基坑支护工程质量、安全事故案例分析
- 格式:ppt
- 大小:22.15 MB
- 文档页数:48
工程建设事故常见案例一、脚手架坍塌事故。
1. 案例情况。
有这么一个建筑工程,那施工队为了赶工期,在搭脚手架的时候就开始“偷工减料”。
本来应该用标准规格的钢管,他们却弄了些薄皮的、质量不咋地的钢管来凑数。
而且啊,在搭建的时候,工人也没按照规定的间距和连接方式来弄。
就像搭积木似的,随随便便就把那脚手架给搭起来了。
结果呢,有一天工人们都在脚手架上干活儿,脚手架上还堆了不少建筑材料,突然“轰”的一声,整个脚手架就像多米诺骨牌一样塌了下来。
好多工人直接就从半空掉下去了,那场面真是惨不忍睹。
这一塌啊,不仅伤了不少工人,还把旁边刚砌好一部分的墙也给砸倒了,工程进度一下子就被拖后了老多,还得重新搭脚手架,又得花钱又得费时间。
2. 事故原因分析。
首先就是材料的问题,那些不合格的钢管根本就承受不了应有的重量。
就好比让一个体弱多病的人去扛重物,肯定是扛不住的呀。
其次就是施工工艺不规范,工人没有严格按照安全标准搭建,没有把脚手架搭得稳稳当当的,就像盖房子没打好地基一样,能不出事儿才怪呢。
再加上在使用过程中,超载堆放建筑材料,这就像是在骆驼背上不断加稻草,最后那根稻草一放上去,骆驼就被压垮了。
二、建筑基坑坍塌事故。
1. 案例情况。
在一个城市的商业建筑工程中,那基坑挖得可深了。
施工方呢,为了节省成本,在做基坑支护的时候就大打折扣。
本来设计要求要用高质量的混凝土灌注桩来做支护结构,他们却用了一些比较便宜、质量不太可靠的材料。
而且啊,在开挖过程中,没有及时对基坑进行监测。
有一天下了一场大雨,那雨水就一个劲儿地往基坑里灌。
因为支护结构不牢固,再加上雨水的浸泡,那基坑的土就像融化的冰淇淋一样,开始往基坑里面滑。
整个基坑就坍塌了。
旁边的道路也跟着遭殃,出现了裂缝,附近的一些居民楼的地基都受到了影响,居民们都吓得够呛,施工方这下可捅了大篓子。
2. 事故原因分析。
成本控制过严,以牺牲工程质量为代价。
就好像一个人想省钱,结果连饭都舍不得吃,最后身体垮了一样。
施工监理中的质量事故案例分析与防范施工监理是确保工程质量合格的重要环节,然而,在实践中,我们经常会遭遇一些质量事故,给工程造成严重损失。
因此,本文将通过分析施工监理中的几个质量事故案例,探讨其原因,并提出相应的防范措施,以期提高施工监理的质量管理水平。
案例一:齿轮传动机构失灵在某大型工程项目中,施工监理人员发现齿轮传动机构出现异常噪音,并随即对其进行了检查。
结果发现,齿轮传动机构的润滑油液位异常,没有及时补充。
经过进一步检查,发现齿轮传动机构的齿轮齿面磨损严重,造成了机构失灵。
案例分析及防范措施:1. 分析:齿轮传动机构的异常噪音是发生故障的早期预兆,进行及时检查和维护非常重要。
此次事故的发生主要原因是润滑油液位异常和齿轮磨损严重。
2. 防范措施:施工监理人员应定期检查润滑油液位,并及时补充,确保润滑系统正常运作。
另外,在施工前应对齿轮传动机构进行全面检查,发现问题及时维护或更换。
案例二:基坑支护结构松动在某高层建筑工程项目中,施工监理人员发现基坑支护结构出现松动现象。
经过检查,发现支护结构的固定钢筋存在质量问题,导致其无法牢固固定。
案例分析及防范措施:1. 分析:基坑支护结构松动严重影响工程的安全和稳定性,质量问题是此次事故的根源。
2. 防范措施:施工监理人员应严格把关固定钢筋的质量,加强对施工单位的监督和检查。
同时,在施工完成后,应定期对基坑支护结构进行检查和维护,以保证其稳定性。
案例三:施工工艺不当导致结构失稳在某桥梁工程项目中,施工监理人员发现施工工艺不当导致了结构失稳。
经过检查,发现在浇筑混凝土时,施工人员没有严格按照规范进行工作,导致部分结构存在缺陷。
案例分析及防范措施:1. 分析:施工工艺不当是导致结构失稳的重要原因,施工人员对规范的不了解或不严格执行可能是问题所在。
2. 防范措施:施工监理人员应加强对施工工艺的指导和监督,确保施工人员按照规范进行工作。
另外,对施工人员进行培训,提高其对工艺规范的理解和重视程度。
