2019动能和动能定理(基础篇).doc
- 格式:docx
- 大小:46.94 KB
- 文档页数:5
《动能和动能定理》讲义一、引入在我们的日常生活中,运动是无处不在的。
无论是飞驰的汽车、飞行的球,还是快速奔跑的人,物体的运动都伴随着能量的变化。
而在物理学中,描述物体由于运动而具有的能量的概念就是动能,以及与之相关的重要定理——动能定理。
二、什么是动能动能,简单来说,就是物体由于运动而具有的能量。
想象一下,一辆高速行驶的汽车和一辆缓慢行驶的汽车,如果要让它们停下来,显然高速行驶的汽车更难停下,这是因为高速行驶的汽车具有更大的能量。
动能的大小与物体的质量和速度有关。
其表达式为:$E_k =\frac{1}{2}mv^2$ ,其中$m$ 是物体的质量,$v$ 是物体的速度。
从这个表达式可以看出,动能与速度的平方成正比,与质量成正比。
这意味着速度对动能的影响更大。
比如,一个物体的速度增加一倍,它的动能将增加到原来的四倍。
三、动能定理有了对动能的理解,接下来我们来探讨动能定理。
动能定理描述了力对物体做功与物体动能变化之间的关系。
当一个力作用在物体上,并且这个力使物体在力的方向上发生了位移,我们就说这个力对物体做了功。
功的表达式为:$W =Fs\cos\theta$ ,其中$F$ 是力的大小,$s$ 是位移的大小,$\theta$ 是力和位移之间的夹角。
动能定理表述为:合外力对物体所做的功等于物体动能的变化量。
即:$W_{合} =\Delta E_k$ 。
例如,一个物体在水平方向上受到一个恒定的拉力$F$ ,它在力的方向上移动了一段距离$s$ ,初始速度为$v_1$ ,末速度为$v_2$ 。
根据动能定理,拉力做的功$W = Fs$ 就等于物体动能的变化量,即$\frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2$ 。
四、动能定理的应用动能定理在解决物理问题中有广泛的应用。
比如,在求解物体在粗糙水平面上滑行的距离问题时。
已知物体的初速度、质量和接触面的摩擦因数,我们可以先根据动能定理求出摩擦力做的功,进而求出滑行的距离。
高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。
在高考物理中,学生需要对动能与动能定理有一定的了解。
本文将介绍什么是动能以及动能定理的含义和应用。
一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。
简单来说,物体的动能与物体的质量和速度有关。
动能的单位是焦耳(J)。
动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。
例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。
二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。
它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。
净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。
根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。
当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。
三、动能定理的应用动能定理在物理学中具有很多应用。
以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。
例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。
2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。
例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。
3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。
例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。
四、总结动能与动能定理是高考物理中的重要知识点。
《动能和动能定理》讲义一、引入在我们的日常生活和物理学的研究中,经常会遇到物体运动的情况。
当物体运动时,它就具有了一种能够做功的能力,这种能力被称为动能。
那么,什么是动能?动能的大小与哪些因素有关?动能定理又是什么呢?接下来,让我们一起深入探讨这些问题。
二、动能的定义动能,简单来说,就是物体由于运动而具有的能量。
一个物体的动能与其质量和速度的平方成正比。
如果用字母Ek 表示动能,m 表示物体的质量,v 表示物体的速度,那么动能的表达式可以写成:Ek = 1/2 mv²。
从这个表达式可以看出,物体的质量越大,速度越快,它所具有的动能就越大。
例如,一辆高速行驶的汽车比一辆缓慢行驶的自行车具有更大的动能;一个质量较大的铅球比一个质量较小的乒乓球在相同速度下具有更大的动能。
三、动能定理动能定理是物理学中一个非常重要的定理,它描述了力对物体做功与物体动能变化之间的关系。
当一个力作用在物体上,并且使物体在力的方向上发生了位移,这个力就对物体做了功。
力所做的功等于力与在力的方向上移动的距离的乘积。
假设一个物体受到一个恒力 F 的作用,在力的方向上移动的距离为s,那么力 F 所做的功 W = Fs 。
根据牛顿第二定律 F = ma (其中 a 是物体的加速度),以及运动学公式 v² v₀²= 2as (其中 v 是末速度,v₀是初速度),我们可以推导出动能定理的表达式。
对 v² v₀²= 2as 进行变形,得到:s =(v² v₀²) / 2a 。
将 s =(v² v₀²) / 2a 代入 W = Fs 中,得到:W = F ×(v² v₀²) / 2a 。
又因为 F = ma ,所以 W = ma ×(v² v₀²) / 2a ,化简后得到:W = 1/2 mv² 1/2 mv₀²。
7动能和动能定理一、动能和动能定理1.基本知识(1)动能 ①定义: 物体由于 而具有的能.②表达式: E k =12mv 2,式中v 是瞬时速度.③单位 动能的单位与功的单位相同,国际单位都是 ,符号为J. 1 J =1 kg·m 2/s 2=1 N·m. ④对动能概念的理解a .动能是标量,只有 ,没有 ,且动能为非负数.b .动能是状态量,在某一时刻,物体具有一定的速度,也就具有一定的动能. ⑤动能的变化量 即末状态的动能与初状态的ΔE k =12mv 22-12mv 21.ΔE k >0,表示物体的 .ΔE k <0表示物体的 .(2)动能定理的推导①建立情景 如图所示,质量为m 的物体,在恒力F 作用下,经位移l 后,速度由v 1增加到v 2.②推导依据外力做的总功:W = 由牛顿第二定律:F =由运动学公式:l =v 22-v 212a.③结论:W =12mv 22-12mv 21 即W =E k2-E k1=ΔE k .(3)动能定理的内容力在一个过程中对物体所做的功,等于物体在这个过程中 。
