5.5m捣固焦炉延长炉门使用周期新型方法简介
- 格式:pdf
- 大小:141.58 KB
- 文档页数:2
XX集团有限公司65孔5.5米捣固焦炉烘炉方案目录1.概述 (1)2.焦炉烘炉升温计划制定 (2)2.1.硅砖的线膨胀率数据的采集要求 (2)2.2.焦炉烘炉的主要工艺过程及升温计划制定原则 (3)2.2.1.干燥期 (3)2.2.2.升温期 (4)2.2.3.热态工程 (5)2.2.4.拆除烘炉测温用临时仪表设备 (5)2.2.5.转地下室正常加热及装煤 (5)2.3.烘炉升温曲线的计算和确定 (6)3.烘炉前必须完成的工作项目 (6)3.1.机、焦侧操作平台 (6)3.2.护炉设备 (6)3.2.1.保护板、炉柱 (6)3.2.2.纵、横拉条 (7)3.2.3.炉门框、炉门 (7)3.3.焦炉炉体砌筑收尾 (7)3.4.炉顶部位工作项目 (8)3.5.烟囱及总、分烟道、废气开闭器 (8)3.6.烘炉设备、设施 (9)3.7.烘炉点火前应完成的测量和调节工作 (9)3.8.烘炉用其它准备工作 (10)4.烘炉操作管理 (11)4.1.烘炉升温管理总则 (11)4.2.炭化室点火操作 (11)4.2.1.点火操作前准备工作 (11)4.2.2.点火操作步骤 (12)4.3.炉温管理 (13)4.3.1.烘炉温度的监测 (13)4.3.2.高向升温比例的控制 (13)4.3.3.燃烧状态控制 (14)4.3.4.烘炉升温控制 (14)4.3.5.升温偏离计划的处理 (15)4.3.6.空气系数的监测 (15)4.4.烘炉过程中升温班的监控项目 (15)4.4.1.温度测定的内容、测点、频度 (15)4.4.2.压力测定和废气分析的内容、测点、频度 (16)4.5.烘炉过程中铁件班的各项测量调节工作 (17)4.5.1.点火前的准备 (17)4.5.2.工作内容 (17)4.5.3.铁件操作要点 (21)4.6.拆除大棚时间的选择 (22)4.7.烘炉热修管理工作 (22)5.焦炉烘炉组织机构与人员配备 (23)5.1.组织机构与人员配备原则 (23)5.2.烘炉人员要求 (23)5.3.烘炉需要人员计划表 (23)5.4.烘炉各岗位职责 (24)5.4.1.烘炉总负责人 (24)5.4.2.烘炉常务负责人 (25)5.4.3.烘炉大班长 (25)5.4.4.升温班长(或组长) (25)5.4.5.烧火工岗位(含烘烟囱的烧火工) (26)5.4.6.仪表工 (26)5.4.7.烘炉铁件班长岗位 (27)5.4.8.烘炉铁件工岗位 (28)5.4.9.烘炉热修组岗位 (28)6.热态工程项目 (29)7.烘炉工具、材料表 (34)7.1.预计烘炉用焦炉煤气需要量 (34)7.2.烘炉工具、材料表 (35)8.烘炉安全注意事项 (37)9.附录 (39)9.1.部分烘炉用工具 (39)9.2.烘炉升温计划计算书 (47)9.3.膨胀曲线 (55)。
5.5m捣固焦炉简介5.5m捣固焦炉是目前我国最大的捣固焦炉,鞍山焦耐院型号为JNDK55—05F,化二院型号为TJL5550D,其炉特征为双联火道、废气循环、下喷、复热式捣固焦炉。
目前国内仅云南云维集团的年产量100万吨(2X50孔)5.5米焦炉已投产。
二、工艺参数(以公称能力100万吨/年干全焦规模计算)焦炉组数:2×50孔精煤堆比重(干):1.0t/m3煤饼尺寸(长×宽×高):15000×450×5200mm煤饼重量:35.1t焦炉周转时间:23hr产量计算:Q=365×24×2×50×35.1×0.75×0.97/23=97.26万吨/年三、焦炉的砖用量(1×50孔)四、焦炉机械(2×50孔)装煤推焦机2台720t/台除尘拦焦机2台216t/台熄焦车1台92t/台电机车1台45t/台导烟车2台85t/台24锤捣固机2台90t/台(固定)液压交换机2套 5.5/套五、焦炉新技术的应用1、蓄热室封墙内设计30mm厚硅酸钙隔热板,蓄热室外封墙设计50mm厚的复合硅酸盐整体面外加海泡石抹面,既减少了封墙漏气,又减少了热损失,改善了炉头加热,改善了操作环境。
