2016年广东省数学中考复习专题(二)代数式
- 格式:doc
- 大小:402.50 KB
- 文档页数:7
中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。
2025年广东省东莞市中考数学一轮复习:代数式一.选择题(共10小题)1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+2 2+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.52013−44D.52013−142.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2B.m=﹣1,n=2C.m=﹣2,n=2D.m=2,n=﹣1 3.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3 4.某商店举办促销活动,促销的方法是将原价x元的衣服以(45﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1D.1 6.当x=1时,代数式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣77.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个8.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=19.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个10.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()A.(a+54b)元B.(a+45b)元C.(b+54a)元D.(b+45a)元二.填空题(共5小题)11.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.12.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.13.若a2﹣3b=5,则6b﹣2a2+2015=.14.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.15.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是.三.解答题(共5小题)16.先去括号、再合并同类项①2(a﹣b+c)﹣3(a+b﹣c)②3a2b﹣2[ab2﹣2(a2b﹣2ab2)].17.某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x 的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?18.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)19.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①.方法②;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.20.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);第4个等式:a4=17×9=12×(17−19);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.2025年广东省东莞市中考数学一轮复习:代数式参考答案与试题解析一.选择题(共10小题)1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+2 2+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.52013−44D.52013−14【考点】规律型:数字的变化类;同底数幂的乘法.【专题】计算题;压轴题.【答案】D【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=52013−14.故选:D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.2.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2B.m=﹣1,n=2C.m=﹣2,n=2D.m=2,n=﹣1【考点】同类项.【答案】B【分析】单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.【解答】解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选:B.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.3.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3【考点】代数式求值.【答案】A【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.4.某商店举办促销活动,促销的方法是将原价x元的衣服以(45﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元【考点】代数式.【答案】B【分析】首先根据“折”的含义,可得x变成45x,是把原价打8折后,然后再用它减去1 0元,即是(45x﹣10)元,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(45x﹣10)元出售,是把原价打8折后再减去10元.故选:B.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.5.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【答案】D【分析】根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.【解答】解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,=+22+=4,解得=2=0,m n=20=1,故选:D.【点评】本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.6.当x=1时,代数式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【答案】C【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时,12ax3﹣3bx+4=12a﹣3b+4=7,解得12a﹣3b=3,当x=﹣1时,12ax3﹣3bx+4=−12a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.7.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个【考点】代数式.