十字相乘法的图解
- 格式:wps
- 大小:43.50 KB
- 文档页数:5
十字相乘法十字相乘法数学公式十字相乘法(Cross Multiplication)是因式分解中十四种方法之一,主要用于对多项式的因式分解,基本式子:x² (p q)x pq=(x p)(x q)。
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,其实就是运用乘法公式(x a)(x b)=x² (a b)x ab的逆运算来进行因式分解。
中文名十字相乘法外文名Cross multiplication适用领域范围因式分解、数学应用学科数学别称十字相乘表达式x² (a b)x ab=(x a)(x b)适用领域范围二次多项式原理十字相乘法一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设总量为S, A所占的数量为M,B为S-M。
则:[A*M B*(S-M)]/S=CA*M/S B*(S-M)/S=CM/S=(C-B)/(A-B)1-M/S=(A-C)/(A-B)因此:M/S∶(1-M/S)=(C-B)∶(A-C)上面的计算过程可以抽象为:A ^C-B^CB^ A-C这就是所谓的十字分解法。
X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。
判定对于形如ax² bx c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b²-4ac进行判定。
当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。
运算举例a² a-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a ?)×(a -?),然后我们再看第二项,a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成 -21×2 或者21×(-2)。
因式分解——十字相乘法
1、十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式运算来进行因式分解。
2、十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。
对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数
a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使
a1c2+a2c1正好等于一次项的系数b。
那么可以直接写成结
果:ax2+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
基本式子:x2+(p+q)x+pq=(x+p)(x+q)。
3、示例:
(1)例1因式分解:x2-x-56;
分析:因为7x+(-8x)=-x;
解:原式=(x+7)(x-8)。
(2)例2因式分解:x2-10x+16;
分析:因为-2x+(-8x)=-10x;
解:原式=(x-2)(x-8)。
例1.十字相乘法的图解及待定系数
已知二次三项式2x2-mx-20有一个因式为(x+4),求m的值.
分析:用十字相乘法分解这个二次三项式有如下的图解:
8-5=3=-m
解:2x2-mx-20=(x+4)(2x-5)=2x2+3x-20
∴-m=3
m=-3
(由例1我们应该明白,“十字相乘”法,并非凭空而来,也没有
什么新东西——像不像?只要懂(ax+b)(cx+d),就懂“十字相乘”,这样,十字相乘中各数的意义,你记得更清楚了吧?) 例2.因式分解与系数的关系
若多项式a2+ka+16能分解成两个系数是整数的一次因式的积,则整数k可取的值有( )
A.5个
B.6个
C.8个
D.4个
分析:因为二次项系数为1,所以原式可分解为(a+m)(a+n)的形式,其中mn=16,k=m+n,所以整数k可取值的个数取决于式子mn=16的情况.(其中m、n为整数)
因为16=2×8,16=(-2)×(-8)
16=4×4,16=(-4)×(-4)
16=1×16,16=(-1)×(-16)
所以k=±10,±8,±16
答案:B
(是不是有一点即通的感觉?这一层窗户纸不厚,数学要的就是心细,胆大)
例3.分组分解后再用十字相乘
把2x2-8xy+8y2-11x+22y+15分解因式
解:原式=(2x2-8xy+8y2)-(11x-22y)+15
=2(x-2y)2-11(x-2y)+15
=[(x-2y)-3][2(x-2y)-5]
=(x-2y-3)(2x-4y-5)
说明:分组后运用十字相乘进行因式分解,分组的原则一般是二次项一组,一次项一组,常数项一组.本题通过这样分组就化为关于(x-2y)的二次三项式,利用十字相乘法完成因式分解.
例4.换元法与十字相乘法
把(x2+x+1)(x2+x+2)-6分解因式
分析:观察式子特点,二次项系数和一次项系数分别相同,把(x2+x)看成一个“字母”,把这个式子展开,就可以得到关于(x2+x)的一个二次三项式(或设x2+x=u,将原式化为(u+1)(u+2)-6=u2+3u-4,则更为直观)再利用十字相乘法进行因式分解.
解:(x2+x+1)(x2+x+2)-6
=[(x2+x)+1][(x2+x)+2]-6
=(x2+x)2+3(x2+x)-4
=(x2+x+4)(x2+x-1)
说明:本题结果中的两个二次三项式在有理数范围内不能再分解了,若能分解一定要继续分解,如摸底检测第3题答案应当是C.
(上一次,我们说到的整体分析又用到了,还记得我们在哪提到它的?对,在分组分解法中,试比一下“分组分解”与“十字相乘”适用的题目的类型特点,从各项的次幂的次数及各项系数去分析) 例5.因式分解与十字相乘法
已知(x2+y2)(x2-1+y2)=12
求:x2+y2的值
解:(x2+y2)(x2-1+y2)=12
(x2+y2)[(x2+y2)-1]-12=0
(x2+y2)2-(x2+y2)-12=0
[(x2+y2)-4][(x2+y2)+3]=0
∵x2+y2≥0
∴(x2+y2)+3≠0
∴(x2+y2)-4=0
∴x2+y2=4
说明:我们把(x2+y2)看成一个“字母”,则原式转化为关于这个“字母”的一个一元二次方程。
虽然目前还没学二次方程的解法,但通过这个题,我们可以发现,对二次三项式因式分解是解一元二次方程的方法之一.
(说“十字相乘”是冷饭,一点也不为过,炒完冷饭,尝尝味道怎样吧).
返回主题[强化练习]
1.把下列各式分解因式
(1)x-x2+42
(2)
(3)a2n+a4n-2a6n
(4)(x-y)2+3(x2-y2)-4(x+y)2
(5)x2-xy-2y2-x-y
2.已知:x2+xy-2y2=7,求:整数x、y的值
答案与提示:
1.(1)-(x-7)(x+6)
(2)
(3)-a2n(a n+1)(a n-1)(2a2n+1)
(4)-2y(5x+3y)
提示:可分别把(x-y)和(x+y)各看成一个“字母”,如设x-y=m,x+y=n,则原式化为m2+3mn-4n2
(5)(x+y)(x-2y-1)
提示:可参考“疑难精讲例3”
2.
提示:将已知条件的左边分解因式得: (x+2y)(x-y)=7
∵x、y都为整数
∴有。