盐胁迫对植物的影响教学文案
- 格式:docx
- 大小:19.17 KB
- 文档页数:7
盐胁迫对植物生长的影响研究随着全球气候变化和人类活动的影响,土壤中盐分的增加已经成为困扰着许多植物生长的难题。
因此,人们开始研究盐胁迫对植物生长和发育的影响,以便寻找有效的治理方法。
1. 盐胁迫的机制当土壤中盐分过高时,会对植物的水分平衡、气体交换和营养吸收造成影响,甚至导致植物死亡。
盐胁迫的机制主要包括两个方面:一是离子胁迫,即高浓度盐离子(如钠、氯等)对植物生理代谢产生不利影响,破坏细胞内外离子平衡;二是渗透胁迫,即盐分影响了植物根系吸收水分的能力,导致植物体内水分减少。
2. 盐胁迫对植物形态结构的影响盐胁迫的影响主要体现在植物的形态结构上。
由于植物体内水分减少,盐分对细胞的渗透压的影响会导致植物枯黄、倒伏等影响。
同时,盐胁迫还会引起植株根系的退化,使植株在缺水时的吸水能力下降,影响植物的生长发育。
3. 盐胁迫对植物生理代谢的影响盐胁迫对植物的生理代谢产生了不利影响。
植物在受盐胁迫后,会调整生理代谢适应环境,以适应较高盐分的环境。
其中,植物的抗氧化系统起到了重要的作用。
受盐胁迫后,植物产生的大量自由基,会破坏细胞膜的结构,影响植物的生长发育。
因此,植物在受盐胁迫后,会通过调整抗氧化系统等代谢方式来降低自由基的产生和损害细胞的程度。
4. 盐胁迫治理方法在治理盐胁迫方面,最常用的方法为提高土壤的排盐能力。
例如,可以通过人工加盐、改变灌溉系统等方式来提高土壤排盐能力。
同时,还可以通过调整植物的生理机制,来适应高盐环境。
例如,通过栽培耐盐植物、利用遗传工程技术改良植物基因等方式,增强植物对高盐环境的适应能力。
总之,盐胁迫对植物的生长和发育产生了巨大的影响,其中不仅仅包括外部形态结构上的变化,也包括内部的代谢和生理机制的调整。
为了有效治理盐胁迫问题,人们需要更深入地研究盐胁迫对植物生长的影响机制,并探索出更加有效的治理方案。
盐胁迫对植物生长的影响Abstract Soil salinization affects the whole growth cycle of plant,and has become an ecological issue attracting global attention.In this research,the effects of salt stress on plant seed germination,morphological development,photosynthetic characteristics,physiological and biochemical characteristics and ion homeostasis were summarized,which provided relevant theoretical references for the researches on soil salinization and salt resistance breeding.Key words Salt stress;Plant growth;Physiological and biochemical characteristics土壤鹽渍化是限制农业发展的一项重要生态因素,始终影响着植物的整个生命周期,其对植物的影响是一个综合复杂的过程。
土壤中高浓度的盐分离子不仅造成土壤水势下降,推迟或抑制植物种子萌发,而且还会抑制该环境中的植物幼苗根、茎、叶、花、果实等器官的生长发育和代谢过程,使植物生长受到抑制;当盐分离子进一步升高时,除因水势降低而对植物产生渗透胁迫外,还对植物产生离子胁迫,破坏细胞中离子平衡,抑制酶活性的表达,限制营养物质的供应,干扰细胞中离子代谢,改变其组织和细胞的显微和超微结构,此外还限制作物根系对盐分离子的吸收和运输机制,造成离子毒害,降低植物叶绿素含量,进而阻止光合作用的正常进行。
盐分胁迫对植物的影响一、主要目的和要求1.通过实验,认识土壤盐分胁迫对植物生理生态特征的影响和植物的抗逆性。
2.掌握测定植物组织中过氧化氢酶活性、丙二醛含量和脯氨酸含量的常用方法。
3.提高学生的实验设计和实验操作能力、以及对实验结果的分析能力。
二、一般原理(一)盐分胁迫对植物的影响1.盐生植物概况盐土是指土壤饱和浸提液的电导值超过4ds·m-1的土壤,电导值超过15 ds·m-1的土壤为重盐土(余淑文,1998)。