【答案】B【分析】通过给a一数值,举反例,排除法求解.【解答】解:①a=﹣2时,a+1=﹣1是负数;②a=﹣1时,|a+1|=0不是正数;不论a取何值,都有|a|+1≥1、a2+1≥1;所以一定是正数的有③|a|+1,④a2+1;故选B.【点评】本题考查知识点为:一个数的绝对值和一个数的平方一定是非负数,所以加上一个正数后则一定是正数.8.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=1【考点】合并同类项.【答案】C【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.【点评】本题主要考查的是同类项的概念和合并同类项的法则,掌握合并同类项的法则:系数相加作为系数,字母和字母的指数不变.9.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个【考点】去括号与添括号.【答案】D【分析】根据去括号的方法逐一化简即可.【解答】解:根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选:D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.10.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()A.(a+54b)元B.(a+45b)元C.(b+54a)元D.(b+45a)元【考点】列代数式.【答案】A【分析】可设原售价是x元,根据降价a元后,再次下调了20%后是b元为相等关系列出方程,用含a,b的代数式表示x即可求解.【解答】解:设原售价是x元,则(x﹣a)(1﹣20%)=b,解得x=a+54b,故选:A.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解二.填空题(共5小题)11.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=2m﹣4.【考点】去括号与添括号;绝对值.【答案】见试题解答内容【分析】先根据绝对值的性质把原式化简,再去括号即可.【解答】解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.【点评】本题考查绝对值的化简方法和去括号的法则,比较简单.12.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【考点】代数式求值.【专题】图表型.【答案】见试题解答内容【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.13.若a2﹣3b=5,则6b﹣2a2+2015=2005.【考点】代数式求值.【答案】见试题解答内容【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于16.【考点】代数式求值.【专题】推理填空题;整式.【答案】见试题解答内容【分析】根据﹣2a2+3b+8的值为1,可得:﹣2a2+3b+8=1,所以﹣2a2+3b=﹣7,据此求出代数式4a2﹣6b+2的值等于多少即可.【解答】解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.15.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是体育委员买了3个足球、2个篮球后剩余的经费.【考点】代数式.【专题】应用题.【答案】见试题解答内容【分析】本题需先根据买一个足球x元,一个篮球y元的条件,表示出2x和3y的意义,最后得出正确答案即可.【解答】解:∵买一个足球x元,一个篮球y元,∴3x表示体育委员买了3个足球,2y表示买了2个篮球,∴代数式500﹣3x﹣2y:表示体育委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球后剩余的经费.【点评】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.三.解答题(共5小题)16.先去括号、再合并同类项①2(a﹣b+c)﹣3(a+b﹣c)②3a2b﹣2[ab2﹣2(a2b﹣2ab2)].【考点】去括号与添括号;合并同类项.【答案】见试题解答内容【分析】根据括号前是正号,去掉括号及正号,括号里的各项都不变,括号前是负号,去掉括号及负号,括号里的各项都变号,可得答案.【解答】解:(1)原式=2a﹣2b+2c﹣3a﹣3b+3c=(2a﹣3a)+(﹣2b﹣3b)+(2c+3c)=﹣a﹣5b+5c;(2)原式=3a2b﹣2(ab2﹣2a2b+4ab2)=3a2b﹣10ab2+4a2b=7a2b﹣10ab2.【点评】本题考查了去括号与添括号,括号前是正号,去掉括号及正号,括号里的各项都不变,括号前是负号,去掉括号及负号,括号里的各项都变号.17.某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款530元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款0.9x元,当x大于或等于500元时,他实际付款(0.8x+50)元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?【考点】列代数式.【答案】见试题解答内容【分析】(1)让500元部分按9折付款,剩下的100按8折付款即可;(2)等量关系为:购物款×9折;500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款﹣第一次购物款﹣第二次购物款500)×8折,把相关数值代入即可求解.【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;(3)0.9a+0.8(820﹣a﹣500)+450=0.1a+706.【点评】解决本题的关键是得到不同购物款所得的实际付款的等量关系,难点是求第二问的第二次购物款应分9折和8折两部分分别计算实际付款.18.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)【考点】列代数式;代数式求值.【专题】计算题.【答案】见试题解答内容【分析】(1)根据题意可得水费应分两部分:不超过10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)首先根据所交的水费讨论出用水是否超过了10吨,再根据水费计算出用水的吨数;(3)此题要分两种情况进行讨论:①当0<a≤10时,②当a>10时,分别进行计算即可.【解答】解:(1)10×2+(16﹣10)×2.5=35(元),答:应交水费35元;(2)设黄老师家6月份用水x吨,由题意得10×2+2.5×(x﹣10)=30,解得x=14,答:黄老师家6月份用水14吨;(3)①当0<a≤10时,应交水费为2a(元),②当a>10时,应交水费为:20+2.5(a﹣10)=2.5a﹣5(元).【点评】此题主要考查了由实际问题列代数式,关键是正确理解题意,分清楚如何计算水费.19.