(4)动能定理的表达式 ①W =12mv 22-12mv 21. ②W =E k2-E k1. 说明:式中W 为 ,它等于各力做功的 。
(5)动能定理的适用范围不仅适用于 做功和 运动,也适用于 做功和 运动情况.二、对动能、动能定理的理解1.动能的特征(1)是状态量:与物体的运动状态(或某一时刻的速度)相对应.(2)具有相对性:选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.(3)是标量:只有大小,没有方向;只有正值,没有负值.2.对动能定理的理解(1)内容:外力对物体做的总功等于其动能的增加量,即W =ΔE k . (2)表达式W =ΔE k 中的W 为外力对物体做的总功.(3)ΔE k =12mv 22-12mv 21为物体动能的变化量,也称作物体动能的增量,表示物体动能变化的大小.(4)动能定理描述了做功和动能变化的两种关系.①等值关系:某物体的动能变化量总等于合力对它做的功.②因果关系:合力对物体做功是引起物体动能变化的原因,合力做功的过程实质上是其他形式的能与动能相互转化的过程,转化了多少由合力做了多少功来度量.例1. 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变化,则物体所受合力一定为零规律总结: 动能与速度的关系1.瞬时关系:动能和速度均为状态量,二者具有瞬时对应关系.2.变化关系:动能是标量,速度是矢量,当动能发生变化时,物体的速度(大小)一定发生了变化,当速度发生变化时,可能仅是速度方向的变化,物体的动能可能不变.训练1.(2014·苏州高一检测)一物体做变速运动时,下列说法正确的有( ) A .合力一定对物体做功,使物体动能改变 B .物体所受合力一定不为零 C .合力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 动能定理的应用及优越性1.应用动能定理解题的基本步骤2.优越性(1)对于变力作用或曲线运动,动能定理提供了一种计算变力做功的简便方法.功的计算公式W=Fl cos α只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化ΔE k与合力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化ΔE k=E k2-E k1,就可以间接求得变力做功.算,运算简单不易出错.注意:动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理同样成立.例2.一架喷气式飞机质量m=5×103 kg,起飞过程中从静止开始滑行的路程s=5.3×102 m时(做匀加速直线运动),达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的k倍(k=0.02).求飞机受到的牵引力.规律总结:动能定理与牛顿运动定律在解题时的选择方法1.动能定理与牛顿运动定律是解决力学问题的两种重要方法,一般来讲凡是牛顿运动定律能解决的问题,用动能定理都能解决,但动能定理能解决的问题,牛顿运动定律不一定都能解决,且同一个问题,用动能定理要比用牛顿运动定律解决起来更简便.2.通常情况下,其问题若涉及时间或过程的细节,要用牛顿运动定律去解决;其问题若不考虑具体细节、状态或时间,如物体做曲线运动、受力为变力等情况,一般要用动能定理去解决.训练2.一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6 m,如果以v2=8 m/s的速度行驶,在同样的路面上急刹车后滑行的距离s2应为( ) A.6.4 m B.5.6 m C.7.2 m D.10.8 m三、用动能定理求变力的功例3.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR规律总结:1.本题中摩擦力的大小、方向都在变化,应用功的定义式无法直接求它做的功,在这种情况下,就要考虑利用动能定理.2.物体的运动过程分为多个阶段时,我们尽量对全过程应用动能定理,如果这样不能解决问题,我们再分段处理.如本题中我们直接对由A →B →C 的全过程应用动能定理,就比分为两个阶段由A →B 和由B →C 分别来处理简单一些.动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便. 例4.如图所示,ABCD 为一竖直平面的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑.一质量为1 kg 的物体,从A 点以4 m/s 的速度开始运动,经过BC 后滑到高出C 点10.3 m 的D 点速度为零.求:(g 取10 m/s 2)(1)物体与BC 轨道间的动摩擦因数. (2)物体第5次经过B 点时的速度.(3)物体最后停止的位置(距B 点多少米).当堂双基达标1.对于动能的理解,下列说法错误的是( )A .动能是机械能的一种表现形式,凡是运动的物体都具有动能B .动能总为正值C .一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化D .动能不变的物体,一定处于平衡状态2.(多选)关于动能,下列说法正确的是( )A .公式E k =12mv 2中的速度v 是物体相对于地面的速度B .动能的大小由物体的质量和速率决定,与物体运动的方向无关C .物体以相同的速率向东和向西运动,动能的大小相等但方向不同D .物体以相同的速率做匀速直线运动和曲线运动,其动能不同3.(多选)一质量为0.1 kg 的小球,以5 m/s 的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )A .Δv =10 m/sB .Δv =0C .ΔE k =1 JD .ΔE k =0 4.关于动能定理,下列说法中正确的是( ) A .某过程中外力的总功等于各力做功的绝对值之和 B .只要合外力对物体做功,物体的动能就一定改变 C .在物体动能不改变的过程中,动能定理不适用 D .动能定理只适用于受恒力作用而加速运动的过程5.下列关于运动物体所受的合力、合力做功和动能变化的关系,正确的是( ) A .如果物体所受的合力为零,那么合力对物体做的功一定为零 B .如果合力对物体做的功为零,则合力一定为零C .