2、在炉顶区和焦炉基础中采用强度大、隔热效率高的漂珠砖和高强度隔热砖,代替了传统焦炉采用的红砖和普通隔热砖,确保炉项表面层平整、严密,降低了炉顶面和焦炉顶板温度,改善了操作环境。
3、焦炉装煤过程产生的大量烟尘,采用炉顶导烟车收焦烟尘,送至地面站焚烧洗涤后达标排放。
4、出焦采用出焦地面站除尘工艺,除尘效率高,减少污染环境。
5、熄焦塔采用折流板除尘,预留干熄焦位置。
6、炉门采用新型弹簧炉门,加强炉门严密性,与敲打刀边炉门相比,显著减少炉门无组织排放。
近年来,焦炉不断向大型化、高效化、自动化、环保化发展,焦炉发展的主要标志是大容积,致密硅砖,提高火道温度,提高热效率及操作控制的自动化。
图象处理在印刷电路板自动冲孔机中具有核心作用,其处理结果决定冲孔的精度和效率,它产生驱动控制器所要求的数据,送出给控制系统,控制系统响应命令,从而控制机械部件动作,完成相应的动作功能。
3 机械部分印刷电路板自动冲孔机通过三维运动达到对其冲孔的目的,X、Y向通过伺服电动机驱动二维拖板,Z向通过汽缸驱动。
首先操作者将需要冲孔的电路板放在Y向拖板上面、摄像机的下方,通过对印刷电路板的摄像得到定位孔的灰度图,将灰度图二值化,得到定位孔的圆心。
然后压脚将印刷电路板压紧在Y向拖板上,驱动器驱动伺服电动机,伺服电动机驱动拖板使定位圆心走到冲头圆心坐标处,压下脚踏开关,控制器接收到开关信号后,汽缸动作驱动冲头向上运动冲孔,完成1次冲孔动作。
上述动作通过设置也可以自动工作方式完成冲孔动作。
4 结语本文介绍的基于工控机的印刷电路板自动冲孔机采用工控机处理视频图象信息,通过选用相应的算法,实现了对圆、圆弧、异型孔的图象识别,达到了自动定位、冲孔的目的。
参考文献:[1] 朱海峰.电路板自动钻孔机的开发[J].工业控制计算机,2004(12).[2] 韩 雁.基于89C516RD的FPCB自动定位系统的研究[J].工矿自动化,2006(5).[3] 王晓明.电动机的单片机控制[M].北京:北京航空航天大学出版社,2002.[4] 蒋 璇.数字系统设计与PLD应用技术[M].北京:电子工业出版社,2001.[5] 王庆有.CCD应用技术[M].天津:天津大学出版社,2000.[6] 王 星,宋福民,肖俊君.PCB数控钻孔机开发与应用综述[J].电子工业专用设备,2009(4) 第12期 2009年12月工矿自动化Industry and Mine AutomationNo.12 Dec.2009 文章编号:1671-251X(2009)12-0133-035.5m捣固焦炉的设计马 兵(太原重工技术中心,山西太原 030024) 摘要:文章结合5.5m捣固焦炉的控制要求,详细介绍了5.5m捣固焦炉的设备组成、工艺特点及性能参数,给出了5.5m捣固焦炉电气控制系统的组成及特点。
焦炉结焦时间延长与最长的操作及控制方法(附:保温焖炉及煤气消耗技术操作方法)一、结焦时间延长的幅度:1、炉温要做使硅砖不致因装煤后降低到晶形转化的危险温度(一般火道1160-1200度,边火道温度950度以上)。
2、煤的煤气发生量、水份、炉型结构等决定结焦时间,因此规定一个延长结焦时间的极限是很困难的。
3、在炉体良好情况下,大型硅砖焦炉可降到产能的15%,(装入煤挥发份在25-27%范围内,能产生的煤气量相当于正常加热用煤气量的30%,其中15%用于煤炼焦,其余15%用于增加的散热、横向火道恶化而增加的热损失、荒煤气窜漏、热量减少等),中型20%,66型25%左右,是可以获得自身加热用煤气。
如某化工厂中型单座捣固下喷30孔焦炉曾一度保持在144小时,即产能的13.9%仍能维持生产。
3、对一般大型焦炉,焦耐院认为最长结焦时间维持80-100小时为宜,炉体状况差。
煤料挥发份低,水分大的焦炉60小时左右。
推荐中型焦炉最长结焦时间维持在60-80小时,66型维持在40-60小时为宜。
过长的结焦时间是不够安全的。
当煤料供应欠缺时,应该尽量使煤场多储备一些煤,及早安排延长结焦时间。
二、焦炉最长结焦时间与质量控制方法:1、最长结焦时间与质量控制方法:⑴、延长结焦时间:一座焦炉,达标生产的设计结焦时间是真正的结焦时间,凡是长于此时间的结焦时间,都算延长结焦时间。
例如我们设计是24小时结焦能够达产,那么我们采用30小时结焦就算是延长结焦时间。