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于m﹣n;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①(m+n)2﹣4mn.方法②(m﹣n)2;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.【考点】列代数式;代数式求值.【专题】应用题.【答案】见试题解答内容【分析】平均分成后,每个小长方形的长为m,宽为n.(1)正方形的边长=小长方形的长﹣宽;(2)第一种方法为:大正方形面积﹣4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(3)利用(m+n)2﹣4mn=(m﹣n)2可求解;(4)利用(a﹣b)2=(a+b)2﹣4ab可求解.【解答】解:(1)m﹣n;(2)(m+n)2﹣4mn或(m﹣n)2;(3)(m+n)2﹣4mn=(m﹣n)2;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=4,∴(a﹣b)2=36﹣16=20.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.本题更需注意要根据所找到的规律做题.20.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);第4个等式:a4=17×9=12×(17−19);…请解答下列问题:(1)按以上规律列出第5个等式:a5=19×11=12×(19−111);(2)用含有n的代数式表示第n个等式:a n=1(2K1)(2r1)=12×(12K1−12r1)(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【考点】规律型:数字的变化类.【答案】见试题解答内容【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【解答】解:根据观察知答案分别为:(1)19×11;12×(19−111);(2)1(2K1)(2r1);12×(12K1−12r1);(3)a1+a2+a3+a4+…+a100=12×(1−13)+12×(13−15)+12×(15−17)+12×(17−19)+⋯+12×(1199−1201) =12(1−13+13−15+15−17+17−19+⋯+1199−1201)=12(1−1201)=12×200201=100201.【点评】此题考查寻找数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.。
广东中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (广东佛山3分)a2⋅a3等于【】A.a52. (广东广州3分)下面的计算正确的是【】A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b3. (广东汕头4分)下列运算正确的是【】A.a+a=a2 B.(﹣a3)2=a5 C.3a•a2=a3 D.4. (广东深圳3分)下列运算正确的是【】A,2a+3b=5ab B。
a2⋅a3=a5 C。
(2a)5. (广东湛江4分)下列运算中,正确的是【】3=a5 C.2=2a4 A.3a2﹣a2=2 B.(a2)a3•a6=a9 D.(2a2)B.a6 C.a8 D.a9 )=2a22 3=6a3 D。
a6÷a2=a36. (广东肇庆3分)x的取值范围是【】A.x>0 B.x≥-2 C.x≥2 D.x≤2- 1 -7. (广东珠海3分)计算﹣2a2+a2的结果为【】A.﹣3a B.﹣a C.﹣3a2 D.﹣a2二、填空题1. (广东省4分)分解因式:2x2﹣10x= .2. (广东广州3分)分解因式:a3﹣8a= .3. (广东梅州3分)若代数式﹣4x6y与x2ny是同类项,则常数n的值为.4. (广东汕头4分)分解因式:2x2﹣10x= .⎛x⎫5. (广东汕头4分)若x,y为实数,且满足x-3,则⎪⎝y⎭6. (广东汕头3分)分解因式:a-ab=二. 解答题。
322012的值是1. (广东省6分)先化简,在求值:(x+3)(x-3)-x(x-2),其中x=4- 2 -2. (广东佛山6分)化简:a+bb+c -abbc3. (广东广州10分)已知+,求11abab-的值. ba-baa-b4. (广东汕头7分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.- 3 -11a2+2ab+b26. (广东深圳6分)已知a= -3,b=2,求代数式(+)÷的值. ab7. (广东湛江6分)8. (广东肇庆6分)先化简,后求值: 1+1x-2, x-1x-1⎛⎝1⎫x÷⎪2,其中x=-4 x-1⎭x-1- 4 -1⎫⎛x-29. (广东珠海6分)先化简,再求值:⎪÷(x+1),其中⎝x-1x-x⎭10. (广东珠海9分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52× = ×25;② ×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.- 5 -填空:1.【答案】A。
代数式(整式)的运算及因式分解姓名_______________学号__________________一、整式的有关概念::由数与字母的积组成的代数式.1、整式:多项式:。
单项式中的叫做单项式的系数,所有字母的叫做单项式的次数。
组成多项式的每一个单项式叫做多项式的,多项式的每一项都要带着前面的符号。
2、同类项:①定义:所含相同,并且相同字母的也相同的项叫做同类项,常数项都是同类项。
②合并同类项法则:把同类项的相加,所得的和作为合并后的,不变。
【名师提醒:1、单独的一个数字或字母都是式。
2、判断同类项要抓住两个相同:一是相同,二是相同,与系数的大小和字母的顺序无关。
】二、整式的运算:1、整式的加减:①去括号法则:a+(b+c)=a+ ,a-(b+c)=a- . 法则:______________________②添括号法则:a+b+c= a+( ),a-b-c= a-( ) 法则:______________________③整式加减的步骤是先,再。
【名师提醒:在整式的加减过程中有括号时一般要先去括号,特别强调:括号前是负号去括号时括号内每一项都要。
】2、整式的乘法:①单项式乘以单项式:把它们的系数、相同字母分别,对于只在一个单项式里含有的字母,则连同它的作为积的一个因式。
②单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积,即m(a+b+c)= 。
③多项式乘以多项式:先用第一个多项式的每一项去乘另一个多项式的每一项,再把所得的积,即(m+n)(a+b)= 。
④乘法公式:Ⅰ、平方差公式:(a+b)(a—b)=,Ⅱ、完全平方公式:(a±b)2 = 。
【名师提醒:1、在多项式的乘法中有三点注意:一是避免漏乘项,二是要避免符号的错误,三是展开式中有同类项的一定要。
2、两个乘法公式在代数中有着非常广泛的应用,要注意各自的形式特点,灵活进行运用。
】3、整式的除法:①单项式除以单项式,把、分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