施工技术最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读!!)深基坑工程是最近30多年中迅速发展起来的一个领域,由于高层建筑、地下空间的发展,深基坑工程的规模之大、深度之深,成为岩土工程中事故最为频繁的领域,给岩土工程界提出了许多技术难题,当前,深基坑工程已成为国内外岩土工程中发展最为活跃的领域之一。
深基坑工程概念住房和城乡建设部《危险性较大的分部分项工程安全管理办法的通知》规定:深基坑工程指开挖深度超过5m(含5m)或地下室3层以上(含3层),或深度虽未超过5m,但地质条件和周围环境及地下管线特别复杂的基坑土方开挖、支护、降水工程。
深基坑工程特点当前我国各大城市深基坑工程主要突出了以下四个特点:①深基坑距离周边建筑越来越近由于城市的改造与开发,基坑四周往往紧贴各种重要的建筑物,如轨道交通设施、地下管线、隧道、天然地基民宅、大型建筑物等,设计或施工不当,均会对周边建筑造成不利影响。
②深基坑工程越来越深随着地下空间的开发利用,基坑越来越深,对设计理论与施工技术都提出的更难的要求。
如无锡恒隆广场基坑深近27m,上海中心深基坑达30m,均已挖入了承压水层。
下图为宁波嘉和中心二期项目基坑,平均开挖深度18.3m,最大挖深25.9m,整体为3层地下室布局,局部有夹层。
③基坑规模与尺寸越来越大图为天津西站二期项目基坑,总面积为39000m2,基坑周长达855m。
④施工场地越来越紧凑图为宁波春江花城二期项目基坑全景,地下室距离外墙用地红线仅3.5m。
深基坑工程安全质量问题深基坑工程安全质量问题类型很多,成因也较为复杂。
在水土压力作用下,支护结构可能发生破坏,支护结构形式不同,破坏形式也有差异。
渗流可能引起流土、流砂、突涌,造成破坏。
围护结构变形过大及地下水流失,引起周围建筑物及地下管线破坏也属基坑工程事故。
粗略地划分,深基坑工程事故形式可分为以下三类:1)基坑周边环境破坏在深基坑工程施工过程中,会对周围土体有不同程度的扰动,一个重要影响表现为引起周围地表不均匀下沉,从而影响周围建筑、构筑物及地下管线的正常使用,严重的造成工程事故。
某工程基坑支护冠梁断裂处理实例背景在某工程基坑的支护工程中,出现了一起冠梁断裂的事故。
冠梁是基坑支护结构中重要的承重构件,一旦冠梁断裂,可能导致支撑结构失效,对周边环境和人员安全造成严重危害。
针对此事故,本文将介绍事故原因、处理方案和实施过程。
事故原因经过调查和分析,初步判断该冠梁断裂原因是由于施工过程中,大型设备在进行施工作业时,对于冠梁的约束力存在问题引起的。
具体原因如下:1.设备操作不规范:施工现场使用的起重设备在起吊过程中未对冠梁进行稳固约束,导致冠梁受力不均,从而引起裂痕;2.材料质量问题:冠梁选用的材料存在质量问题,无法承受基坑支护结构中的荷载。
处理方案鉴于冠梁断裂对支撑结构的危害,需尽快采取处理措施,避免事故继续扩大化。
针对冠梁断裂,提出以下两种处理方案:1.更换冠梁:将断裂的冠梁拆除,更换新的冠梁,确保支撑结构的稳固性。
但是这种方案需要更换断裂的冠梁,对造成的业主损失较大,需要考虑更换后的验收问题,施工周期较长。
2.现场加固:在现有的冠梁上钻孔,注浆加固。
这种方案工程量相对较小,工期较短,且可保证支撑结构的安全性。
但是加固后的冠梁承受能力会有所降低,需保证加固效果和质量。
综合考虑,当时施工方采取了第二种方案进行处理。
实施过程处理方案确定后,施工方对于实施过程进行了详细的规划和安排:1.制定施工方案和安全措施:根据方案,制定施工计划和安全措施,包括钻孔、管子安装、压浆、养护等方面,确保施工过程安全有序;2.钻孔和管子安装:工人按照施工方案预先制定的位置,钻孔安装管子,注入膨胀胶制成孤独浆柱,固定管子;3.压浆和养护:确定压浆方案,注入胶浆,确保加固后的冠梁结构完整性和稳固性。
加固后的冠梁需要进行一段时间的养护,在此期间,需严格管控施工现场,防止其受到外力破坏。
经过一系列的实施步骤,冠梁加固施工成功完成,并进行了验收。
加固后的冠梁结构正常,并通过了验收标准。
最终,基坑支护工程未影响周围环境和人员安全,取得了圆满的施工成果。