盐渍生境即含有至少3.3巴渗透压盐水(相当于70mmol·L-1的单价盐)的生境,在此生境中能生长的自然植物区系就是盐生植物(Greenway H., 1980)。
反之,则为甜土植物或淡土植物。
2.盐分对植物的伤害土壤盐分过多,会降低土壤溶液的水势,导致植物严重的生理干旱,使物质不能及时吸收、合成和运输。
同时,高浓度的钠离子可置换细胞膜上结合的钙离子,膜功能也随之改变,细胞内外物质无选择进出。
高盐土上生长的植物体内常积累过多的盐分,植物代谢过程受影响,如过多的氯离子会阻碍蛋白质的合成,促进毒害物质积累和叶绿体分解;一定浓度的钾离子抑制有机物干重和净光合率的产生以及根质膜ATP酶活性(赵可夫等,1995);钠离子浓度高时抑制大多数酶的活性,并且钠离子及氯离子含量过多还会抑制植物对钾、钙等离子的吸收(王玮等,2003)。
在盐分胁迫下,气孔保卫细胞内的淀粉形成过程受到妨碍,气孔不能关闭,植物很快缺水枯萎。
盐胁迫还会导致自由基 2O、羟自由基(·OH)、过氧化氢(H2O2)和单线态氧(1O2)等活性氧的产生,活性氧可使很多生物功能分子失去功能。
此外,有些重金属对植物根系产生直接伤害。
3.植物对盐胁迫的适应生长在盐渍化环境中的植物具有不同的适应。
(1)形态适应形态上出现植物体干而硬,叶退化成鳞片状或严重肉质化,新生枝条肉质化,同化枝行使光合功能,气孔下陷,如盐角草、盐节木、碱蓬、盐爪爪等。
盐胁迫对植物的影响及植物的抗盐机理摘要: 盐是影响植物生长和产量的主要环境因子之一, 根据国内外最新的研究资料, 从盐胁迫对植物的生长、水分关系、叶片解剖学、光和色素及蛋白、脂类、离子水平、抗氧化酶及抗氧化剂、氮素代谢、苹果酸盐代谢、叶绿体超微结构的影响, 及影响光合作用的机制等方面入手, 对植物盐胁迫研究现状及进展情况进行了综述, 旨在为开展植物抗盐机理研究、选育培育耐盐植物新品种提供依据。
关键词: 植物盐胁迫抗盐性机理Effects of Salt Stress on Plants and the Mechanism of Salt ToleranceAbstract: Salinity is the major environmental factor limit ing plant growth and productivity. According to the documents and data at home and abroad, the research currents of salt stress in plants were summarized including the effect on plant growth, the water relations, leaf anatomy, photosynthetic pigments and proteins, lipids, ion levels, antioxidative enzymes and antioxidants etc. This r eview may help to study the salt2toler ant mechanism and breeding new salt-toler ant plants.Key words: plant, salt2stress, salt2tolerant, mechanism目前, 受全球气候变化、人口不断增长的影响,土壤盐碱化日趋严重。
干旱和盐胁迫对植物生长发育的影响随着全球气候变化的不断恶化,水危机已经成为我们必须应对的主要问题之一。
干旱已经成为许多地方的常态,而盐胁迫也在某些地区非常普遍。
这些环境压力对植物生长和发育产生了深远影响。
本文将探讨干旱和盐胁迫对植物的影响,并探索植物抵御这些压力的机制。
植物是面临干旱和盐胁迫的第一线。
在干旱条件下,植物必须面对土壤水分的不足,并采取各种策略来保持水分平衡。
例如,在干旱条件下,植物可以减少蒸腾或增加根系的表面积来获取更多的水分。
然而,不是所有植物都能够适应干旱。
在干旱条件下,植物必须维持体内的水平衡和气体交换,并减少蒸腾带来的水分流失。
如果干旱过于严重,植物会失去水分和营养物质,导致生长受限甚至死亡。
盐胁迫是指土壤中盐分浓度过高,影响植物的正常生长发育。
在盐胁迫条件下,植物必须激活各种机制来排除过量的盐分,并保持离子平衡。