物体在合力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零D .如果物体的动能不发生变化,则物体所受合力一定是零6.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.第一次小球在水平拉力F 1作用下,从平衡位置P 点缓慢地移到Q 点,此时绳与竖直方向夹角为θ(如图774所示),在这个过程中水平拉力做功为W 1.第二次小球在水平恒力F 2作用下,从P 点移到Q 点,水平恒力做功为W 2,重力加速度为g ,且θ<90°,则( )A .W1=F 1l sin θ,W 2=F 2l sin θ B .W 1=W 2=mgl (1-cos θ)C .W 1=mgl (1-cos θ),W 2=F 2l sin θD .W 1=F 1l sin θ,W 2=mgl (1-cos θ)7.一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v (方向与原来相反),在这段时间内,水平力所做的功为( )A.32mv 2 B .-32mv 2 C.52mv 2 D .-52mv 2 8.(多选)甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s ,如图776所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是( )A .力F 对甲物体做功多B .力F 对甲、乙两个物体做的功一样多C .甲物体获得的动能比乙大D .甲、乙两个物体获得的动能相同9.有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A .木块所受的合力为零B .因木块所受的力都不对其做功,所以合力做的功为零C .重力和摩擦力做的功代数和为零D .重力和摩擦力的合力为零10.物体在合外力作用下做直线运动的v t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合力做正功B .在0~2 s 内,合力总是做负功C .在1~ 2 s 内,合力不做功D .在0~3 s 内,合力总是做正功11.(多选)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )12.如图所示,一物体由A 点以初速度v 0下滑到底端B ,它与挡板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零.设A 、B 两点高度差为h ,则它与挡板碰前的速度大小为( )A. 2gh +v 204B.2ghC.2gh +v 202D.2gh +v 2013.质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为( )A.mgL4B.mgL3C.mgL2D.mgL14.物体在合外力的作用下做直线运动的v-t图像如图所示,下列表述中正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1s~2s内,合外力不做正功D.在0~3s内,合外力总是做正功15.(多选)物体沿直线运动的vt图象如图所示,已知在第1秒内合力对物体做功为W,则( )A.从第1秒末到第3秒末合力做功为4WB.从第3秒末到第5秒末合力做功为-2WC.从第5秒末到第7秒末合力做功为WD.从第3秒末到第4秒末合力做功为-0.75W16.如图所示,在距沙坑表面高h=8 m处,以v0=22 m/s的初速度竖直向上抛出一质量m=0.5 kg的物体,物体落到沙坑并陷入沙坑d=0.3 m深处停下.若物体在空中运动时的平均阻力是重力的0.1倍(g=10 m/s2).求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?17.如图所示,滑雪者从高为H的山坡上A点由静止下滑,到B点后又在水平雪面上滑行,最后停止在C点.A、C两点的水平距离为s,求滑雪板与雪面间的动摩擦因数μ.18.如图所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功Wf.。
《动能和动能定理》讲义一、引入在我们的日常生活中,物体的运动是非常常见的现象。
比如飞驰的汽车、飞行的足球、下落的苹果等等。
当物体运动时,它们具有一种能够对外做功的能力,这种能力我们称之为动能。
那么,动能到底是什么?它与物体的运动状态有着怎样的关系?这就引出了我们今天要学习的重要内容——动能和动能定理。
二、动能的定义动能,简单来说,就是由于物体运动而具有的能量。
如果一个质量为 m 的物体,以速度 v 运动,那么它的动能 Ek 就可以表示为:Ek =1/2mv²。
从这个表达式可以看出,动能与物体的质量和速度的平方成正比。
这意味着,质量越大、速度越快的物体,其动能就越大。
举个例子,一辆重型卡车和一辆小型轿车以相同的速度行驶,由于卡车的质量远远大于轿车,所以卡车具有的动能更大。
同样,如果一辆轿车以较高的速度行驶,而另一辆以较低的速度行驶,速度高的那辆车动能更大。
三、动能定理知道了动能的表达式,接下来我们来探讨动能定理。
动能定理描述了合外力对物体做功与物体动能变化之间的关系。
合外力对物体所做的功,等于物体动能的变化量。
用数学表达式可以写成:W 合=ΔEk ,其中 W 合表示合外力做的功,ΔEk 表示动能的变化量。
假设一个物体在一个恒力 F 的作用下,沿着力的方向移动了一段距离 s,力与位移的夹角为θ 。
那么力做的功 W =Fscosθ 。
如果物体的初速度为 v1 ,末速度为 v2 ,根据动能的表达式,动能的变化量ΔEk = 1/2mv2² 1/2mv1²。
当力对物体做正功时,物体的动能增加;当力对物体做负功时,物体的动能减少。
例如,自由落体运动中,重力对物体做正功,物体的速度越来越大,动能不断增加。
而在竖直上抛运动中,重力对物体做负功,物体的速度逐渐减小,动能不断减少。
四、动能定理的应用动能定理在解决物理问题中有着广泛的应用。
首先,对于一个复杂的多过程运动问题,如果分别分析每个过程,计算会非常繁琐。