⑵、延长结焦时间能延到多长并没有明确限制,该时间主要是通过计算产生的煤气能否满足自身加热使用来确定。
当然,如果是外供热式的焦炉,这个时间就很难确定了,但是如果时间太长,炭化室墙面的石墨会被烧掉,换煤气的流失量会增加,从安全角度考虑,大型焦炉以不低于设计生产能力的15%为宜,中型焦炉以不低于20%,小型焦炉以不低于25%为宜,也就是说最长结焦时间,大型焦炉约为100小时,中型焦炉为80小时,小型焦炉为50小时。
捣固焦炉捣固锤高效维修施工工法捣固焦炉捣固锤高效维修施工工法一、前言捣固焦炉捣固锤是焦炉维修中不可或缺的工具,其作用是对焦炉砖块进行捣固和修复,保持焦炉的正常运行。
本文将介绍一种名为“捣固焦炉捣固锤高效维修施工工法”的方法,旨在提高焦炉维修的效率和质量,为焦化企业提供指导。
二、工法特点该工法的特点主要包括以下几点:(1)采用机械化捣固方法,提高工作效率,减少人力劳动;(2)采用先进的工艺措施,确保焦炉捣固效果稳定可靠;(3)融合了安全措施和质量控制手段,保障施工过程的安全和质量。
三、适应范围该工法适用于各种规模的焦炉捣固维修,在焦炉捣固维修施工中具有广泛的应用前景。
四、工艺原理该工法的基本原理是通过振动捣固锤对焦炉砖块进行振动整平,使其与周围的砖块紧密结合,提高焦炉的整体强度和稳定性。
具体的技术措施包括:(1)选择合适的捣固锤型号和振动频率,以提高捣固效果;(2)按照焦炉结构和捣固锤工作原理确定施工方式和顺序;(3)根据焦炉砖块的损坏情况,选择合适的修复材料和方法。
五、施工工艺(详细描述施工工法的各个施工阶段,包括准备工作、捣固锤操作方法、修复材料的选择和使用方法等)六、劳动组织为了保证施工效率和质量,需要合理组织施工人员的工作,确定施工队伍的组成和分工,配备足够的人力资源,以满足施工需求。
七、机具设备该工法所需的机具设备主要包括捣固锤、振动平板等。
在本节中,将对这些机具设备的特点、性能和使用方法进行详细介绍,以便读者了解和选择合适的设备。
八、质量控制为了确保施工过程中的质量达到设计要求,需要采取相应的质量控制方法和措施。
本节将具体介绍其中的控制要点和技术措施,以保障施工质量的稳定和可靠。
九、安全措施施工过程中存在一定的安全风险,为了保障施工人员的生命安全和财产安全,必须严格遵守安全规程和操作规范。
本节将介绍施工中需要注意的安全事项,以及对施工工法的安全要求,让读者清楚地了解施工中的危险因素和安全措施。
5.5m捣固焦炉空炉保温技术探索与实践摘要:焦炉受热胀冷缩影响大,一旦烘炉投产,连续第二次空炉降温炉体易受损,因此在特殊情况下如何较好的完成炉体的停产保温是保证焦炉炉体完好及下次能够顺利复产的关键。
关键词:焦炉、焦炉空炉保温技术、焦炉保温1.我厂焦炉炉型结构及工艺流程简介设计年产焦炭120万吨,2座JNDK55-07F型捣固焦炉,荒煤气导出系统采用单U型集气管(设在焦侧)、双吸气管及集气槽压力自动调节系统,面对当时经济形势,对2#焦炉减产保温进行了积极的探索和实践。
2.焦炉保温的方法焦炉保温分为“带焦闷炉”与“空炉保温”,“带焦闷炉”的优点是消耗外部热量较小,对炉体的损伤相对较小,缺点是炉温控制比较空难,易导致难推焦;“空炉保温”的优点是炉温控制相对比较简单,经济成本比较低,缺点是推空炉前后炉体密封工作量较大、炉头温度难控制、炉墙石墨易烧损、护炉铁件的测量频次需提高、需要的外供热量大。
3.停炉前铁件管理准备工作3.1停炉之前对炉体、护炉铁件原始状态进行测量及检查并做好记录;3.2检查热态炭化室炉墙的原始状况并做好状态。
3.3护炉设备和炉体衔接处妨碍炉体收缩的有关部位应该断开,各滑动点均需画上标号。
3.4停炉之前测量炉体膨胀、大小弹簧负荷、炉柱曲度、抵抗墙垂直度、小烟道温度及各种吸力、压力的原始数据并做好记录,作为冷炉前的原始数据。