例如,在盐胁迫条件下,植物可以通过利用细胞内的各种离子转运蛋白或透过根系排出外部的盐来维持离子平衡。
然而,如果盐胁迫过于严重,植物会受到组织脱水和能量耗尽的损害,并导致生长受限或死亡。
虽然干旱和盐胁迫都对植物的生长发育产生负面影响,但植物拥有各种机制来应对这些环境压力。
其中最重要的机制之一是激活保护酶系统。
保护酶是指一组酶,它们能够防止氧化损伤和抗生理胁迫。
保护酶系统包括抗氧化酶和水解酶等。
抗氧化酶可以减少由干旱或盐胁迫引起的氧化损伤,而水解酶可以使植物自我维持,对抗干旱和盐胁迫等环境压力。
在分子水平上,植物还展示出了各种响应干旱和盐胁迫的途径。
例如,在干旱条件下,植物可以通过激活特定基因来提高生长素和脱落酸的水平,从而促进上述生物化学途径的活性。
在盐胁迫条件下,植物则可以通过调节光合作用酶的活性和水分吸收能力,改善离子平衡。
尽管目前对这些响应机理的了解还不够完整,但研究人员们正在努力深入研究这些机制,以便能够开发更加耐旱耐盐的植物品种。
总的来说,干旱和盐胁迫是植物面临的一些最大的压力,在许多地区对粮食生产和生态系统都产生了不可忽视的负面影响。
盐碱胁迫对植物生长的影响及应对措施1. 引言1.1 植物对盐碱胁迫的敏感性植物对盐碱胁迫的敏感性是指植物在受到盐碱胁迫的情况下,对环境中盐碱物质的反应和适应能力。
盐碱胁迫会导致植物细胞内外的离子平衡失调,进而影响植物的生长发育和代谢过程。
不同植物种类对盐碱胁迫的敏感性有所差异,一般来说,盐碱胁迫对耐盐碱植物的影响相对较小,而对耐盐碱植物的影响较大。
在受到盐碱胁迫的情况下,植物会通过一系列生理和分子机制来应对,如调节离子吸收和转运、积累有益物质以抵抗盐碱胁迫等。
了解植物对盐碱胁迫的敏感性有助于我们制定更有效的应对措施,保护植物生长发育的健康,提高植物对盐碱胁迫的抵抗能力。
1.2 盐碱胁迫的定义和影响在土壤中过量的盐分和碱性物质会导致盐碱胁迫,这种胁迫会对植物生长和发育产生严重影响。
盐碱胁迫会改变土壤的渗透性和水分利用效率,导致植物根系吸收水分和养分的困难。
盐碱胁迫还会影响植物的生理代谢,如抑制光合作用、影响植物的蒸腾作用等,进而影响植物的生长和发育。
研究盐碱胁迫对植物的影响,探究相应的调控策略,对于提高植物在盐碱胁迫条件下的适应性和生长能力具有重要意义。
通过深入研究盐碱胁迫的定义和影响,可以更好地指导植物生长调控的实践,为解决盐碱地区的植被恢复和农业生产提供科学依据。
1.3 研究背景盐碱胁迫是全球范围内对植物生长产生重要影响的环境因素之一。
在当今世界范围内,土壤盐碱化问题日益突出,已成为限制农业可持续发展的主要因素之一。
盐碱胁迫导致植物生长受限的主要原因是土壤中盐分和碱性物质的增加,这会影响土壤水分和营养元素的吸收,进而影响植物的生长和发育。
过去的研究表明,植物对盐碱胁迫的敏感性与其生长阶段、种类、生长环境等因素密切相关。
了解和研究盐碱胁迫对植物生长的影响及应对措施具有重要意义。
通过深入探究植物生长受盐碱胁迫影响的生理机制、影响植物生长的主要因素以及相应的生长调控策略,可以有效提高植物对盐碱胁迫的抵抗能力,促进植物生长和发育。
盐度胁迫对植物生长的影响研究一、引言植物对环境中的盐度是非常敏感的,过高或过低的盐度会对植物生长产生不良影响。
因此,研究盐度胁迫对植物生长的影响,对于植物的高效种植和可持续发展具有重要意义。
二、盐度胁迫的定义及分类盐度胁迫,指环境中溶解的盐分浓度高于植物所能耐受的范围,从而影响植物的生长发育。
盐度胁迫按照盐度浓度的高低可以分为低盐胁迫(0.1%-1.0%)、中盐胁迫(1.0%-5.0%)和高盐胁迫(>5.0%)。
三、盐度胁迫对植物生长的影响1.根系生长受阻盐度胁迫下,植物根系的生长速度减缓,根系发育异常,根毛变少,根尖呈殆尖状甚至出现枯死现象。
这是因为高盐度会导致土壤水势下降,影响植物根系吸收水分和矿质元素,进而抑制植物根系的生长发育。
2.影响光合作用盐度胁迫会导致植物叶片光合能力下降。
特别是在高盐度环境下,高盐度环境下的氯离子和钾离子的平衡比例被打破,导致植物叶片中的氮代谢和光合作用受到抑制。
3.内部代谢受损高盐度环境下,植物内部代谢受到破坏,导致植物的生长发育异常。
例如,盐度胁迫可以导致植物细胞中的代谢产物比例失调,进而影响植物发育过程中所需要的各种生物化学和物理化学过程。
4.产量降低盐度胁迫不仅会影响植物的生长发育,也会导致植物的产量降低。