动能定理知识梳理 一、动能(一)动能的表达式1.定义:物体由于运动而具有的能叫做动能.2.公式:E k =mv 2,动能的单位是焦耳. 说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等.(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能. (二)动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W=E -E ,W 是外力所做的总功,E 、E 分别为初末状态的动能.若初、末速度分别为v 1、v 2,则E =mv 21,E =mv . 3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.利用动能定理来求解变力所做的功通常有以下两种情况: ①如果物体只受到一个变力的作用,那么:W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k ,也就等于知道了这个过程中变力所做的功.②如果物体同时受到几个力作用,但是其中只有一个力F 1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W 1+W 其他=ΔE k .可见应把变力所做的功包括在上述动能定理的方程中. ③注意以下两点:122k 1k 1k 1k 1k 122k 1222a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.4.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
第2讲 动能和动能定理1.动能(1)定义:物体由于运动而具有的能.(2)公式:E k =12m v 2.(3)单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. (4)矢标性:动能是标量,只有正值. (5)动能是状态量,因为v 是瞬时速度.1.(2012·苏州模拟)一个小球从高处自由落下,则球在下落过程中的动能( ). ①与它下落的距离成正比 ②与它下落距离的平方成正比 ③与它运动的时间成正比 ④与它运动时间的平方成正比A .①②B .③④C .①④D .②③ 答案 C2.(2012·中山模拟)质量为m 的物体在水平力F 的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v ,再前进一段距离使物体的速度增大为2v ,则( ).A .第二过程的速度增量大于第一过程的速度增量B .第二过程的动能增量是第一过程动能增量的3倍C .第二过程合外力做的功等于第一过程合外力做的功D .第二过程合外力做的功等于第一过程合外力做功的2倍解析 由题意知,两个过程中速度增量均为v ,A 错误;由动能定理知:W 1=12m v 2,W 2=12m (2v )2-12m v 2=32m v 2,故B 正确,C 、D 错误.答案 B3.一个25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,以下结果正确的是( ).A .合外力做功50 JB .阻力做功500 JC .重力做功500 JD .支持力做功50 J解析 合外力做的功W 合=E k -0,即W 合=12m v 2=12×25×22 J =50 J ,A 项正确;W G -W 阻=E k -0,故W 阻=mgh -12m v 2=750 J -50 J =700 J ,B 项错误;重力做功W G =mgh =25×10×3 J =750 J ,C错;小孩所受支持力方向上的位移为零,故支持力做的功为零,D 错.答案 A4.如图4-2-1所示,一半径为R 的半圆形轨道BC 与一水平面相连,C 为轨道的最高点,一质量为m 的小球以初速度v 0从圆形轨道B 点进入,沿着圆形轨道运动并恰好通过最高点C ,然后做平抛运动.求:图4-2-1(1)小球平抛后落回水平面D 点的位置距B 点的距离.(2)小球由B 点沿着半圆轨道到达C 点的过程中,克服轨道摩擦阻力做的功.解析 (1)小球刚好通过C 点,由牛顿第二定律mg =m v C 2R小球做平抛运动,有2R =12gt 2 s =v C t解得小球平抛后落回水平面D 点的位置距B 点的距离 s =2R(2)小球由B 点沿着半圆轨道到达C 点,由动能定理 -mg ·2R -W f =12m v C 2-12m v 02解得小球克服摩擦阻力做功 W f =12m v 02-52mgR . 答案 (1)2R (2)12m v 02-52mgR考点一 对动能定理的理解 1.动能定理公式中等号的意义等号表明合力做功与物体动能的变化间的三个关系: (1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因. 2.准确理解动能定理动能定理⎝⎛⎭⎫W =ΔE k =12m v t 2-12m v 02适用于任何力作用下,以任何形式运动的物体(或系统),是一标量式,不存在方向问题,它把过程量(做功)与状态量(动能)联系在一起,常用于求变力做功、分析复杂运动过程、判断能量间的转化关系等.【典例1】如图4-2-2所示,图4-2-2电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为H 时,电梯的速度达到v ,则在这个过程中,以下说法中正确的是( ).A .电梯地板对物体的支持力所做的功等于m v 22B .电梯地板对物体的支持力所做的功小于m v 22C .钢索的拉力所做的功等于m v 22+MgHD .钢索的拉力所做的功大于m v 22+MgH解析 以物体为研究对象,由动能定理W N -mgH =12m v 2,即W N =mgH +12m v 2,选项A 、B 错误.以系统为研究对象,由动能定理得:W T -(m +M )gH =12(M +m )v 2,即W T =12(M +m )v 2+(M +m )gH >m v 22+MgH ,选项D 正确,选项C 错误. 案 D【变式1】 (2012·山东东营)图4-2-3人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图4-2-3所示,则在此过程中( ).A .物体所受的合外力做功为mgh +12m v 2B .物体所受的合外力做功为12m v 2C .人对物体做的功为mghD .以上说法都不对解析 物体沿斜面做匀加速运动,根据动能定理:W 合=W F -W f -mgh =12m v 2,其中W f 为物体克服摩擦力做的功.人对物体做的功即是人对物体的拉力做的功,所以W 人=W F =W f +mgh +12m v 2,A 、C 错误,B 正确. 答案 B考点二 动能定理在多过程中的应用 优先考虑应用动能定理的问题 (1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题. (3)变力做功的问题.(4)含有F 、s 、m 、v 、W 、E k 等物理量的力学问题. 【典例2】如图4-2-4所示,用特定材料制作的细钢轨竖直放置,半圆形轨道光滑,半径分别为R 、2R 、3R 和4R ,R =0.5 m ,水平部分长度L =2 m ,轨道最低点离水平地面高h =1 m .中心有孔的钢球(孔径略大于细钢轨直径),套在钢轨端点P 处,质量为m =0.5 kg ,与钢轨水平部分的动摩擦因数为μ=0.4.