3.5校正炉体膨胀测量的基准点,炉体膨胀、炉柱曲度的所有测点做好明显标记;3.6测量推空炉前炉体膨胀、炉柱曲度,保留记录与后期空炉期间进行对比;3.7测量上下部大弹簧吨位,调整上下部大弹簧吨位,上部大弹簧吨位控制在14吨-16吨,下部弹簧吨位控制在12吨-14吨;4停炉前加热设备准备为了控制煤气主管压力,将所有大孔板、小孔板进行更换,大孔板的尺寸更换为16mm,小孔板排布方法为炉头两个火道小孔板尺寸更换为10mm,其他的均更换为6mm,边燃烧室炉头两个火道小孔板尺寸更换为12mm,其他的均更换为8mm,保证横管压力在200pa左右,由于标温比较低、煤气量比较小,因此空气过剩系数不得大于1.5。
浅谈5.5米捣固焦炉的温度控制发布时间:2022-08-02T00:47:47.700Z 来源:《中国科技信息》2022年33卷3月第6期作者:黄靖[导读] 鉴于捣实焦炉机焦侧气温变化较小,且焦侧温度大于机侧,容易造成机焦侧焦炭的形成质量不佳,黄靖甘肃省嘉峪关市酒泉钢铁宏兴股份有限公司焦化厂 735100摘要:鉴于捣实焦炉机焦侧气温变化较小,且焦侧温度大于机侧,容易造成机焦侧焦炭的形成质量不佳,因此我们就在横排管中采用节流孔板的方式,改善了机焦侧气体流动情况,进而改善机焦侧气温,从而改善了机焦侧的焦炭品质,同时也进行将火落管理和标准温度控制有机的结合,调整了集合并形成所需要的标准温度控制。
关键词:捣固焦炉;温度控制;问题一、引言捣实炼焦工艺流程中,将煤料在焦炉外侧与炭化室长度相似的大铁箱中加以捣实,将捣固后的煤饼从焦炉机侧,经过加煤车送到炭化室内。
煤料经捣实后,其堆密度可以从顶装煤的0.7~0.75t/m3增加至0.95~1.15t/m3,可以增加对煤料的黏附力,但也同时造成捣实焦炉温度的较难[1]。
二、现状分析焦化厂投入以来,5-6焦炉的生产装置故障频频出现,由于系统大修周期短、持续时间长,造成了焦炉的结焦时间不平衡,而且塌煤情况也频频出现,致使炭化房内出现了局部高温,长期易引起锅壁的破裂现象。
在推焦过程中,频频出现焦侧焦炭太热、塌焦,机侧煤焦油熏黑、推焦冒烟,煤焦油品质持续下滑。
三、焦炉烟尘问题及原因分析(一)装煤烟尘逸出原因分析1.集气管压力不稳二台焦炉共四条集气,二台抽气机为变频调压。
因为二个焦炉合用的一个鼓冷机组,装煤除尘工艺中使用了高压氢氧化铵,导致四个集气管的高压变化频率较高且耦合比较剧烈,当喷洒氢氧化铵、拦焦和放煤后,整个集气管的高压振荡更加剧烈,管内气压很快增加到了300~500Pa,从而造成大量荒烟气体不能再被抽进集气管,大部分烟气都从机侧炉头逸出。
2.高压氨水压力不足不稳目前的高压氨泵泵扬程约为506m,由泵至焦炉炉顶约有20m以下的高度和800m以下的管程,通过推算,由于氨水管道阻损力约2.5MPa,所以当氨水到炉顶时压强仅为2.5MPa以下;经检测,在装煤流程中高压氨水开始喷射时,每当开启一个高压氨水喷头,压力就降低了0.6MPa,当三个喷头全部开启,则压力就降低了1.8MPa。
5.5米捣固型炼焦炉的优势自上世纪80年代末我国发展捣固炼焦技术以来,由于该项技术能提高焦炭的冷态强度和反应后强度,增加30%焦炉生产率,大幅度降低焦炭生产成本,增加企业利润。
特别是采用捣固工艺技术可以节省不可再生的优质焦煤资源,是焦化行业发展的主要方向。
焦炉大型化是上世纪70年代以来世界炼焦技术发展的总趋势。
三十多年来顶装煤焦炉炭化室的高度已由4.0m增高至8.0m,炭化室的宽度由407mm增至600mm以上,单孔容积已由20m3增大到90m3以上。
焦炉超大型化能带来生产效率高,节省能源,万吨规模占地面积小,焦炭质量好,其环境污染总量减小,年产万吨焦炭投资低的综合效益。
一.焦炉炉体的基本结构ZHJL 5552D型焦炉是双联火道,废气循环,下喷,复热式大型捣固焦炉。
1 炉体的主要尺寸(冷态)及工艺技术参数:炭化室全长:15980mm,有效长:15140mm,炭化室全高:5500mm,有效高:5200mm,炭化室平均宽:520mm,锥度:20mm,捣固煤饼尺寸:L×B×H=15000×470×5200mm,精煤堆比重(干)1.0t/ m3,煤饼重量:36.66t ,焦炉周转时间:23h,炭化室中心距:1350mm,立火道中心距480mm,立火道个数32,炉顶厚度:1200~1250mm,炭化室炉墙厚度:90mm,立火道隔墙厚度:151mm,斜道部分高度:825mm,蓄热室高度:3700mm,宽度:415mm,主墙厚:290mm,单墙厚:230mm蓄热室格子砖高度:2750mm,层数:22。