这是因为盐度胁迫导致植物的地上部分和地下部分的生长发育不平衡,进而影响植物的产量和品质。
四、盐度胁迫对植物的适应机制植物对盐度胁迫有一定的适应机制,这些适应机制可以帮助植物在盐度胁迫下维持生命。
例如,植物可以以根系培植的方式适应高盐度环境,通过适当的调整根系生长和分布来维持植物的生长发育。
此外,植物还可以通过激活渗透调节机制来调整水分和盐分的平衡,从而减轻盐度胁迫对植物的破坏。
五、减轻盐度胁迫对植物生长的影响的方法1.盐碱地改良利用生物活性有机肥、离子交换树脂、化学处理等方法对盐碱地进行改良,提高土壤的肥力和透水性。
2.选择耐盐性植物进行栽培选用抗盐、耐盐、善适应盐度环境的植物种进行栽培,例如在北中国沿海地区利用海蒿、海麻、碱蓬、碱蒿等适应盐碱地生长的植物对盐碱地进行改良。
盐胁迫对植物的影响及植物盐适应性研究进展一、本文概述盐胁迫,作为一种常见的非生物胁迫,对植物的生长和发育具有显著影响。
在盐碱地等极端环境中,植物常常面临高盐浓度的挑战,这对其生理代谢和生存策略提出了严峻的要求。
为了适应这种环境压力,植物发展出了一系列的盐适应性机制。
本文旨在综述盐胁迫对植物的影响,包括生长抑制、光合作用降低、离子平衡失调等方面,并深入探讨植物在盐胁迫下的适应性研究进展,包括离子转运、渗透调节、抗氧化防御等多个方面。
通过对这些适应性机制的研究,我们不仅可以更好地理解植物如何应对盐胁迫,而且可以为植物耐盐性的遗传改良和盐碱地的生态恢复提供理论支持和技术指导。
二、盐胁迫对植物生理生态的影响盐胁迫是指土壤中含盐量过高,对植物的生长和发育造成不良影响的环境压力。
盐胁迫对植物的影响表现在多个层面,涉及生理、生态、形态和分子等多个方面。
在生理层面,盐胁迫首先影响植物的水分平衡。
由于土壤中的高盐浓度,植物吸水变得困难,导致细胞内外的渗透压失衡,进而引发细胞脱水和生理功能紊乱。
盐胁迫还会破坏植物的光合作用系统,降低叶绿素的含量和光合效率,从而影响植物的光能利用和有机物的合成。
在生态层面,盐胁迫导致植物群落的结构和组成发生变化。
盐胁迫下,一些耐盐性强的植物种类或品种可能获得竞争优势,而一些对盐敏感的植物则可能因无法适应而死亡或生长受阻。
这种植物群落的演替过程可能导致生物多样性的降低,影响生态系统的稳定性和功能。
在形态层面,盐胁迫会导致植物出现一系列适应性的形态变化。
例如,耐盐植物往往具有较厚的叶片和茎秆,以减少水分蒸发和盐分积累;根系也更加发达,以增加对水分和养分的吸收面积。
一些植物还会通过减少地上部分的生物量分配,增加地下部分的生物量分配来适应盐胁迫环境。
在分子层面,盐胁迫会引发植物体内一系列的生理生化反应和基因表达变化。
例如,植物会通过调节渗透调节物质的合成和积累来维持细胞内外渗透压的平衡;一些与盐胁迫相关的基因也会被诱导表达,编码耐盐相关的蛋白质或酶类,以增强植物的耐盐能力。
盐胁迫对植物生理生化特性的影响根据联合国粮农组织(FAO)统计,全世界存在盐渍土面积8亿hm2,占陆地面积的6%。
据统计,我国盐渍土面积为3 470 万 hm2,土壤盐渍化是世界上许多干旱和半干旱地区农作物产量下降的主要原因。
土壤中过量的盐分能够引起土壤物理和化学性质的改变,从而导致大部分农作物生长环境的恶化。
盐渍土作为一种土地资源,在全国乃至全世界都有着广泛的分布和较大的面积迄今为止,我国有80%左右的盐渍土尚未得到开发利用,有着巨大的开发利用潜力。
1盐胁迫对植物耐受性的影响近年来,盐胁迫对各种植物各个性状方面的影响已成为很多科学家研究的重点。
包括对拟南芥、玉米、马铃薯、水稻、香蕉、黄瓜、花生和韭菜等植物都有过相关的研究。
童仕波等证明转基因拟南芥对盐胁迫的耐受性明显增强。
其脯氨酸(Pro)含量明显提高。
赵昕等研究发现(NaCl)降低拟南芥叶绿。
体对光能的吸收能力,而且降低叶绿体的光化学活性。
使电子传递速率和光能转化效率大幅度下降,造成光能转化为化学能的过程受阻,进一步加剧了光合放氧和碳同化能力的降低。
盐胁迫下拟南芥中的(Na+)与(K+)含量变化呈极显著正相关。
因此推断它们的吸收通道或载体为单一竞争性。
发现盐浓度达到一定程度时,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均达到最高。
随后随着(NaCl)浓度的增加,SOD、POD、CAT活性逐渐降低。
