八年级数学上册二元一次方程组的求解知识点学案教案练习17
- 格式:pdf
- 大小:218.02 KB
- 文档页数:5
八(上) 第五章二元一次方程组 分节练习第1节 认识二元一次方程组01、【基础题】若方程4233=+nmy x 是二元一次方程,那么n m +的值是______. 02、【基础题】下面4组数值中,哪些是二元一次方程102=+y x 的解?(1)⎩⎨⎧==62y x - (2)⎩⎨⎧==43y x (3)⎩⎨⎧==34y x (4)⎩⎨⎧==26-y x2.1、【基础题】二元一次方程组⎩⎨⎧xy y x 2102==+的解是______.(1)⎩⎨⎧==34y x (2)⎩⎨⎧==63y x (3)⎩⎨⎧==42y x (4)⎩⎨⎧==24y x 2.2、【基础题】若⎩⎨⎧2213-=+=m y m x 是二元一次方程1034=-y x 的一个解,求m 的值.3、根据题意列方程组:(1)小明从邮局买了面值50分和80分的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?(2)周末,8个人去红山公园玩,买门票一共花了34元,已知每张成人票5元,每张儿童票3元,请问8个人中有几个成人、几个儿童?(3)某班共有学生45人,其中男生比女生的2倍少9人,则该班男生、女生各多少人?(4)老牛比小马多驮了2个包裹,如果把小马驮的其中1个包裹放到老牛背上,那么老牛的包裹是小马的2倍,请问老牛和小马开始各驮了多少包裹?(5)将一摞笔记本分给若干同学.每个同学5本,则剩下8本;每个同学8本,又差了7本.共有多少本笔记本、多少个同学?第2节 求解二元一次方程组4、【基础题】 用代入消元法解下列方程组:(1)⎩⎨⎧122=+=y x x y (2)⎪⎩⎪⎨⎧653425=+-=y x y x (3)⎩⎨⎧=711y x y x -=+ (4)⎩⎨⎧=32923y x y x +=- (5)⎩⎨⎧=x y y x 23=- (6)⎩⎨⎧=825y x y x +=+ (7)⎩⎨⎧=42534y x y x -=+ (8)⎪⎩⎪⎨⎧=123222n m n m +=- (9)⎩⎨⎧=31423+=+y x y x (10)⎩⎨⎧=1341632y x y x +=+5、【基础题】 用加减消元法解下列方程组:(1)⎩⎨⎧=1929327-+=-y x y x ; (2)⎩⎨⎧=156356-+=-y x y x ; (3)⎩⎨⎧=52534--=+t s t s ; (4)⎩⎨⎧=547965--=-y x y x ;(5)⎩⎨⎧=17431232y x y x +=+; (6)⎩⎨⎧=)5(3)1(55)1(3+-+=-x y y x ;5.1、【基础题】用加减消元法解下列方程组: (1)⎩⎨⎧=31351434y x y x +=-; (2)⎩⎨⎧=23342152y x y x +=-- ; (3)⎩⎨⎧=17541974y x y x -=-+; (4);(5)⎪⎩⎪⎨⎧=132353y x y x -=-; (6)⎪⎩⎪⎨⎧1)3(3241=--+=+x y x x y ; (7)5.2、【综合Ⅰ】 如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解,那么a ,b 的值是( )(A ).⎩⎨⎧=-=01b a (B ).⎩⎨⎧==01b a (C ).⎩⎨⎧==10b a (D ).⎩⎨⎧-==1b a第3节 应用二元一次方程组——鸡兔同笼6、【综合Ⅰ】 列方程解应用题:(1)小梅家有鸡也有兔,鸡和兔共有头16个,鸡和兔共有脚44只,问:小梅家的鸡与兔各有多少只?(2)今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(3)今有牛五、羊二,直金十两;牛二、羊五,直金八两.请问牛、羊各直金几何? 题目大意是:5头牛和2只羊共价值10两金子,2头牛和5只羊共价值8两金子,每头牛、每只羊各价值多少两金子.(4)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马? (5)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元. 问有多少人?该物品价值多少元?6.1、【综合Ⅱ】 列方程解应用题:(1)以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.请问,绳长、井深各几何?(2)用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺,那么这根绳子有多长?环绕大树一周需要多少尺?第4节 应用二元一次方程组——增收节支7、【综合Ⅱ】列方程解应用题:(1)某工厂去年的利润(总产值减总支出)为200万元. 今年总产值比去年增加20%,总支出比去年减少10%,今年的利润为780万元. 去年的总产值、总支出是多少万元?(2)一、二班共有100名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班学生的体育达标率是87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?(3)医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质,若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?(4)甲、乙两人从相距36 km的两地相向而行,如果甲比乙先走2 h,那么他们在乙出发2.5 h后相遇;如果乙比甲先走2 h,那么他们在甲出发3 h后相遇,请问甲、乙两人的速度各是多少?7.1、【综合Ⅱ】列方程解应用题:(1)某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,请问两种客房各租住了多少间?(2)某体育场的环形跑道长400 m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔30 s相遇一次;如果同向而行,那么每隔80 s乙就追上甲一次. 甲、乙的速度分别是多少?(3)某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共40 kg,到市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:他当天卖完这些黄瓜和茄子可赚多少元?第5节应用二元一次方程组——里程碑上的数8、【综合Ⅱ】列方程解应用题:(1)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来的两个加数分别是多少?(2)有一个两位数,个位上的数字比十位上的数字的3倍多2,若把个位数字与十位数字对调,所得新的两位数比原来的两位数的3倍少2,求原来的两位数.(3)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数. 已知前一个四位数比后一个四位数大2178,求这两个两位数.(4)一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1. 这个两位数是多少?8.1、【综合Ⅱ】列方程解应用题:(1)小颖家离学校1880 m,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16 min,已知小颖在上坡路上的平均速度是4.8 km/h,在下坡路上的平均速度是12 km/h. 请问小颖上坡、下坡各用了多长时间?(2)某商店准备用两种价格分别为36 元/ kg 和20元/ kg 的糖果混合成杂拌糖果出售,混合后糖果的价格是28元/ kg 。
专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。