2 焦炉各部位构成2.1 焦炉基础砌砖:焦炉基础砌砖共四层,总厚度为240mm。
采用强度大、隔热效率高的漂珠砖和高强隔热砖砌筑。
降低了焦炉顶板的温度,改善了操作环境,减少了热量损失。
2.2 蓄热室蓄热室高度3700mm,主墙为37层砌筑。
小烟道截面为273×650mm,底部设有清扫孔。
新日铁延长焦炉炉龄的技术措施新日铁公司现有17座焦炉,其中1964年投产的5m焦炉和1979年投产的6.5m焦炉采用预热煤装炉,前者的炉龄已有37年。
近年来,随着焦炉的老化,延长焦炉炉龄已成为重要课题。
众所周知,控制炭化室墙的损坏是延长焦炉炉龄的重要因素。
当炉墙轻微损坏时,可用火焰焊补法进行修补。
如果炉墙出现熔洞或变形,就需要对炉墙进行热修。
但热修炉墙的费用高,并且对炉体也有不利影响。
过去,当焦炉出现难推时,一般靠人工目测来了解炉墙的损坏情况,并对相应部位进行修补。
近年来,随着这些老焦炉难推次数和熔洞的不断增加(图1),利用传统方法已很难进行有效修复。
因此,必须及早发现损坏的炉墙,并根据诊断结果进行有计划的修复。
本文重点介绍高精度的炉墙诊断系统。
焦炉炉龄的确定图2为焦炉炉体损坏原因分析图。
蓄热室损坏的主要原因是由燃烧室脱落的耐火砖碎片和煤粒引起的堵塞。
为此,可采取从蓄热室底部用空气吹扫、从燃烧室吸出外来杂物、热拆除和重砌砖等方法消除蓄热室的堵塞。
在日常操作中,炭化室墙反复经受结焦和装煤时加热和冷却产生的热荷载和机械荷载。
随着焦炉的老化,上述情况均会导致炭化室墙的损坏,炭化室炉墙损坏的类型大致可分为以下3种。
(1)炉墙变薄。
炉墙变薄的主要原因是频繁地装煤和推焦导致炉墙砖损耗或砖缝消失。
另外,石墨沉积在粗糙不平的炉墙表面,当石墨层脱落时会带走部分砖片而造成炉墙变薄。
这时,若加大局部荷载,就会导致炉墙损坏而形成熔洞。
图1 焦炉出现熔洞和难推的次数图2 焦炉炉体损坏原因分析图(2)形成贯穿缝。
由于装煤时会使炉墙砖表层温度下降,结焦时又会使其温度上升,在这种交替热应力的作用下8炉墙就会出现裂缝,而裂缝极有可能把炉砖分开,在荷载下逐步变空和脱落,最终形成熔洞(图3)。
图3 典型的炉墙砖损坏情况(3)炭化室的纵向膨胀。
膨胀缝或裂缝的膨胀易引起炭化室的纵向膨胀。
使勾槽缝的咬合处变浅,施加在炉墙上的荷载会造成炉墙砖滑动或脱落。
焦化加热炉扩能改造及长周期运行的措施焦化加热炉是炼焦厂中关键的设备,其作用是将炼焦煤加热转化为焦炭。
随着生产规模的扩大,炼焦厂需要采取一系列措施来实施焦化加热炉的扩能改造,并保证其长周期运行。
下面将从技术改造、设备优化、操作管理三个方面分别进行阐述。
一、技术改造方面:1.采用先进的炉膛设计和热工模型,优化燃烧系统布置,增加炉膛容积,提高炉内煤气流动性,改进煤气分布和温度均匀性,增加炉效率。
2.引进高效低排放炉墙技术,采用带有回转窗的炉墙结构,提高炉壁传热效率,并降低炉壁温度,减少炉壁磨损和炉墙渗漏。
3.采用高效清灰技术,如采用水冷式灰斗和灰斗清灰系统,减少灰斗内积灰,提高灰斗使用寿命,并降低灰斗温度,减少炉内煤气温度损失。
4.引进先进的燃烧控制系统,实时监测炉内温度、压力和燃烧情况等参数,通过精确的调控燃烧风量和煤气分布,保证炉内温度均匀,提高燃烧效率,减少烟气排放。
二、设备优化方面:1.对炉体进行检修和维护,除去炉内结焦物和渣浆,清理炉膛表面灰渣,确保炉内通风畅通,提高热交换效率。
2.更换老化的热交换设备,如炉壁水冷壁和炉底烧结,采用新型的高温合金材料和耐磨材料,提高设备使用寿命。
3.安装高效的余热回收系统,回收炉内燃烧产生的余热,用于其他工艺的加热和电力发生。
4.引进高效的燃料供给系统,采用比例阀和先进的气动控制系统,实现煤气和空气的精准混合,提高燃烧效率。
三、操作管理方面:1.建立完善的检修计划,定期对焦化加热炉进行检修和维护,修复设备故障,确保设备的正常运行。
2.加强操作人员的培训和技能提升,提高操作人员的熟练度和专业水平,减少操作误差和事故发生。
3.建立有效的炉内监测和报警系统,实时监测炉内温度、压力和燃烧情况等参数,及时发现异常情况并采取措施。