表明SOD、POD、CAT活性不能维持较高水平。
反之会导致膜脂过氧化作用加强,细胞膜受到损害。
研究发现盐浓度对马铃薯脱毒苗叶片SOD和POD活性影响极显著。
盐比例及盐浓度与盐比例的交互作用对马铃薯脱毒苗叶片SOD和POD活性影响均不显著。
随着混合盐浓度的增加(Na+)含量显著增加K+含量平缓下降。
(Na+)与(K+)的比值显著上升。
发现,水稻在(NaCl)浓度为30 mmol/L 时生长状况良好,但随着NaCl浓度的增加,水稻的生长速度减慢。
盐胁迫对植物的影响及植物的抗盐机理摘要: 盐是影响植物生长和产量的主要环境因子之一, 根据国内外最新的研究资料, 从盐胁迫对植物的生长、水分关系、叶片解剖学、光和色素及蛋白、脂类、离子水平、抗氧化酶及抗氧化剂、氮素代谢、苹果酸盐代谢、叶绿体超微结构的影响, 及影响光合作用的机制等方面入手, 对植物盐胁迫研究现状及进展情况进行了综述, 旨在为开展植物抗盐机理研究、选育培育耐盐植物新品种提供依据。
关键词: 植物盐胁迫抗盐性机理Effects of Salt Stress on Plants and the Mechanism of Salt ToleranceAbstract: Salinity is the major environmental factor limit ing plant growth and productivity. According to the documents and data at home and abroad, the research currents of salt stress in plants were summarized including the effect on plant growth, the water relations, leaf anatomy, photosynthetic pigments and proteins, lipids, ion levels, antioxidative enzymes and antioxidants etc. This r eview may help to study the salt2toler ant mechanism and breeding new salt-toler ant plants.Key words: plant, salt2stress, salt2tolerant, mechanism目前, 受全球气候变化、人口不断增长的影响,土壤盐碱化日趋严重。
盐胁迫对植物的影响
盐胁迫对植物的影响
植物的抗盐性:
我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。
这
种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐
性。
根据许多研究报道,土壤含盐量超过0.2%〜0.25%时就会造成危害。
钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。
世界上盐碱土面积很大,估计占灌溉农田的1/3,约4X107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。
我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2〜7X107ha,而且
这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。
土壤盐分过多对植物的危害:
1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。
因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。
2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。
3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。
盐分过多
会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。
盐分过
多还会使PEP羧化酶与RuBP羧化酶活性降低,使光呼吸加强。
生长在盐分过多的土壤