中考初中数学基础巩固复习专题(二)代数式【知识要点】:知识点1 整式的概念⎩⎨⎧升降幂排列系数项数多项式的次数多项式系数单项式的次数单项式整式—————— (1)整式中只含有一项的是单项式,否则是多项式,单独的字母或常数是单项式;(2)单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数;(3)单项式的系数,多项式中的每一项的系数均包括它前面的符号(4)同类项概念的两个相同与两个无关:两个相同:一是所含字母相同,二是相同字母的指数相同;两个无关:一是与系数的大小无关,二是与字母的顺序无关;(5)整式加减的实质是合并同类项;(6)因式分解与整式乘法的过程恰为相反。
知识点2 整式的运算 (如结构图)知识点3 因式分解多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:(1)提公因式法如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式,m 既可以是一个单项式,也可以是一个多项式.(2)运用公式法,即用)b ab a )(b a (b a ,)b a (b ab 2a ),b a )(b a (b a 223322222+±=±±=+±-+=- 写出结果.(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab =q ,a +b =p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足 a 1a 2=a ,c 1c 2=c ,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么)x x )(x x (a c bx ax 212--=++。
回归教材重难点01代数式规律题与代数式求值本考点是中考三星高频考点,难度中等偏上,在全国部分地市的中考试卷中也多次考查。
(2022年广州卷第10题)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337【分析】根据图形特征,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,得出第n个图形需要的小木棒根数即可.【解答】解:由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)根小木棒,当8n﹣2=2022时,解得n=253,故选:B.【点评】本题主要考查了图形的变化规律,解决问题的关键是由特殊找到规律:第n个图形需要(8n﹣2)根小木棒是解题的关键.代数式规律题是代数式章节衍生出的一类经典题型,可以说是贯穿整个初中的学习。
而代数式求值问题也是初中数学中比较重要的内容,代数式包含整式、分式、根式三大部分,考察较多的是整式的求值。
在解决代数式求值问题时,常用到的思想方法有整体思想、转化思想、方程思想等,个别综合性较高的问题对学生的逻辑思维能力要求也较高。
因此,在复习代数式规律题和代数式求值问题时,一是要熟悉对应题型,掌握对应解决办法,二是要融合各思想方法,提高对综合题目的逻辑理解力。
本考点是中考四星高频考点,难度中等或偏上,在全国部分地市的中考试卷中也多次考查。
技法01:周期型规律题常见处理办法:①.找出第一周期的几个数,确定周期数②.算出题目中的总数和待求数③.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)④.最后余几,待求数就和每周期的第几个一样;技法02:推理型规律题常见处理办法:①依题意推出前3~4项规律的表达式;②类推第N项表达式技法03:代数式求值问题常用处理办法:①变形已知条件,使其符合待求式中含字母部分的最简组合形式②将待求式变形,使其成为含有上面最简组合式的表达式,③代入未知最简组合形式部分的值,求出最后结果代数式规律题【中考真题练】1.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.4002.(2022•牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是()A.B.﹣C.D.﹣3.(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4B.2C.2D.04.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4=,a2022=.5.(2022•大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是.6.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是.【中考模拟练】1.(2023•云南模拟)有一组按规律排列的多项式:a﹣b,a2+b3,a3﹣b5,a4+b7,…,则第2023个多项式是()A.a2023+b4047B.a2023﹣b4047C.a2023+b4045D.a2023﹣b40452.(2023•德城区一模)已知整数a1,a2,a3,a4,……满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……依此类推,则a2023的值为()A.﹣1011B.﹣1010C.﹣2022D.﹣20233.如图,被称为“杨辉三角”或“贾宪三角”.其规律是:从第二行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和,表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n.则a100的值为()A.100B.199C.5050D.100004.(2023春•硚口区月考)我国宋朝时期的数学家杨辉,曾将大小完全相同的圆弹珠逐层堆积,形成“三角垛”.如图,第1个图有1颗弹珠;第2个图有3颗弹珠;第3个图有6颗弹珠;第4个图有10颗弹珠;…;用a n表示第n个图的弹珠数,若…+=,则n的值是()A.1012B.2022C.2023D.20245.(2023•涟源市一模)如图,下列是一组有规律的图案,它们由边长相同的小正方形组成,按照这样的规律,第n个图案中涂有阴影的小正方形的数量是个.(用含有n的式子表示)代数式求值【中考真题练】1.(2022•郴州)若=,则=.2.(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.3.(2022•邵阳)已知x2﹣3x+1=0,则3x2﹣9x+5=.4.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.5.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.6.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.7.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?【中考模拟练】1.(2023•新华区模拟)已知a+2b﹣3=0,则2a+4b+6的值是()A.8B.12C.18D.242.(2023•香洲区校级一模)若,则=.3.(2023•化州市模拟)已知﹣2m+3n2+7=0,则代数式﹣12n2+8m+4的值等于.4.(2023•沭阳县模拟)按如图所示的运算程序,输入x的值为1时,则输出y值为.5.(2023•汉中一模)在数学活动课上,同学们利用如图所示的程序进行计算,计算按箭头指向循环进行.如,当初始输入5时,即x=5,第1次计算结果为16,第2次计算结果为8,第3次计算结果为4,…(1)当初始输入1时,第1次计算结果为;(2)当初始输入4时,第3次计算结果为;(3)当初始输入3时,依次计算得到的所有结果中,有个不同的值,第20次计算结果为.。