给钢球一初速度v 0=13 m/s.取g =10 m/s 2.求:图4-2-4(1)钢球运动至第一个半圆形轨道最低点A 时对轨道的压力. (2)钢球落地点到抛出点的水平距离.解析 (1)球从P 运动到A 点过程 由动能定理得: mg ·2R -μmg ·L =12m v 12-12m v 02由牛顿第二定律:N -mg =m v 12R 由牛顿第三定律:N =-N ′解得:N ′=-178 N .故对轨道压力为178 N 方向竖直向下(2)设球到达轨道末端点速度为v 2,对全程由动能定理得:-μmg ·5L -4mgR =12m v 22-12m v 02解得v 2=7 m/s 由平抛运动h +8R =12gt 2 s =v 2t 解得:s =7 m. 答案 (1)178 N 竖直向下(2)7 m——应用动能定理的解题步骤【变式2】如图4-2-5所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h =0.8 m ,质量为m =2 kg 的小物块M 从斜面顶端A 由静止滑下,从O 点进入光滑水平滑道时无机械能损失,为使M 制动,将轻弹簧的一端固定在水平滑道延长线B 处的墙上,另一端恰位于水平轨道的中点C .已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g =10 m/s 2,下滑时逆着毛的生长方向.求:图4-2-5(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零). (2)若物块M 能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M 在斜面上下滑过程中的总路程.解析 (1)物块M 从斜面顶端A 运动到弹簧压缩到最短,由动能定理得mgh -μmg cos θh sin θ-E p =0 则弹性势能E p =mgh -μmg cos θhsin θ=10 J.(2)设物块M 第一次被弹回,上升的最大高度为H ,由动能定理得mg (h -H )-μmg cos θh sin θ=0 则H =h -μcos θhsin θ=0.5 m.(3)物块M 最终停止在水平面上,对于运动的全过程,由动能定理有mgh -μmg cos θ·s =0物块M 在斜面上下滑过程中的总路程s =hμcos θ=2.67 m.答案 (1)10 J (2)0.5 m (3)2.67 m考点三 用动能定理求变力的功(小专题) 一、状态分析法动能定理不涉及做功过程的细节,故求变力功时只分析做功前后状态即可. 【典例3】如图4-2-6所示,图4-2-6质量为m 的物体被线牵引着在光滑的水平面上做匀速圆周运动,拉力为F 时,转动半径为r .当拉力增至8F 时,物体仍做匀速圆周运动,其转动半径为r2,求拉力对物体做的功.解析 对物体运用牛顿第二定律得拉力为F 时,F =m v 12r ,①拉力为8F 时,8F =m v 22r 2.②联立①②及动能定理得:拉力做功W =12m v 22-12m v 12=2Fr -12Fr =32Fr .答案 32Fr二、过程分割法有些问题中,作用在物体上的某个力在整个过程中是变力,但若把整个过程分为许多小段,在每一小段上此力就可看做是恒力.分别算出此力在各小段上的功,然后求功的代数和.即可求得整个过程变力所做的功.【典例4】如图4-2-7所示,质量为m 的物体静图4-2-7止于光滑圆弧轨道的最低点A ,现以始终沿切线方向、大小不变的外力F 作用于物体上使其沿圆周转过π2到达B 点,随即撤去外力F ,要使物体能在竖直圆轨道内维持圆周运动,外力F 至少为多大? 解析 物体从A 点到B 点的运动过程中,由动能定理可得 W F -mgR =12m v B 2①如何求变力F 做的功呢?过程分割,将AB 划分成许多小段,则当各小段弧长Δs 足够小时,在每一小段上,力F 可看做恒力,且其方向与该小段上物体位移方向一致,有W F =F Δs 1+F Δs 2+…+F Δs 1+…=F (Δs 1+Δs 2+…+Δs 1+…)=F ·π2R ②从B 点起撤去外力F ,物体的运动遵循机械能守恒定律,由于在最高点维持圆周运动的条件是mg ≤m v 2R ,即在圆轨道最高点处速度至少为Rg .故由此机械能守恒定律得: 12m v B 2=mgR +m (Rg )22③联立①②③式得:F =5mg π. 答案 5mgπ三、对象转换法在有些求功的问题中,作用在物体上的力可能为变力,但转换对象后,就可变为求恒力功. 【典例5】如图4-2-8所示,质量为2 kg 的木块套在光滑的竖直杆上,图4-2-8用60 N 的恒力F 通过轻绳拉木块,木块在A 点的速度v A =3 m/s 则木块运动到B 点的速度v B 是多少?(木块可视为质点,g 取10 m/s 2)解析 先取木块作为研究对象,则由动能定理得: W G +W T =12m v B 2-12m v A 2①其中W G =-mg ·AB ,W T 是轻绳上张力对木块做的功, 由于力的方向不断变化,这显然是一个变力做的功,对象转换: 研究恒力F 的作用点,在木块由A 运动到B 的过程中,恒力F 的功W F =F (AC -BC ),它在数值上等于W T .故①式可变形为:-mgAB +F (AC -BC )=12m v B 2-12m v A 2,代入数据解得v B =7 m/s.答案 7 m/s【典例】 (2011·浙江卷,24)(20分)节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车.有一质量m =1 000 kg 的混合动力轿车,在平直公路上以v 1=90 km/h 匀速行驶,发动机的输出功率为P =50 kW.当驾驶员看到前方有80 km/h 的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L =72 m 后,速度变为v 2=72 km/h.此过程中发动机功率的15用于轿车的牵引,45用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:(1)轿车以90 km/h 在平直公路上匀速行驶时,所受阻力F 阻的大小; (2)轿车从90 km/h 减速到72 km/h 过程中,获得的电能E 电;(3)轿车仅用其在上述减速过程中获得的电能E 电维持72 km/h 匀速运动的距离L ′. 解 (1)轿车牵引力与输出功率的关系P =F 牵v将P =50 kW ,v 1=90 km/h =25 m/s 代入得 F 牵=Pv 1=2×103 N .(4分)当轿车匀速行驶时,牵引力与阻力大小相等,有F 阻=2×103 N .(2分)(2)在减速过程中,注意到发动机只有15P 用于汽车的牵引.