4.严格执行操作规程和安全操作程序,强化日常的巡检和维护,确保设备的正常运行和安全使用。
总之,焦化加热炉扩能改造和长周期运行需要从技术改造、设备优化和操作管理等方面综合考虑,通过引进先进技术,优化设备结构,加强操作管理,可以提高炼焦炉的加热效率和运行稳定性,实现长周期运行。
目录第一章 1号焦炉烘炉方案简述第二章烘炉气体流程第三章焦炉烘炉图表制定第四章焦炉烘炉前必须完成的主要工作项目第五章烘炉点火前的准备工作第六章焦炉烘炉组织体系与人员配置第七章烘炉点火第八章烘炉管理第九章烘炉热修工作第十章热态工程施工项目执行时间表第十一章烘炉材料表第十二章烘炉岗位职责和烘炉操作要点第十三章烘炉安全注意事项第一章 1号焦炉烘炉方案简述xxxxx煤业有限责任公司1×65孔ZHJL5552D型焦炉,由北京xxxxxxxxxxxxxxx有限公司设计,其特点为:双联火道、废气循环、焦炉煤气下喷、空气侧入.炭化室长15.98米,宽520mm,高5.5米。
烘炉就是把已经安装了护炉设备的冷态焦炉由常温逐步加热到能够装煤的温度.烘炉是焦炉投产前重要而复杂的工艺过程,其质量的优劣对焦炉的寿命有着至关重要的影响。
因此对烘炉工作必须给予高度重视。
烘炉前制定烘炉升温曲线,严格按计划升温,保持焦炉砌体的严密性。
烘炉干燥阶段的基本原则是要在保障灰缝严密性和砌体完整性的前提下有效地排出水分。
干燥期(100℃)前选定15 天, 100℃后的升温期的确定是根据厂方提供的焦炉硅砖膨胀率及采用最大日安全膨胀率(0.030﹪-0.035﹪)计算而得,经计算,升温期为59.5天,烘炉时间共计 74.5天。
(天然气热值是焦炉煤气的三陪多,900度转正常加热,更换孔板等工作相当麻烦,而且天然气和煤气不宜混合,建议直接升温到装煤开工,启动风机,煤气回炉改正常加热,然后停用天然气并拆除天然气管道设备)本方案采用天然气及带炉门烘炉,炉温达到850℃-900℃后开始转为正常加热.由于本方案采用气体燃料带炉门烘炉。
因此采用不砌外部小灶、不砌封墙、装上炉门、在炉门下部专设烘炉孔引入天然气进行烘炉。
从常温到转为正常加热前,使用高精度的热电偶及计算机系统进行温度检测和烘炉升温管理.转正常加热后,采用高温计测温并拆除烘炉测温设备。
为顺利完成烘炉工作,参加烘炉人员应事先进行岗位培训和安全教育。
1、中冶焦耐5.5m捣固焦炉的技术优势JNDK55-05F型焦炉,是目前为止我国单孔装煤量最大的捣固焦炉,实现了焦炉大型化和捣固炼焦技术相结合的优点,在吸收了4.3m捣固机械的成熟技术和6m、7.63m大型焦炉机械的成熟技术基础上,开发技术先进并适应新型捣固焦炉要求的新型捣固焦炉机械。
因此,中冶焦耐为本工程所采用的捣固焦炉具有显著的技术优势2、国内最大型的捣固焦炉JNDK55-05F型焦炉的炭化室高为5.5m,炭化室平均宽为550mm,炭化室单孔装煤量为40.6t,这是目前我国炭化室容积最大的捣固焦炉。
1)与同样生产规模的4.3m捣固焦炉相比,护炉铁件等工艺设备以及焦炉机械的重量有所降低,仅占其 90%,这样就节省了一次性投资。
并且整个装备水平大幅度提高,与现有6m大型焦炉相比,护炉铁件等工艺设备、焦炉机械的技术更先进、更完善。
2)由于焦炉孔数少,焦炉机械台数少,因此其劳动生产率高,操作费用低。
与同样生产规模的4.3m捣固焦炉相比,炼焦车间的生产定员可减少 45.2%(4.3m捣固焦炉 440人;5.5m捣固焦炉 241人)。
3)由于焦炉生产单位重量焦炭的焦炉表面积小,因此其焦炉的热损失就小,焦炉的热工效率高。
JNDK55-05F型焦炉的表面热损失可比4.3m捣固焦炉减少 13.5%。
4)焦炉每次出焦、装煤过程是焦炉生产过程中阵发性污染最严重时间,减少焦炉出焦、装煤次数是减少阵发性污染的关键手段,在生产规模相同时,2×55孔炭化室550mm 的焦炉昼夜出焦、装煤101.5孔,而炭化室500mm的焦炉昼夜出焦117.3孔。
阵发性环境污染发生频率将增加15%。
3、国内炭化室最宽的捣固焦炉JNDK55-05F型焦炉的炭化室平均宽为550mm,是认真总结炭化室高4.3m、宽为500mm捣固焦炉的生产经验,结合目前国内炼焦煤的资源情况和焦炉机械的制造能力而进行设计的大型捣固焦炉。