常见代数式运算考查类型一、(实数)有理数运算例题1(2021·河北兴隆·二模)小明在解一道有理数混合运算时.一个有理数m 被污染了. 计算:()3312m ÷+⨯-.(1)若2m =.计算:()33212÷+⨯-. (2)若()33132m ÷+⨯-=.求m 的值.(3)若要使()3312m ÷+⨯-的结果为最小正整数.求m 值. 练习题1.(2021·陕西·西安市铁一中学模拟预测)计算:2202112cos608(1)2--︒-.2.(2021·广东·()21332cos30π20212-⎛⎫+︒---- ⎪⎝⎭.3.(2021·甘肃酒泉·()202184cos 451︒+-.法则等知识点.熟知上述各知识点是解题的关键.4.(2021·山东·济宁学院附属中学一模)计算:2021021(1)3cos30(2233)()2--︒-+-. 5.(2021·河南省淮滨县第一中学模拟预测)(1)如果6a =.5b =且a b <.求b a -的值. (2)已知a 、b 互为相反数.c 、d 互为倒数.m 的倒数等于它本身.则()cda b m m m++-的值是多少? (3)已知2142()025a b -++=.求ab 的值. 6.(2021·浙江余杭·三模)下面是圆圆同学计算一道题的过程:()()1111232233434⎡⎤⎛⎫⎛⎫÷-+⨯-=÷-+÷⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()()23324318246=⨯-⨯-+⨯⨯-=-=.圆圆同学这样算正确吗?如果正确请解释理由.如果不正确.请你写出正确的计算过程. 7.(2020·河北·模拟预测)利用运算律有时能进行简便计算. 例1 98×12=(100-2)×12=1 200-24=1 176.例2 -16×233+17×233=(-16+17)×233=233. 请你参考黑板中老师的讲解.用运算律简便计算:(1)()99915⨯-.(2)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭8.(2021·河北路北·二模)老师课下给同学们留了一个式子:39⨯+-.让同学自己出题.并写出答案.()1小光提出问题:若□代表1-.○代表5.则计算:()3195⨯-+-.()2小丽提出问题:若391⨯+-=.当□代表3-时.求○所代表的有理数.()3小亮提出问题:若391⨯+-<中.若□和○所代表的有理数互为相反数.直接写出□所代表的有理数的取值范围.9.(2021·河北邢台·二模)嘉淇准备完成题目:计算:22713233.发现有一个数“”印刷不清楚.(1)他把“”猜成18.请你计算:2227118333.(2)他妈说:“你猜错了.我看到该题标准答案的结果是32-.”通过计算说明原题中“”是几?10.(2021·安徽·合肥市第四十五中学一模)观察下列等式:①22416-=2+12.②22526-=3+12.③22636-=4+12.④22746-=5+12.…(1)请按以上规律写出第⑥个等式: .(2)猜想并写出第n 个等式: .并证明猜想的正确性. (3)利用上述规律.直接写出下列算式的结果:222222224135236331009736666--------+++⋯+= .二、整式运算与求值例题2(2021·上海·九年级专题练习)小刚在计算一个多项式A 减去多项式2235b b --的差时.因一时疏忽忘了把两个多项式用括号括起来.因此减式后面两项没有变号.结果得到的差是2232b b ++. (1)求这个多项式A .(2)求出这两个多项式运算的正确结果. (3)当2b =-时.求(2)中结果的值. 练习题 1.(2021·河南·二模)先化简.再求值:22222xyy x x y x x y.其中21x =.22y =.2.(2021·四川凉山·二模)先化简.再求值:2(23)(32)(3)2(4)a b b a a b b a b -++-+-+.其中22,2a b =3.(2021·浙江·杭州育才中学二模)已知多项式M =(2x 2+3xy+2y )﹣2(x 2+x+yx+1). (1)当x =1.y =2.求M 的值.(2)若多项式M 与字母x 的取值无关.求y 的值.4.(2021·浙江省杭州市上泗中学二模)已知多项式()()2223221M x xy y x x yx =++-+++.(1)化简M .(2)当1x =.2y =.求M 的值.5.(2021·上海·九年级专题练习)代数式2323(324)(3)a a a a a a +---里的“”是“+.-.×.÷”中某一种运算符号. (1)如果“”是“+”.化简:2323(324)(3)a a a a a a +---.(2)当1a =-时.2323(324)(3)a a a a a a +---2=-.请推算“”所代表的运算符号.6.(2021·河北·石家庄市第四十二中学一模)对于四个整式.A :2x 2.B :mx +5.C :﹣2x .D :n .无论x 取何值.B +C +D 的值都为0. (1)求m 、n 的值. (2)计算A ﹣B +C ﹣D . (3)若B DA C-的值是正数.直接写出x 的取值范围. 7.(2020·河北衡水·模拟预测)请阅读以下步骤.完成问题: ①任意写一个三位数.百位数字比个位数字大2. ②交换百位数字与个位数字.得到一个三位数.③用上述的较大的三位数减去较小的三位数.所得的差为三位数. ④交换这个差的百位数字与个位数字又得到一个三位数. ⑤把③④中的两个三位数相加.得到最后结果. 问题:(1)③中的三位数是 . ④中的三位数是 .⑤中的结果是 .(2)换一个数试试看.所得结果是否一样?如果一样.设这个三位数的百位数字为a 、十位数字为b .用代数式表示这个三位数.并结合你所学的知识解释其中的原因. 8.(2021·河北桥东·二模)甲、乙两人各持一张分别写有整式A 、B 的卡片.已知整式225C a a =--.下面是甲、乙二人的对话:甲:我的卡片上写着整式2410A a a =-+.加上整式C 后得到最简整式D .乙:我用最简整式B 加上整式C 后得到整式2628E a a =-+.(1)求整式D 和B .(2)请判断整式D 和整式E 的大小.并说明理由. 9.(2021·河北兴隆·二模)解方程组老师设计了一个数学游戏.给甲、乙、丙三名同学各一张写有最简代数式的卡片.规则是两位同学的代数式相减等于第三位同学的代数式.甲、乙、丙的卡片如图所示.其中丙同学卡片上的代数式未知.(1)若乙同学卡片上的代数式为一次二项式.求m 的值.(2)若甲同学卡片上的代数式减去乙同学卡片上的代数式等于丙同学卡片上的代数式. ①当丙同学卡片上的代数式为常数时.求m 的值.②当丙同学卡片上的代数式为非负数时.求m 的取值范围. 10.(2021·河北·三模)一般情况下2323ab a b ++=+不成立.但有些数可以使得它成立.