收集于网络,如有侵权请联系管理员删除
中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响是初期明显降低,而后又逐渐恢复,这似乎是一种适应性变化。
盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。
呼吸增高是由于Na*活化了离子转移系统,尤其是对质膜上的Na+、Q与ATP活化,刺激了呼吸作用。
盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势是呼吸消耗增多,净光合速度降低,不利于生长。
一、实验目的
盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成
株生长等。
不同种类的植物受盐胁迫影响的程度也各不相同。
本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。
通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察和计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。
二、仪器设备和材料
电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。
三、实验方法和步骤
1.预处理
(1)种子的预处理:用10%的次氯酸钠消毒10mi n,蒸馏水冲洗数次后,于培养皿中做发芽实验。
(2)器皿准备:取培养皿15套,分别用以下不同浓度值(3)作为编号贴好标签
收集于网络,如有侵权请联系管理员删除
(3)配制不同浓度梯度的Na2CO3溶液
设置对照(CK); 1、2、3、4g/L 4个浓度梯度的Na2CO3溶液,用去离子水各配制
250ml。
(4)在每个培养皿底部平铺两张滤纸。
每个浓度梯度处理重复3次,分别标记1、
2、3,作为平行样。
2•种子的培养
取5种处理溶液各10ml分别注入垫有两张滤纸,直径为120 mm的培养皿中。
挑选健康、饱满的小麦种子,每个培养皿中摆放100粒,盖上盖置实验室内室温下培养。
从种子置于培养皿内起开始观察。
每天下午15:00左右适当补充相同处理溶液,以维持盐分浓度的稳定。
以胚根长达到种子长度的一半时视为发芽,以具明显胚芽鞘及胚根作为发芽标准。
(生产上常把小麦的胚根长度与小麦种子长度相等、胚芽长度达到种子长度一半时,定为小麦种子发芽的标准)。
(冬季,小麦种子一般需要7天才能发芽,即从第7天
调查发芽率)。
连续3d发芽数不再增长时终止发芽试验。
如果培养皿中有5%以上的种
子发霉,则应进行消毒或更换培养皿和滤纸。
3.实验记录
从种子萌发开始,逐日观察记录正常萌发种子数、不萌发种子数及腐烂种子数。
种子萌发3d后,取正常发芽种子测其生理指标,之后每次观察后将正常发芽种子和腐烂种子取出弃掉。
观测时间为发芽后1-2周。
将观察结果填入预先设计好的表1中。
4•计算
(1)发芽率、发芽势和发芽指数的计算:在小麦种子发芽实验结束后,根据检查和 记录结果计算种子的发芽势和发芽率。
发芽率二最终发芽的种子数/供试种子数X 100%。
发芽率是决定种子品质和实际用价 的依据。
发芽势二3d 发芽种子数/供试种子数X 100%。
种子发芽势是判别种子质量优劣、出苗 整齐与否的重要标志,也与幼苗强弱和产量有密切的关系。
发芽势高的种子,出苗迅 速,整齐健壮。
发芽指数G =》(G t / D t )。
式中(G t 为t 日的发芽种子数,D t 为对应种子发芽的天 数)。
发芽指数高就说明该种子发芽所用的时间短,发芽速度快。
根据“小麦发芽情况记录表”中的数据,分别计算发芽率、发芽势和发芽指数,将计算结 果记入表2。
(2)生理指标的测定:测定的主要生理指标包括:芽长、总长、芽重和总重。
发芽 后,用镊子轻轻将其取出(取出已发芽的种子,计算平均值),用滤纸吸干,再用刻度 尺分别测量芽长和总长度;之后,经分析天平测其全重和芽重(先测全重,然后用剪刀
3d
剪下芽,测芽重)。
以上各量均取平均值,将结果记入表3。
根据观察和测定计算的结果,分析小麦种子萌发过程中各指标在不同盐胁迫条件下的变化,了解盐胁迫对种子萌发的影响。
四、作业
绘制盐浓度与生长指标相关曲线;并分析盐胁迫对种子萌发的影响。