炭化室宽度设计中可以选择500mm或550mm,JNDK55-05F型焦炉的炭化室设计宽度为550mm,具有以下特点。
5.5米捣固焦炉的运行实践与改进李天喜陈战群(济源市金马焦化有限公司)1 前言济源市金马焦化有限公司现有72孔JN43K-98D型焦炉两座,55孔JNDK55-05型捣固焦炉一座,年产焦炭155万吨,焦油7万吨,粗苯2.2万吨,硫铵2.5万吨,外供煤气1.8亿m3,年发电9600万kwh,生产规模位于全国独立焦化行业前列,2008年实现产值31.5亿元,利税4.6亿元。
我公司捣固焦项目采用鞍山焦耐工程技术有限公司设计的JNDK55-05型2×55孔捣固焦炉,炭化室高5.5m,全长15.98m, 周转时间25.5小时,年产干焦110万吨,捣固焦工程于2007年1月开始施工,2008年1月31日投产出焦。
2 5.5米捣固焦炉建设与运行情况介绍我公司5.5米捣固焦炉推焦采用5-2串序,单炉煤饼捣固时间8分钟,单炉操作时间23分钟,采取机焦侧无温差的加热制度,经过3个月的试生产,结焦时间不断缩短,于2008年 5月1日结焦时间由原来的40小时达到设计时间25.5小时,实现达标生产。
目前生产推焦电流正常、除尘系统运行正常、炉温均匀、自动化控制系统运行稳定、无烟装煤效果显著,焦炭质量比4.3米顶装焦炉基础上实现跨越进步。
2.1 捣固焦与顶装焦质量对比5.5米捣固焦炉投产至今,在生产过程中经过不断的总结和研究,功能优化和调整,生产实绩优异。
在配煤比相同的情况下,5.5米捣固焦炉生产的焦炭质量比4.3顶装焦炉生产的焦炭质量有了明显的提高,其中冷态强度M40提高2.6个百分点,M10降低2.8个百分点,热态强度反应性CRI降低1.7个百分点,反应后强度CSR提高2.2百分点。
两者对比情况如下表:相同配比情况下5.5米捣固焦炉和4.3米顶装焦炉焦炭强度对比表2.2 5.5米捣固焦炉的配煤优势在保证用户需求的焦炭质量的情况下,为发挥5.5米捣固焦炉的优势,经过多次的小焦炉试验和生产实践,摸索出了一套5.5米捣固焦炉的配煤方案,与4.3米顶装焦炉相比,捣固配煤少用10%左右的主焦煤,多用5%的瘦煤和5%得1/3焦煤。
捣固炼焦的发展与应用班级:应用化工093姓名:陈艳艳摘要:我国焦炭市场自2006 年底开始转暖,焦化企业已实现扭亏为盈但我国焦炭产能过剩,炼焦煤及运输价格持续走高,炼焦企业利润空间有限优化配煤方案,降低原料煤成本及焦炭生产成本,提高焦炭和焦化产品质量是每个企业研究的课题。
各国都在寻求能够扩大炼焦用煤源的新工艺,而捣固炼焦工艺作为一种能够增加配煤中高挥发分、弱粘结性甚至不粘结性煤含量来扩大炼焦原料煤的方法,现已成为一种成熟的炼焦工艺,被国内外广泛采用。
而捣固炼焦的技术特点在于:采用该技术可以多配高挥发分、弱粘结性的炼焦煤,并可以提高焦炭质量。
本文论述了为提高捣固式焦炉的焦炭质量,结合生产实际, 采取了延长捣固时间、增加煤饼堆比重、提高加热速度及保持适当集气管压力的措施, 改善了入炉煤料的粘结性, 从而提高了焦炭质量。
对于焖炉期较长的炭化室, 关闭上升管翻板有利于保证焦炭质量。
1.1我国捣固炼焦发展历程1919年,我国第一座Koppers式捣固焦炉在鞍钢投产。
1956年,我国自行设计的第一座炭化室高3.2m的捣固焦炉投产。
1970年,炭化室高3.8m的捣固焦炉建成投产。
1995年,青岛煤气厂使用引进德国摩擦传动、薄层给煤、连续捣打的捣固机。
至1997 年,我国先后在大连、抚顺、北台和淮南等市建成了18座捣固焦炉,炭化室高大多为3.2米,总产能为212万t/a。
在本世纪初,设计开发了炭化室高4.3m的捣固焦炉。
2005年8月,景德镇焦化煤气总厂将炭化室高4.3m、宽450mm的80型顶装焦炉改造成捣固焦炉。
2006年2月邯郸裕泰实业有限公司将炭化室高4.3米、宽500mm的顶装焦炉改造成捣固焦炉,拉开了我国4.3m顶装焦炉改造成捣固焦炉的序幕。
2006年底,5.5m的捣固焦炉在云南曲靖建成投产,在全国掀起了建设5.5m捣固焦炉的热潮。
