved due to the effective conducing network formed by bridging graphene nanosheets.The LFPG-8%composite cathode exhibited excellent electrochemical performances with capacities of 160.3and 81.5mAh g −1at C/10and 10C rates,respectively.This research is of potential interest to employ graphene nanosheets as an electronic conducting network in cathode preparation and to develop high-power lithium-ion batteries for electric vehicles.AcknowledgmentsWe appreciate the support of “100Talents ”program of the Chinese Academy of Sciences,and National Natural Science Foundation of China (Grant Nos.20901044,20971077,and 20902052).References[1] A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough,J.Electrochem.Soc.144(1997)1188.[2]S.Y.Chung,Y.M.Chiang,Solid State Lett.6(2003)A278.[3]P.P.Prosini,M.Lisi,D.Zane,M.Pasquali,Solid State Ionics 148(2002)45.[4]H.Huang,S.C.Yin,L.F.Nazar,Electrochem.Solid-State Lett.4(2001)A170.[5]Z.Chen,J.R.Dahn,J.Electrochem.Soc.149(2002)A1184.[6]Y.S.Hu,Y.G.Guo,R.Dominko,M.N.Gaberscek,J.Jamnik,J.Maier,Adv.Mater.19(1963).-Z "(o h m )Z'(ohm)Fig.6.Nyquist plots of LFPG-8%(■)composites and LiFePO 4(●)electrodes.S p e c i f ic c a p a c i t y (m A h /g )Cycle numberFig.7.Cycling and rate performance (herein refers to discharge capacity)of (■)LFPG-8%composites and (●)LiFePO 4electrodes cycled in the EC/DMC solution containing 1M LiPF 6.S p e c i f i c c a p a c i t y (m A h /g )Cycle numberFig.8.Rate performance (herein refers to discharge capacity)of LFPG-8%composites (■)electrode containing 70wt.%carbon black,LFPG-8%(●)electrode containing 85wt.%carbon black and LFPG-3%(▲)electrode containing 85wt.%carbon black cycled in the EC/DMC solution containing 1M LiPF 6,respectively.1688L.Wang et al./Solid State Ionics 181(2010)1685–1689[7]R.Dominko,M.Bele,M.Gaberscek,M.Remskar,D.Hanzel,J.M.Goupil,S.Pejovnik,J.Jamnik,J.Power Sources153(2006)274.[8]M.Gaberscek,J.Jamnik,Solid State Ionics177(2006)2647.[9] F.Croce,A.D.Epifanio,J.Hassoun,A.Deptula,T.Olczac,B.Scrosati,Electrochem.Solid-State Lett.5(2002)A47.[10]Y.H.Huang,K.S.Park,J.B.Goodenough,J.Electrochem.Soc.153(2006)A2282.[11]H.Li,Z.X.Wang,L.Q.Chen,X.J.Huang,Adv.Mater.21(2009)4593.[12] A.Yamada,S.C.Chung,K.Hinokuma,J.Electrochem.Soc.148(2001)A224.[13]X.L.Wu,L.Y.Jiang,F.F.Cao,Y.G.Guo,L.J.Wan,Adv.Mater.21(2009)2710.[14]Y.Yu,L.Gu,C.L.Wang,A.Dhanabalan,P.A.van Aken,J.Maier,Angew.Chem.Int.Ed.48(2009)6485.[15] C.M.Doherty,R.A.Caruso,B.M.Smarsly,P.Adelhelm,C.J.Drummond,Chem.Mater.21(2009)5300.[16]G.L.Cui,L.Gu,L.J.Zhi,N.Kaskhedikar,P.A.Aken,K.Mullen,J.Maier,Adv.Mater.20(2008)3079.[17]Y.Yu,L.Gu,C.B.Zhu,P.A.van Aken,J.Maier,J.Am.Chem.Soc.131(2009)15984.[18]K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,A.A.Firsov,Science306(2004)666.[19]J.Yao,X.P.Shen,B.Wang,H.K.Liu,G.X.Wang,mun.11(2009)1849.[20]G.X.Wang,B.Wang,X.L.Wang,J.Park,S.X.Dou,H.Ahnb,K.Kim,J.Mater.Chem.19(2009)8378.[21]S.M.Paek,E.J.Yoo,I.Honma,Nano Lett.9(2009)72.[22] D.H.Wang,D.W.Choi,J.Li,Z.G.Yang,Z.M.Nie,R.Kou,et al.,ACS Nano3(2009)907.[23]Y.Ding,Y.Jiang,F.Xua,J.Yin,H.Ren,Q.Zhuo,Z.Long,P.Zhang,Electrochem.Commun.12(2010)10.[24]W.S.Hummers,R.E.Offeman,J.Am.Chem.Soc.80(1958)1339.[25]J.J.Chen,M.S.Whittingham,mun.8(2006)855.[26] D.Y.Wang,H.Li,S.Q.Shi,X.J.Huang,L.Q.Chen,Electrochim.Acta50(2005)2955.[27] C.Xu,X.Wang,J.W.Zhu,X.J.Yang,L.Lu,J.Mater.Chem.18(2008)5625.[28]J.F.Shen,Y.Z.Hu,M.Shi,X.Lu,C.Qin,C.Li,M.X.Ye,Chem.Mater.21(2009)3514.[29]G.X.Wang,X.P.Shen,J.Yao,J.Park,Carbon47(2009)2049.[30] C.Delacourt,C.Wurm,ffont,Solid State Ionics177(2006)340.[31] C.Y.Lee,H.M.Tsai,H.J.Chuang,S.Y.Li,P.Lin,T.Y.Tseng,J.Electrochem.Soc.152(2005)A716.[32]J.Jamnik,M.Gaberscek,MRS Bull.34(2009)942.[33]M.Gaberscek,J.Moskon,B.Erjavec,R.Dominko,J.Jamnik,Electrochem.Solid-State Lett.11(2008)A170.1689L.Wang et al./Solid State Ionics181(2010)1685–1689。