例如: 0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”.记为(),a b . (1)填空:(4,9)-_________“相伴数对”(填是或否). (2)若()1,b 是“相伴数对”.求b 的值. (3)若(),m n 是“相伴数对”.求代数式22[42(31)]3m n m n ----的值.三、分式的计算与求值例题3(2021·广东英德·二模)先化简2211121x x x x x x +--÷--+.然后从0.1.1-.2中选取一个你认为合适的数作为x 的值带入求值. 练习题1.(2021·江苏·淮阴中学新城校区一模)先化简.再求值:221112---÷+a a a a a .其中2a =- 2.(2021·河南武陟·一模)先化简.再求值:2222(1)244a a aa a a +--÷--+.其中3a =3.(2021·广东连州·二模)先化简再求值22121()11x x x x x x x++-÷---.其中x 是一元二次方程x 2+2x ﹣3=0的根.4.(2021·广东·桂林华侨初级中学二模)已知12A x =-.224B x =-.2xC x =+.当x =3时.对式子(A -B )÷C 先化简.再求值.5.(2021·山东德城·二模)先化简.再求值:2443(1)11m m m m m -+÷----.请在﹣2≤m ≤1的范围内取一个自己喜欢的数代入求值. 6.(2021·山东惠民·二模)先化简.再求值211()122a a a a a a a a--÷-+++.其中a 82sin 45°-()02021-π7.(2021·湖北鹤峰·模拟预测)先化简.再求值:(1−1m+2)÷(m 2+4m+5m+2−2).其中m 为方程220m m +-=的一根.8.(2021·湖北宜城·模拟预测)先化简.再求值:(2−2xx+1+x −1)÷x 2−xx+1.从0.1-2中选择一个适当的数作为x 值代入.9.(2021·山东乐陵·二模)已知:A =2244(2)11x x x x x -+-÷--.(1)化简A .(2)若点(x ,-3)与点(-4,-3)关于y 轴对称.求A 的值. 10.(2021·广东·一模)先化简.再求值:(53m -+ 13m -)÷2469mm m -+.其中m =3四、与数轴有关的代数计算例题4(2020·河北·中考真题)如图.甲、乙两人(看成点)分别在数轴-3和5的位置上.沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币.再让两人猜向上一面是正是反.而后根据所猜结果进行移动.①若都对或都错.则甲向东移动1个单位.同时乙向西移动1个单位. ②若甲对乙错.则甲向东移动4个单位.同时乙向东移动2个单位. ③若甲错乙对.则甲向西移动2个单位.同时乙向西移动4个单位.(1)经过第一次移动游戏.求甲的位置停留在正半轴上的概率P .(2)从图的位置开始.若完成了10次移动游戏.发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次.且他最终..停留的位置对应的数为m .试用含n 的代数式表示m .并求该位置距离原点O 最近时n 的值.(3)从图的位置开始.若进行了k 次移动游戏后.甲与乙的位置相距2个单位.直接..写出k 的值.练习题 1.(2021·江苏盐城·中考真题)如图.点A 是数轴上表示实数a 的点.(12P .(保留作图痕迹.不写作法) (22和a 的大小.并说明理由.2.(2021·河北迁安·二模)如图.数轴上有A 、B 、C 三个点.它们所表示的数分别为a 、b 、c 三个数.其中0b <.且b 的倒数是它本身.且a 、c 满足()2430c a -++=.(1)计算:22a a c -.(2)若将数轴折叠.使得点A 与点B 重合.求与点C 重合的点表示的数. 3.(2021·河北·九年级专题练习)已知有理数-3.1.(1)在下列数轴上.标出表示这两个数的点.并分别用A.B 表示.(2)若|m |=2.在数轴上表示数m 的点.介于点A.B 之间.在A 的右侧且到点B 距离为5的点表示为n . ①计算m+n -mn.②解关于x 的不等式mx+4<n.并把解集表示在下列数轴上.4.(2020·河北石家庄·一模)如图1.点A .B .C 是数轴上从左到右排列的三个点.分别对应的数为5-.b .4.某同学将刻度尺如图2放置.使刻度尺上的数字0对齐数轴上的点A .发现点B 对应刻度1.8cm .点C 对齐刻度5.4cm .(1)在图1的数轴上.AC =__________个长度单位.数轴上的一个长度单位对应刻度尺上的_______cm .(2)求数轴上点B 所对应的数b 为_________________.(3)在图1的数轴上.点Q 是直线AB 上一点.满足2AQ QB .求点Q 所表示的数. 5.(2021·上海·九年级专题练习)在单位长度为1的数轴上.点A 表示的数为﹣2.5.点B 表示的数为4. (1)求AB 的长度.(2)若把数轴的单位长度扩大30倍.点A 、点B 所表示的数也相应的发生变化: ①此时点A 表示的数为 .点B 表示的数为 . ②已知点M 是线段AB 的三等分点.求点M 所表示的数.6.(2021·河南省淮滨县第一中学三模)数轴上 A .B .C 三个点对应的数分别为 a .b .x .且 A .B 到-2 所对应的点的距离都等于 6.点 B 在点 A 的右侧. (1)请在数轴上表示点 A .B 位置.a= .b= . (2)请用含 x 的代数式表示 CB = .(3)若点 C 在点 B 的左侧.且 CB =8.点 A 以每秒 2 个单位长度的速度沿数轴向右运动.当 AC =2AB 时.求点 A 移动的时间.7.(2021·云南五华·一模)如图所示.甲、乙两人(看成点)分别在数轴-3和5的位置上.沿数轴做移动游戏.每次移动的游戏规则是:两人先猜裁判所抛硬币向上一面的正反.再根据所猜结果进行移动.①若都对或都错.则甲向东移动1个单位.同时乙向西移动1个单位. ②若甲对乙错.则甲向东移动4个单位.同时乙向东移动2个单位. ③若甲错乙对.则甲向西移动2个单位.同时乙向西移动4个单位.(1)用树状图(树状图也称树形图)或列表法中的一种方法.求每次移动游戏中甲猜对的概率P 的值.(2)直接写出经过第一次移动游戏后.甲乙两人相距6个单位的概率.8.(2020·河北邯郸·模拟预测)在数轴上有M 、N 两点.M 点表示的数分别为m .N 点表示的数是n (n >m ).则线段MN 的长(点M 到点N 的距离)可表示为MN =n ﹣m .请用上面材料中的知识解答下面的问题:一个点从数轴上的原点O 开始.先向左移动3cm 到达A 点.再向右移动2cm 到达B 点.然后向右移动4cm 到达C 点.用1cm 表示1个单位长度. (1)请你在数轴上表示出A 、B 、C 三点的位置.并直接写出线段AC 的长度. (2)若数轴上有一点D .且AD =4cm .则点D 表示的数是什么? (3)若将点A 向右移动xcm .请用代数式表示移动后的点所表示的数.(4)若点P 以从点A 向原点O 移动.同时点Q 以与点P 相同的速度从原点O 向点C 移动.试探索:PQ 的长是否会发生改变?如果不变.请求出PQ 的长.如果改变.请说明理由. 9.(2021·山东崂山·二模)【问题提出】1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少? 