根据动能定理有15Pt -F 阻L =12m v 22-12m v 12(5分) 代入数据得Pt =1.575×105 J(3分)电源获得的电能为E 电=50%×45Pt =6.3×104 J .(2分)(3)根据题设,轿车在平直公路上匀速行驶时受到的阻力仍为F 阻=2×103 N .在此过程中,由能量守恒定律可知,仅有电能用于克服阻力做功,则E 电=F 阻L ′(2分)代入数据得L ′=31.5 m .(2分)答案 (1)2×103N (2)6.3×104J (3)1.5 m 一、动能及动能定理的单独考查(低频考查) 1.(2009·上海单科,5)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的2倍,到达最高点后再下落至离地高度h 处,小球的势能是动能的2倍,则h 等于( ).A.H 9B.2H 9C.3H 9D.4H 9 解析 设小球的初动能为E k0,阻力为F ,根据动能定理,上升到最高点有,E k0=(mg +F )H ,上升到离地面h 处有,E k0-2mgh =(mg +F )h ,从最高点到离地面h 处,有(mg -F )(H -h )=12mgh ,解以上三式得h =49H . 答案 D2.(2011·课标全国卷,15改编)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能不可能( ).A .一直增大B .先逐渐减小至零,再逐渐增大C .先逐渐增大至某一最大值,再逐渐减小D .先逐渐减小至某一非零的最小值,再逐渐增大解析 若力F 的方向与初速度v 0的方向一致,则质点一直加速,动能一直增大,选项A 正确.若力F 的方向与v 0的方向相反,则质点先减速至速度为零后反向加速,动能先减小至零后增大,选项B 正确.若力F 的方向与v 0的方向成一钝角,如斜上抛运动,物体先减速,减到某一值,再加速,则其动能先减小至某一非零的最小值,再增大,选项D 正确. 答案 C二、动能定理的应用且综合其他考点出现(高频考查) 3.(2009·上海单科,20)质量为5×103 kg 的汽车在t =0时刻速度v 0=10 m/s ,随后以P =6×104 W 的额定功率沿平直公路继续前进,经72 s 达到最大速度,该汽车受恒定阻力,其大小为2.5×103 N .求:(1)汽车的最大速度v m ;(2)汽车在72 s 内经过的路程s .解析 (1)达到最大速度时,牵引力等于阻力P =f v m v m =P f =6×1042.5×103m/s =24 m/s(2)由动能定理可得Pt -fs =12m v m 2-12m v 02所以s =2Pt -m (v m 2-v 02)2f =2×6×104×72-5×103×(242-102)2×2.5×103m =1 252 m 答案 (1)24 m/s(2)1 252 m图4-2-94.(2011·江苏卷,14)如图4-2-9所示,长为L 、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m 的小球固定在管底,用一轻质光滑细线将小球与质量为M =km 的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g ).(1)求小物块下落过程中的加速度大小; (2)求小球从管口抛出时的速度大小;(3)试证明小球平抛运动的水平位移总小于22L .解析 (1)设细线中的张力为T ,根据牛顿第二定律得Mg -T =Ma T -mg sin 30°=ma 且M =km 解得a =2k -12(k +1)g .(2)设M 落地时速度大小为v ,m 射出管口时速度大小为v 0.M 落地前由动能定理得Mg ·L sin 30°-mg ·L sin 30°·sin 30°=12(M +m )v 2,对m ,M 落地后由动能定理得-mg (L -L sin 30°)sin 30°=12m v 02-12m v 2 联立解得v 0=k -22(k +1)gL (k >2).(3)小球做平抛运动,则s =v 0t L sin 30°=12gt 2 解得s =Lk -22(k +1)由k -22(k +1)<12得s =Lk -22(k +1)<22L .答案 (1)2k -12(k +1)g (2)k -22(k +1)gL (k >2) (3)见解析。
动能和动能定理一、什么是动能?动能是物体运动时由于其速度而具有的能量。
当物体具有速度时,它就具有了动能。
动能的大小取决于物体的质量和速度。
动能可以用以下公式来表示:K = 1/2 * m * v^2其中,K代表动能,m代表物体的质量,v代表物体的速度。
二、动能定理动能定理是描述物体动能变化与力的关系的定理。
它表明,当物体受到外力作用时,它的动能会发生变化。
动能定理可以表示为以下公式:W = ΔK其中,W代表力对物体做的功,ΔK代表物体动能的变化。
三、动能定理的推导为了推导动能定理,我们可以从牛顿第二定律出发。
牛顿第二定律可以表示为以下公式:F = ma其中,F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
我们知道力可以表示为功乘以距离,即:F = W / d将上面的两个式子联立,可以得到:W = mad由于加速度a可以表示为速度v的变化率,即a = Δv / t,其中Δv为速度变化量,t为时间。
将其代入上式,可以得到:W = mΔv / t * d进一步简化上式,可以得到:W = m * Δv * d / t我们知道,速度v可以表示为位移s的变化率,即v = Δs / t,其中Δs为位移的变化量。
将其代入上式,并将Δv * d替换为Δs,可以得到:W = mΔs / t我们知道,位移s是物体运动时经过的路程。
将它代入上式,得到:W = ms / t进一步简化,可以得到:W / t = ms / t^2由于t是时间,可以表示为1 / t,将其代入上式,可以得到:W / t = ms / (1 / t^2)进一步简化,可以得到:W / t = mst^2由于物体的平均速度可以表示为位移s与时间t的比值,即v = s / t,将其代入上式,可以得到:W / t = mv * t再次简化,可以得到:W = mvt我们知道,动能可以表示为1/2 * mv^2,将其代入上式,可以得到:W = ΔK所以,动能定理得证。
