立体化学
- 格式:pdf
- 大小:424.14 KB
- 文档页数:22
第六章立体化学什么叫立体化学?立体化学(stereochemistry)是一种以三度空间来研究分子结构和性质的科学。
我们知道有机分子是立体的,所以在研究它时必须要有立体化学的观念。
目前已发现许多有机化合物的结构和性质一定要从它们的空间排列来解释。
正由于有机分子是立体的,所以会因它们中的各原子在空间排列位置的不同而造成异构现象--立体异构。
前面所讲的构象异构和顺、反异构都是立体异构。
可是构象异构和顺、反异构不同,构象异构可借分子中单键的旋转而互变。
因此很难分离出构象异构体,只能利用光谱分析、热力学计算、偶极矩测量以及X-光或电子衍射证明它们的存在。
而顺、反异构体的互变要通过键的断裂,比较困难,因此能得到纯的顺式异构体和反式异构体。
立体异构除了上面两种以外,这里我们介绍第三种,那就是对映异构(Enantiomerism)。
例如:当我们进行2-丁烯的水合反应时,分离到两种丁醇,它们的物理性质和化学性质基本上相同,只是在对偏振光的作用上有差异,一个使偏振光向右转(右旋体Dextrorotatory)一个使偏振光向左转(左旋体Levorotatory),转的度数基本上也相同。
它们的结构如按照平面来书写,很难看出有什么两样,都是CH3CH2CH(OH)CH3,可是在空间排列上,它们是不同的,它们互成镜象不重合,所以不是一个化合物,是构型异构体。
由于这两个异构体互相对映,故称为对映体(Enantionmers).又因为它们中的一个要使偏振光向左转,另一个使偏振光向右转,所以也常称为旋光异构体(Optical isomers)。
旋光异构现象是用偏振光来鉴别的,那么什么是偏振光?化合物的旋光性又是怎样测得的?第一节物质的旋光性一、平面偏振光和旋光性光波是一种电磁波,它的振动方向与其前进方向垂直。
在普通光线里,光波可在垂直于它前进方向的任何可能的平面上振动。
中心圆点“O”,表示垂直于纸面的光的前进方向,双箭头表示光可能的振动方向。
立体化学的名词解释是什么立体化学是研究分子在空间中的结构和性质关系的一门学科,也是有机化学的一个重要分支。
它着眼于分子的三维构型,并探索了构型对分子性质和反应行为的重要影响。
立体化学的研究对于我们理解分子的行为和开发新的药物、催化剂和功能材料等方面都具有重要意义。
下面将从立体化学的基本概念、立体异构体和手性分子等方面展开论述。
1. 立体化学的基本概念立体化学研究的基本概念是分子的立体构型。
在立体化学中,我们研究的是分子在空间中的排列情况,即分子是如何在三维空间中存在的。
与平面几何关注二维形状不同,立体化学则探索了分子的三维结构。
分子的立体构型与它的性质和反应行为密切相关,因此研究分子的立体化学非常重要。
2. 立体异构体立体异构体指的是具有相同分子式但空间构型不同的化合物。
在立体异构体中,分子的原子组成相同,但它们的排列方式不同。
最常见的立体异构体类型是构造异构体和扭转异构体。
构造异构体通常发生在碳原子的键连接方式不同导致的情况下,如顺反异构体和环异构体。
顺反异构体是指两个官能团(一般为氢和卤素)相对位置不同的异构体。
而环异构体则是指相同分子中的原子在空间中围绕同一轴旋转而形成的异构体。
构造异构体通常会对分子的性质和反应行为产生重要影响。
扭转异构体则是指分子在空间中的取向不同而形成的异构体。
扭转异构体通常是由于分子中存在旋转自由度而产生的。
类似于构造异构体,扭转异构体也会对分子的性质和反应产生显著影响。
3. 手性分子手性分子是立体化学研究中的一个重要概念。
手性分子是指无法与其镜像重叠的分子,也就是左右非对称的分子。
一个手性分子可以存在两种镜像异构体,它们分别称为L-和D-型,也可以分别称为左旋和右旋异构体。
这两种手性异构体在立体中心(通常是一个碳原子)的配置不同而产生的。
手性分子常常具有不同的物理化学性质和生物活性,因此对于药物研发和医药领域非常重要。
总的来说,立体化学是研究分子在空间中的结构和性质关系的学科。