地基基础质量事故分析与处理案例案例11 工程概述北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高—3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。
在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。
该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。
地下水分为上层滞水和承压水两种。
基坑开挖完毕后,进行底版施工。
一夜的大雨,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑。
西侧基坑周围地面也出现大小不等的裂缝。
2 事故分析2。
1 锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。
2.2 持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。
同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。
2。
3 基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。
3 事故处理事故发生后,施工单位对西侧桩后出现裂缝的地段紧急用工字钢斜撑支护的圈梁,阻止其继续变形。
西南角塌方地带,从上到下进行人工清理,一边清理边用土钉墙进行加固。
案例21 工程概况某渔委商住楼为322层钢筋混凝土框筒结构大楼,一层地下室,总面积23150平方米.基坑最深出(电梯井)—6.35M该大楼位于珠海市香洲区主干道凤凰路与乐园路交叉口,西北两面临街,南面与市粮食局5层办公楼相距3~4M,东面为渔民住宅,距离大海200M。
地质情况大致为:地表下第一层为填土,厚2M;第而层为海砂沉积层,厚7M;第三层为密实中粗砂,厚10M;第四层为黏土,厚6M;—25以下为起伏岩层。
地下水与海水相通,水位为-2。
基坑安全事故及防范措施一、广州海珠城广场基坑倒塌事故抢险回忆及原因分析〔一〕、海珠城广场基坑支护制定方案介绍海珠城广场基坑周长约340米, 原制定地下室4层, 基坑开挖深度为17米。
该基坑东侧为江南大道, 江南大道下为广州地铁二号线, 二号线隧道结构边缘与本基坑东侧支护结构距离为5.7米;基坑西侧、北侧邻近河涌, 北面河涌范围为22米宽的渠箱;基坑南侧东部距离海员宾馆20米, 海员宾馆楼高7层, 采纳φ340锤击灌注桩基础;基坑南侧两部距离隔山一号楼20米, 楼高7层, 基础也采纳φ340锤击灌注桩。
该工程地质状况从上至下为填土层, 厚0.7~3.6米, 淤泥质土层, 层厚0.5~2.9米;细砂层, 各别孔揭露, 层厚0.5~1.3米;强风化泥岩, 顶面埋深为2.8~5.7米, 层厚0.3米;中、风化泥岩, 埋深3.6~7.2米, 层厚1.5~16.7米;微风化岩, 埋深6.0~20.2米, 层厚1.8~12.84米。
由于本工程岩层埋深较浅, 因此, 原制定支护方案如下:基坑东侧、基坑南侧东部34米、北侧东部30米范围, 上部5.2米采纳喷锚支护方案, 下部采纳挖孔桩结合钢管内支撑的方案, 挖孔桩底标高为▽—20.0米。
基坑西侧上部采纳挖孔桩结合预应力锚索方案, 下部采纳喷锚支护方案。
基坑南侧、北侧的剩余部分, 采纳喷锚支护方案。
后由于±0.00标高调整, 后实际基坑开挖深度调整为15.3米。
本基坑在2002年10月31日开始施工, 至2003年7月施工至制定深度15.3米, 后由于上部结构重新调整, 地下室从原制定4层改为5层, 地下室开挖深度从原制定的15.3米增至19.6米。
由于地下室周边地梁高为0.7米。
因此, 实际基坑开挖深度为20.3米, 比原制定挖孔桩桩底深0.3米。
新的基坑制定方案确定后, 2004年11月重新开始从地下4层基坑底往地下5层施工, 至2005年7月21日上午, 基坑南侧东部桩加钢支撑部分, 最大位移约为4.0cm, 其中从7月20日至7月21日一天增大1.8cm, 基坑南侧中部喷锚支护部分, 最大位移约为15cm。