动能和动能定理知识点一:1动能定义:物体由于而具有的能叫动能.公式:E k=12m v2 .单位:,1 J=1 N·m=1 kg·m2/s2.矢标性:动能是,只有正值.状态量:动能是,因为v是瞬时速度.2动能定理内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中.表达式:W=12m v22-12m v12.物理意义:合外力的功是物体动能变化的量度.适用条件:(1)动能定理既适用于直线运动,也适用于.(2)既适用于恒力做功,也适用于.(3)力可以是各种性质的力,既可以同时作用,也可以.3对动能定理的理解动能定理公式中“=”的意义(1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因.对动能定理的理解(1)动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.即为任何力。
(2)利用动能定理可以讨论合力做功或某一个力做功的情况应用动能定理的技巧:(1)动能定理虽然是在恒力作用、直线运动中推导出来的,但也适用于变力作用、曲线运动的情况.(2)动能定理是标量式,不涉及方向问题.在不涉及加速度和时间的问题时,可优先考虑动能定理.(3)对于求解多个过程的问题可全过程考虑,从而避开考虑每个运动过程的具体细节,具有过程简明、运算量小等优点.典型题:如图所示,电梯质量为M,它的水平地板上放置一质量为m的物体,电梯在钢索的拉力作用下由静止开始竖直向上加速运动.当上升高度为H时,电梯的速度达到v,则在这段过程中,下列说法中正确的是()A.电梯地板对物体的支持力所做的功等于12mv2B.电梯地板对物体的支持力所做的功大于12mv2C.钢索的拉力所做的功等于MgH+12Mv2D.钢索的拉力所做的功大于MgH+12Mv2典型题:人通过滑轮将质量为m的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h,到达斜面顶端的速度为v,如图所示.则在此过程中[ ]A.物体所受的合外力做功为mgh+mv2B.物体所受的合外力做功为mv2C.人对物体做的功为mghD.人对物体做的功大于mgh4动能定理在多过程中的应用优先考虑应用动能定理的问题:(1)不涉及加速度,时间的问题(2)有多个物理过程切不需要研究整个过程中的中间状态的问题(3)变力作功的问题(4)含有F,l,m,v,W,E等物理量的力学问题典型题:如图所示,用特定材料制作的细钢轨竖直放置,半圆形轨道光滑,半径分别为R,2R,3R和4R,R=0.5m,水平部分长度L=2m,轨道最低点离水平地面高h=1m.中心有孔的钢球(孔径略大于细钢轨道直径),套在钢轨端点P处,质量为m=0.5kg,与钢轨水平部分的动摩擦因数为μ=0.4.给钢球一初速度v0=13m/s.取g=10m/s2.求:(1)钢球运动至第一个半圆形轨道最低点A时对轨道的压力.(2)钢球落地点到抛出点的水平距离.典型题:如图所示,物体在蒙有动物毛皮的斜面上运动.由于毛皮表面的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时毛皮产生的阻力可以忽略;②逆着毛的生长方向运动会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h=0.8m,质量为m=2kg的小物体M从斜面顶端A由静止滑下,从O点进入光滑水平滑道时无机械能损失,为使M制动,将轻弹簧的一端固定在水平滑道延长线B处的墙上,另一端恰位于水平轨道的中点C.已知斜面的倾角θ=530,动摩擦因数均为μ=0.5,其余各处的摩擦不计,g=10m/s2,下滑时逆着毛的生长方向,求:(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零)(2)若物块M能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M在斜面上下滑过程中的总路程5用动能定理求变力做的功A状态分析法:动能定理不涉及做功过程的细节,故求变力功时只分析做功前后状态即可。
动能和动能定理 (基础篇 )一、选择题:1.质量为 0.4kg 的足球以5m/ s 的速度飞向运动员,运动员以20 m/ s 的速度将球踢出.则运动员踢球做的功是()A.45J B.75 J C.80 J D.85 J2.材料相同的两个滑块 A 和 B,开始以相同的初动能在同一粗糙的水平面上滑动,最终停在水平面上.若它们的质量 m A m B,那么它们滑行的距离,有()A.A比B远B.B比A远C.一样远D.无法确定3.一个物体放在水平光滑的水面上,现用水平力 F 拉着物体由静止开始运动,当经过位移S1时,速度达到v,随后又经过位移 S2,速度达到 2v,那么,在 S1和 S2两段路程中 F 对物体做的功之比为()A. 1:2 B.2 :1 C.1: 3 D.1:44.一颗子弹射穿透厚度为 3.0 cm 的固定木板后速度减小到原来的1/ 2,此后它还能射穿透同样材料的木板的厚度最多为()A . 0.75 cmB . 1.0 cm C. 1.5 cm D .3.0 cm5.质量不同而具有相同动能的两个物体,在动摩擦因数相同的水平面上滑行到停止,则()A.质量大的滑行的距离大B.质量大的滑行的距离小C.它们克服阻力做的功一样大D.它们运动的加速度一样大6.高空作业须系安全带。
如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动)。
此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为()m2gh m 2 gh m ghD .m ghA .mgB .mg C.mg mgt t t t7.如图所示,同定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。
现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度 ),则在圆环下滑到最大距离的过程中()A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变8.对于橡皮筋做的功来说,直接测量是有困难的.我们可以巧妙地避开这个难题而不影响问题的解决,只需要测出每次实验时橡皮筋对小车做的功是第一次实验的多少倍,使用的方法是()A .用同样的力对小车做功,让小车通过的距离依次为s、 2s、3s、进行第 1 次、第 2 次、第 3 次、实验时,力对小车做的功就是W、2W、3W、B.让小车通过相同的距离,第 1 次力为 F,第 2次力为 2F、第 3 次力为 3F、实验时,力对小车做的功就是 W、2W、3W 、C.选用同样的橡皮筋,在实验中每次橡皮筋拉伸的长度保持一致,当用l 条、 2 条、 3 条、同样的橡皮筋进行第 1 次、第 2 次、第 3 次、实验时,橡皮筋对小车做的功就是W、2W、3W、D.利用弹簧测力计测量对小车的拉力F,利用直尺测量小车在力的作用下移动的位移s,便可以求出每次实验中力对小车做的功,可控制为W、2W、3W、B .每次实验中,橡皮筋拉伸的长度没有必要保持一致C .放小车的长木板应该尽量使其水平D .先接通电源,再让小车在橡皮筋的作用下弹出10.为了计算由于橡皮筋做功而使小车获得的速度,在某次实验中某同学得到了如图所示的一条纸带,在A 、B 、C 、D 中应该选用哪个点的速度才符合要求( )A .A 点B .B 点c . C 点D .D 点二、解答题:1.质量为 6kg 的物体静止在水平地面上,在水平力 F 的作用下由静止开始,运动了4 m ,速度达到 4 m /s ,此时撤去力 F ,又通过 6 m 的路程,物体停了下来.求力F 的大小。