【阅读理解】为了解决这个问题.我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离.那么1a -可以看做a 这个数在数轴上对应的点到1的距离.12a a -+-就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12a a -+-的最小值. 我们先看a 表示的点可能的3种情况.如图所示:(1)如图①.a 在1的左边.从图中很明显可以看出a 到1和2的距离之和大于1. (2)如图②.a 在1和2之间(包括在1.2上).可以看出a 到1和2的距离之和等于1. (3)如图③.a 在2的右边.从图中很明显可以看出a 到1和2的距离之和大于1.所以a 到1和2的距离之和最小值是1. 【问题解决】(1)36a a -+-的几何意义是______.请你结合数轴探究:36a a -+-的最小值是______.(2)请你结合图④探究:123a a a -+-+-的最小值是______.此时a 为______. (3)123456a a a a a a -+-+-+-+-+-的最小值为______. (4)1232021a a a a -+-+-+⋅⋅⋅+-的最小值为______. 【拓展应用】如图⑤.已知a 到-1.2的距离之和小于4.请写出a 的范围为______.10.(2020·江苏镇江·中考真题)【算一算】如图①.点A 、B 、C 在数轴上.B 为AC 的中点.点A 表示﹣3.点B 表示1.则点C 表示的数为.AC长等于.【找一找】如图②.点M、N、P、Q中的一点是数轴的原点.点A、B 2﹣1、2Q是AB的中点.则点是这个数轴的原点.【画一画】如图③.点A、B分别表示实数c﹣n、c+n.在这个数轴上作出表示实数n的点E(要求:尺规作图.不写作法.保留作图痕迹).【用一用】学校设置了若干个测温通道.学生进校都应测量体温.已知每个测温通道每分钟可检测a 个学生.凌老师提出了这样的问题:假设现在校门口有m个学生.每分钟又有b个学生到达校门口.如果开放3个通道.那么用4分钟可使校门口的学生全部进校.如果开放4个通道.那么用2分钟可使校门口的学生全部进校.在这些条件下.a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴.如图④.他将4分钟内需要进校的人数m+4b记作+(m+4b).用点A表示.将2分钟内由4个开放通道检测后进校的人数.即校门口减少的人数8a记作﹣8a.用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G.并写出+(m+2b)的实际意义.②写出a、m的数量关系:.。
第二讲 实数与二次根式明确目的﹒定位考点实数是初中数学的根底内容,客观题以考察实数的根本概念为主,主观题以实数的运算为主,广州中考将重点围绕相反数、绝对值、倒数、平方根、科学记数法以及实数的运算进展考察。
实数的运算以及探究规律是广州中考的常考内容,难度为中低难度。
考察形式多以选择题、填空题为主,常考点为幂的运算、乘法公式、整式的混合运算、因式分解等。
实数概念的理解;实数的分类;二次根式概念的理解;最简二次根式、同类二次根式的概念,及二次根式的性质及运算;二次根式的运算与化简求值的综合问题;归纳总结﹒思维升华一、有理数的意义1、数轴的三要素为原点、正方向和单位长度。
数轴上的点与实数构成一一对应。
2、实数a 的相反数为-a .假设a ,b 互为相反数,那么b a +=0。
3、非零实数a 的倒数为a1。
假设a ,b 互为倒数,那么ab =1。
4、绝对值在数轴上表示一个数的点分开原点的间隔 叫做这个数的绝对值。
即一个正数的绝对值等于它本身;0的绝对值是0;负数的绝对值是它的相反数。
a ( a>0 )即│a │= 0 ( a=0 ) -a ( a<0 )5、科学记数法:把一个数表示成na 10⨯的形式,其中1≤a <10的数,n 是整数。
二、实数的分类三、 实数的运算与大小比拟 1、实数的运算实数的运算种类有:加法、减法、乘法、除法、乘方、开方六种,其中减法转化为加法运算,除法、乘方都转化为乘法运算。
2、 数的乘方=na 个n a a a a a a ⋅⋅⋅⋅ ,其中a 叫做幂底数,n 叫做幂指数。
3、 =0a 1〔其中a ≠ 0 且a 是实数〕=-pa p a1〔其中a ≠0〕4、实数运算先算乘方、开方,再算乘、除,最后算加、减;假如有括号,先算括号里面的,同一级运算按照从左到右的顺序依次进展。
5、实数的大小比拟〔1〕数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大。
〔2〕正数大于0,负数小于0,正数大于负数;两个负数比拟大小,绝对值大的小于绝对值小的。
一. 教学目标:1. 复习整式的有关概念,整式的运算2. 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,能把简单多项式分解因式。
3. 掌握分式的概念、性质,掌握分式的约分、通分、混合运算。
4. 理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根,了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
二. 教学重点、难点:因式分解法在整式、分式、二次根式的化简与混合运算中的综合运用。
三.知识要点:知识点1 整式的概念⎩⎨⎧升降幂排列系数项数多项式的次数多项式系数单项式的次数单项式整式—————— (1)整式中只含有一项的是单项式,否则是多项式,单独的字母或常数是单项式; (2)单项式的次数是所有字母的指数之和; 多项式的次数是多项式中最高次项的次数;(3)单项式的系数,多项式中的每一项的系数均包括它前面的符号 (4)同类项概念的两个相同与两个无关:两个相同:一是所含字母相同,二是相同字母的指数相同; 两个无关:一是与系数的大小无关,二是与字母的顺序无关;(5)整式加减的实质是合并同类项; (6)因式分解与整式乘法的过程恰为相反。
知识点2 整式的运算 (如结构图)教学准备中考复习之专题二 代数式多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式,m 既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用)b ab a )(b a (b a ,)b a (b ab 2a ),b a )(b a (b a 223322222+±=±±=+±-+=- 写出结果.(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab =q ,a +b =p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax寻找满足a 1a 2=a ,c 1c 2=c ,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么)x x )(x x (a c bx ax 212--=++。
知识点4 分式的概念(1)分式的定义:整式A 除以整式B ,可以表示成B A的形式。
如果除式B 中含有字母,那么称BA 为分()()nn nmn nm nm n m b a ab a a a a a ===⋅+提公因式法公式法式,其中A 称为分式的分子,B 为分式的分母。