现在河北的旭阳、华丰、河南的金马、山东的日照、邹县、银川的宝丰、神华、乌海、涟钢、攀钢和江苏的沂州都正在建设5.5m 捣固焦炉。
重视应用捣固炼焦技术2009-12-10所谓捣固炼焦技术(StampCokingTechnology,简称SCT),是一种能够通过增加配煤中高挥发分、弱粘结性或不粘结性的低价煤的含量来扩大炼焦煤资源的方法。
其优点如下:(1)提高焦炭质量和节约资源:煤料经捣固后,堆密度可提高到0.95~1.15t/m3,煤粒间接触致密,比常规顶装煤煤粒子间的间距缩小28%~33%,所得焦炭的致密程度明显改善,有明显的改善焦炭质量的效果。
同时,在保证同样焦炭质量的前提下,可多用20%~30%左右的高挥发分弱粘煤及部分非粘结煤,扩大炼焦用煤源,降低对优质炼焦用煤的依赖度和提升焦炭生产的成本优势。
(2)经济效益显著:尽管捣固焦炉的捣固机和装煤车的投资高于顶装煤的机械费用,但是捣固煤饼的堆积密度比顶装煤高1/3,故相同生产规模的焦炉,捣固焦炉可以减少炭化室的孔数或炭化室容积,因此,捣固焦炉的总投资并不比顶装焦炉高。
此外,捣固炼焦工艺可以比顶装煤炼焦工艺配入更多的高挥发分或弱粘结性的低价煤,同时增加石油焦及焦粉的配入量,减少焦煤用量,直接降低了焦炭的生产成本,并使捣固焦炉焦炭质量提高,可相应提高销售价格,增加销售收入。
(3)减少环境污染:与顶装焦炉相比较,在产量相同的情况下,捣固焦炉具有减少出焦次数、减少机械磨损、降低劳动强度、改善操作环境和减少无组织排放的优点;装煤的污染物排放量减少90%;工艺除尘效率高,减少了环境污染。
捣固炼焦工艺由于具有诸多优点,已在许多国家大量采用,特别是在缺乏强粘结性煤资源的国家。
原苏联从1989年开始将一个顶装焦炉改造为捣固炼焦炉以后,开始在其高挥发分煤矿地区采用捣固炼焦工艺。
波兰由于其国内挥发分高的煤源比较多,适合炼焦的煤源不太丰富,因此也大量采用捣固工艺。
目前,世界上比较先进的捣固技术是由德国开发的萨尔堡捣固技术。
这种技术应用的较为广泛,我国青岛管道燃气公司采用的就是这种技术。
德国萨尔堡矿业公司开发的这种新一代捣固技术,采用薄层连续给料代替传统的分层捣固法,捣固时间由12min左右缩短到4min 左右,提高了捣固机效率,并有效控制了煤饼装炉时的烟尘。
焦炉调火与加热、延长结焦时间方法及规定一、焦炉调火目的与原理:1、调火的目的:通过调节火焰的大小和分布,使焦炉内的温度和燃烧状态达到最佳,从而实现高效、环保的焦化生产;就是使燃料燃烧产生的热量均匀地分布在整个焦炉内部,从而保证焦炉温度的稳定,并最大程度地提高燃料的热效率。
2、调火的原理:主要基于热量的传递和燃烧的化学反应。
在焦炉中,燃料(如煤、燃气等)在燃烧过程中产生热量,通过辐射、对流和热传导等方式传递给焦炉内的物料(如煤饼)。
二、加热制度规定:1、焦炉加热应遵循以下原则:(1)合理配置燃烧器,确保炉温均匀;(2)根据不同煤种特性,设定合适的加热制度;(3)合理调节空气流量,确保燃烧充分且节能。
2、加热制度应包括以下内容:(1)设定各个燃烧器的加热功率范围;(2)设定不同部位的温度控制范围;(3)设定空气流量及压力等参数。
3、加热制度:(1)火焰长度:即燃烧器到焦炉的距离,需要根据焦炉的大小和形状来确定。
(2)火焰形状:主要有直焰和旋焰两种,其中直焰火焰较短,适合于小型的焦炉,旋焰火焰较长,适合于大型的焦炉。
(3)加热温度:根据焦炉内物料的性质和焦炉结构,确定加热温度,并在整个加热过程中保持稳定。
(4)加热时间:需要根据物料的性质和焦炉结构来确定加热时间,一般需要通过实验来确定。
三、温度测量规定:1、温度测量应选用精度高、稳定性好的仪表设备,确保测量结果准确可靠。
2、温度测量点应选取具有代表性的位置,如:(1)炉膛内部温度:选取炉膛不同部位,监测炉温均匀性;(2)燃烧器出口温度:选取各燃烧器出口,监测燃烧效果;(3)废气排放温度:选取废气排放出口,监测燃烧效率。
3、温度测量频率应根据生产实际情况确定,但应不低于以下要求:(1)每班至少进行一次全面温度测量;(2)每次更换煤种或调整加热制度后,应进行温度测量;(3)设备检修后,应进行全面温度测量。
4、温度测量结果应及时记录、分析,为加热制度的调整提供依据。