2.两物体 AB 靠在一起放在水平地面上,在力作用下有静止开始运动, F=20N , m A =3kg , m B =1kg , AB与地面间动摩擦因数均为0.2, F 与水平夹角为 37°,求力 F 对物体做功 160J 时,物体 A 的动能。
3.一架喷气式飞机,质量32m=5.0 ×10 kg ,起飞过程中从静止开始滑跑的路程为 S=5.3 ×10 m ,达到起飞速度 V=60m/s ,在此过程中飞机受到的平均阻力是飞机重力的 0.02 倍( K=0.02 ),求飞机受到的牵引力 F 。
4.有一长为 L 的木块,质量为 M ,静止地放在光滑的水平面上,现有一质量为m 的子弹(可视为质点)以初速度 v 0 入射木块,若在子弹穿出木块的过程中,木块发生的位移为 S ,求子弹射出木块后,木块和子弹的速度分别为多大?(设子弹在木块中受到的阻力恒为f )5.一运动员从距离水面高度为 10m 的跳台上腾空而起,当他的重心离跳台台面的高度为 1m 时他恰好达 到最高位置.当他下降到手触及水面时要伸直手臂做一个翻掌压水花的动作,这时他的重心离水面也是 1m 。
入水之后,他的重心能下沉到离水面约 2.5m 处,试计算水对他的平均阻力约是他自身重力的几倍?(取 g10 m / s 2 )6.如图所示,物体沿一曲面从A 点无初速滑下,滑至曲面的最低点B 时,下滑的高度为 5m ,若物体的质量为 1kg ,到 B 点时的速度为6m/s ,求物体在下滑过程中克服阻力所做的功。
AB7.同学们参照伽利略时期演示平抛运动的方法制作了如图所示的实验装置。
图中水平放置的底板上竖直 地固定有 M 板和 N 板 。
M 板上部有一半径为R 的 1圆弧形的粗糙轨道, P 为最高点, Q 为最低点, Q 点4处的切线水平,距底板高为 H.N 板上固定有三个圆环 .将质量为 m 的小球从 P 处静止释放,小球运动至Q 飞出后无阻碍地通过各圆环中心,落到底板上距Q 水平距离为 L 处。
不考虑空气阻力,重力加速度为g.求:L( 1)距 Q 水平距离为的圆环中心到底板的高度;( 2)小球运动到 Q 点时速度的大小以及对轨道压力的大小和方向;( 3)摩擦力对小球做的功 .【答案与解析】 一、选择题: 1. B解析:运动员踢球做的功可由动能定理求解:解析:根据动能定理有E K mgs对 A :E K m A gs A对 B:E K m B gs B因为 m A m B,所以B比A远。
3. C解析:根据动能定理合外力做功等于动能变化,故做功之比为动能变化之比,故之比为 1: 34. B解析:根据动能定理第一个过程:速度由v 变为v,1m(v)21m(v)2 f .3cm 2222第二个过程:速度由v变为 0,01m(v )2 f .s 222可得: s1cm5. BCD解析:根据动能定理E K mgs 可知BC正确,物体所受的合外力为μ mg,则加速度为μg,即相同,故D选项正确。
6、 A解析:人下落h 高度为自由落体运动,由运动学公式v2=2gh ,可知v2gh ;缓冲过程(取向上为正)由动量定理得(F mg )t0 (mv) ,解得: F m 2ghmg ,故选A。
t故选: A。
7、 B解析:由机械能守恒的条件可知:圆环与与弹簧组成的系统机械能守恒,但圆环的机械能不守恒, A 错误;圆环下落到最大距离时重力势能全部转化为弹性势能, B 正确;圆环下落到最大距离时速度为零,但加速度不为零,所受合力也不为零,从 C 错误;在整个下落过程中速度会由零到最大然后在到零,即重力势能会转化为动能和弹性势能, D 错误。
故选: B8.C9.D解析:实验中没有必要测出橡皮筋做的功到底是多少,只要测出以后各次实验时橡皮筋做的功是第一次实验时的多少倍就已经足够了, A 错;每次实验橡皮筋拉伸的长度必须保持一致,只有这样才能保证以后各次实验时,橡皮筋做的功是第一次实验时的整数倍, B 错;小车运动中会受到阻力,只有使木板倾斜到一定程度,使重力沿斜面方向的分力与阻力相平衡,才能减少误差, C 错;实验时,应该先接通电源,让打点计时器开始工作,然后再让小车在橡皮筋的作用下弹出, D 正确.10. C解析:实验中所要求测量的速度应该是橡皮筋作用完毕以后小车的速度,也就是小车所获得的最大速度,由题图可以看出, A 、 B 两点橡皮筋还没有作用完毕,而 D 点是橡皮筋作用完毕后已经过了一段时间,所以最二、解答题:1. F=20N 解析:撤去F 后,由动能定理有 F 作用时,由动能定理2. 42J解析:由 W=FScos α 得 S=10m受力分析: F cos(F sinm a g m b g) (m am b ) a可得 a1.4m / s 2根据 v 22as 有 v 28m / s所以:3. F1.8 104 N解析:研究对象:飞机研究过程:从静止 → 起飞( V=60m/s )适用公式:动能定理:W1 mv2 1 mv 022 2具体表达: ( Ff )S1 mv 22得到牵引力: Fmv 2 kmg1.8 104 N2S4.子弹速度 vmv 02 2 f (s l )2 fsm;木块速度 VM解析:( 1)以子弹为研究对象,设其速度为 v ,从子弹开始入射木块(v 0)到子弹射出木块( v )时为止,应用动能定理:得: f ( S L)1 mv2 1mv 0222可得: vmv 02 2 f ( s l )m( 2)以木块为研究对象,设其速度为V ,从子弹开始入射木块(0)到子弹射出木块( V )时为止应用动能定理:得: fS1MV 225. 3.9解析:从最高点到最低点有重力做功和水的平均阻力做功,整个过程动能变化为 0,由动能定理可得:6. 32J解析:整个过程应用动能定理,重力做功只与高度有关,则有:7、( 1)到底板的高度3H ;( 2)速度的大小为 g ,压力的大小 mg (1L 2;L) ,方向竖直向下42H2HR( 3)摩擦力对小球作功 mg(L 2R)4H解析:( 1)由平抛运动规律可知 L=vt , H1 gt2 同理:L1gt 122vt 1 , h22解得: hH,则距地面高度为 HH 3 H44 4L g ( 2)由平抛规律解得v Lt2H对抛出点分析,由牛顿第二定律,F 支 mgm v 2 ,解得 F 支mgmgL 2R2HR2由牛顿第三定律知F 压F 支m gm g L,方向竖直向下。
2HR( 3)对 P 点至 Q 点,由动能定理: mgR W f1 m v2 02mgL 2 mgR解得: W f4H。