对于任意一个分式,分母都不能为零。
(2)分式的约分 (3)分式的通分 知识点5 分式的性质 (1))0(≠=m B ABn Am (2)已知分式ba ,分式的值为正:a 与b 同号;分式的值为负:a 与b 异号;分式的值为零:a =0且b ≠0;分式有意义:b ≠0。
(3)零指数 )0(10≠=a a (4)负整数指数 ).p ,0a (a 1a pp 为正整数≠=- (5)整数幂的运算性质nn n mnnm n m n m n m n m b a )ab (,a)a (),0a (a a a ,a a a ==≠=÷=⋅-+上述等式中的m 、n 可以是0或负整数. 知识点6 根式的有关概念1. 平方根:若x 2=a (a>0),则x 叫做a 的平方根,记为a ±。
注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;2. 算术平方根:一个数的正的平方根叫做算术平方根;3. 立方根:若x 3=a (a>0),则x 叫做a 的立方根,记为3a 。
4. 最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。
5. 同类二次根式:化简后被开方数相同的二次根式。
知识点7 二次根式的性质①)0(≥a a 是一个非负数; ②)0()(2≥=a a a③⎪⎩⎪⎨⎧<-=>==)0a (a )0a (0)0a (a |a |)a (2 ④)0,0(>≥=b a ba b a⑤)0,0(≥≥⋅=b a b a ab知识点8 二次根式的运算 (1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即).0b ,0a (ab b a ≥≥=⋅二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式. (3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.例1. 如果单项式13-n m y ax 与525y x m --的和①为0时,a 、m 、n 各为多少? ②仍为一个单项式,a 、m 、n 各为多少?解:①⎪⎩⎪⎨⎧=--==51n 3m 2m 5a⎪⎩⎪⎨⎧===2n 1m 5a ②⎩⎨⎧=--=51n 3m 2m ⎩⎨⎧==2n 1m a 为有理数例2. 因式分解:(1)2294my mx - (2)1)(2)(2++++b a b a (3)-2x 2+5xy +2y 2解:①原式=m (2x +3y )(2x -3y )②原式2)1b a (++=③令0y 2xy 5x 222=++- ∴4y 16y 25y 5x 22-+±-=∴y 4415x ±=原式=-2(x -y 4415+)(x -y 4415-)例3. (1)已知))(123(2k a a a ++-的结果中不含2a 项,求k 的值;(2)k a a a ++-23的一个因式是1+a ,求k 的值;解:(1)a 2的系数为:3k -2=0 ∴k =32(2)当a =-1时(-1)3-(-1)2+(-1)+k =0 ∴k =3 例4. 利用简便方法计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)的值, 你能确定积的个位数是几吗? 解:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1) =264-1 ∵264的个位数为6 ∴积的个位数字为5 例5. x 为何值时,下列分式的值为0?无意义? (1)22+-x x (2)22322--+-x x x x解:当①x =2 ②x =1 时为零 当③x =-2 ④x =2,x =-1时分式无意义 例6. 分式的约分与通分1. 约分:1n 21n 21n 2n 2y x 4.1y x 8.0+-- 2. 通分c b 5a 42,b a 10c 32,2ac 2b 5-解:①原式=2y 7x4 ②2223108c b a c a ,2223103C b a bc ,22231025cb a ab - 例7. 先化简后再求值:1x 11x 2x 3x 2x 1x 3x 222++++--÷--,其中12x += 原式=)1)(1(3-+-x x x ×)3)(1()1(2-++x x x +11+x=11-x +11+x =122-x x当x =2+1时,原式=1例8. 若最简二次根式2431212-+-a a 与是同类二次根式,求a 的值。
解:1+a =4a 2-2=0, a 1=1 , a 2=-43例题精讲例9. 已知:a =321+,求01222)1()211(12a a a a a a a a ++----+--值 解:∵a =321+ ∴a =2-3<1原式=1)1()1(|1|2-----a a a a a +1 =)1(1--a a a -(a -1)+1 =a 1--a +1+1=a 1--a +2 当a =321+时,a =2-3, 321+=a∴原式=-2-3-2+3+2=-2例10. 把根号外的因式移到根号内:(1)a a 1; (2)1x 1)1x (---; (3)x 1x -; (4)2x 1)x 2(--解:(1)原式=a (2)原式=x --1 (3)原式=x -- (4)原式=2--x例11. 观察下列各式及其验证过程232232+=。
验证:322122)12(2122)22(3222233+=-+-=-+-= 383383+=。
验证:833133)13(3133)33(8383322233+=-+-=-+-== 根据上述两个等式及其验证过程的基本思路,猜想4154的变形结果并进行验证。
针对上述各式反映的规律,写出用n (n 为任意自然数,且n ≥2)表示的等式,并给出证明。
解:(1)1544144)14(41544415415442233+=-+-=+-== (2)1n nn 1n n )1n (n 1n n n n 1n n 1n n n 22223232-+=-+-=-+-=-=-一. 选择题1. 下列运算正确的是( )A. 623632x x x =⋅ B. mma a a 1243=⋅ C. 436)3(2a a a =-⋅- D. 5322)2()(b b b =-⋅-2. 把a 2-a -6分解因式,正确的是( ) A. a (a -1)-6 B. (a -2)(a +3) C. (a +2)(a -3) D. (a -1)(a +6)3. 设(x +y )(x +2+y )-15=0,则x +y 的值是( ) A. -5或3 B. -3或5 C. 3 D. 54. 不论a为何值,代数式-a2+4a-5的值( ) A. 大于或等于0 B. 0 C. 大于0 D. 小于05. 化简二次根式22aa a +-的结果是( ) A.2--a B. 2---a C.2-a D. 2--a6. 下列命题:(1)任何数的平方根都有两个(2)如果一个数有立方根,那么它一定有平方根(3)算术平方根一定是正数(4)非负数的立方根不一定是非负数,错误的个数为( ) A. 1 B. 2 C. 3D. 4 7. 当1<x<2时,化简∣1-x ∣+4-4x +x 2的结果是( ) A. -1 B. 2x -1 C. 1D. 3-2x课后练习二. 填空题8. 矩形的面积为6x 2+13x +5(x >0),其中一边长为2x +1,则另一边为 。