初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)元一次方程教学设计篇一一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。
用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。
本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。
以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。
结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。
第17课 二元一次方程组的解法课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做 思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做 消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为 的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。
知识点03 加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做 消元法,简称加减法.注意:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.知识点04 选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.考法01 用代入法解二元一次方程组【典例1】用代入法解方程组:【即学即练】m 取什么数值时,方程组的解(1)是正数;(2)当m 取什么整数时,方程组的解是正整数?并求它的所有正整数解.【典例2】对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:能力拓展解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【即学即练】解方程组(1)(2)考法02 方程组解的应用【典例3】如果方程组的解是方程3x+my=8的一个解,则m=( )A.1B.2C.3D.4【典例4】已知和方程组的解相同,求的值.【即学即练】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.考法03 加减法解二元一次方程组【典例5】用加减消元法解方程组【即学即练】方程组的解为:.【典例6】若关于x、y的二元一次方程组的解为,求关于x、y的方程组的解.【即学即练】三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是: .考法04 用适当方法解二元一次方程组【典例7】解方程组【即学即练】【典例8】试求方程组的解.【即学即练】若二元一次方程组和y=kx+9有相同解,求(k+1)2的值.题组A 基础过关练1.用加减法解方程组下列解法错误的是( )A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y 2.用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×33.解方程组,用加减法消去y ,需要( )A .①×2﹣②B .①×3﹣②×2C .①×2+②D .①×3+②×2分层提分4.用加减法将方程组中的未知数消去后,得到的方程是().A.B.C.D.5.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×26.用代入消元法解方程组使得代入后化简比较容易的变形是( )A.由①得B.由①得C.由②得D.由②得y=2x-57.已知a,b满足方程组则a+b的值为()A.﹣4B.4C.﹣2D.28.已知是二元一次方程组的解,则的算术平方根为()A.±2B.C.2D.49.若,则x,y的值为()A.B.C.D.10.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限11.若方程组的解满足x+y=0,则a的值为( )A.﹣1B.1C.0D.无法确定12.在解方程组时,甲同学正确解得乙同学把看错了,而得到那么,,的值为( )A.,,B.,,C.,,D.不能确定题组B 能力提升练13.已知,用含的代数式表示=________.14.已知、满足方程组,则的值为___.15.如果方程组的解与方程组的解相同,则a+b的值为______.16.若方程组,则的值是_____.17.已知关于x、y的方程的解满足,则a的值为__________________.18.已知是二元一次方程组的解,则m+3n的立方根为 .19.若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m-7n的算术平方根是_________.20.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.21.若方程组的解是则方程组的解为________题组C 培优拔尖练22.解下列方程组(1)(2)23.(1)用代入法解方程组:(2)用加减法解方程组:24.甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.25.阅读探索解方程组解:设a&#ξΦ02∆;1&#ξΦ03∆;x,b&#ξΦ02B;2&#ξΦ03∆;y,原方程组可变为解方程组得,即,所以.此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(2)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为_______.第17课二元一次方程组的解法课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。
人教版八年级上册数学第十七章《联立方程》全章教学设计1. 章引言本章将介绍联立方程的概念、方法和应用。
通过研究本章,学生将掌握二元一次方程组的解法,并能够应用联立方程解决实际问题。
2. 教学目标知识与技能1. 理解联立方程的概念,能够正确列出二元一次方程组。
2. 掌握解二元一次方程组的方法,包括代入法、加减法和等式相乘法。
3. 能够应用联立方程解决实际问题,如几何问题、行程问题等。
过程与方法1. 通过实例引导学生理解联立方程的产生过程,培养学生的抽象思维能力。
2. 通过合作交流,培养学生解决数学问题的合作意识和沟通能力。
3. 通过解决实际问题,培养学生应用数学知识解决实际问题的能力。
情感态度价值观1. 培养学生对数学的兴趣和好奇心,激发学生研究数学的积极性。
2. 培养学生克服困难的意志,增强学生解决数学问题的信心。
3. 培养学生运用数学知识解决实际问题的意识,提高学生的综合素质。
3. 教学内容3.1 联立方程的概念引导学生通过实际问题抽象出二元一次方程组,理解联立方程的概念。
3.2 解二元一次方程组的方法1. 代入法:引导学生从二元一次方程组中解出一个变量,然后将其代入另一个方程中,求解另一个变量。
2. 加减法:引导学生将二元一次方程组中的方程进行相加或相减,消去一个变量,然后求解另一个变量。
3. 等式相乘法:引导学生将二元一次方程组中的方程进行相乘,然后求解变量。
3.3 应用联立方程解决实际问题引导学生运用联立方程解决实际问题,如几何问题、行程问题等。
4. 教学策略4.1 实例引导通过具体的实际问题,引导学生理解联立方程的产生过程,培养学生的抽象思维能力。
4.2 合作交流组织学生进行小组合作交流,共同探讨解二元一次方程组的方法,培养学生解决数学问题的合作意识和沟通能力。
4.3 实际应用鼓励学生运用联立方程解决实际问题,培养学生的应用能力。
5. 教学评价通过课堂讲解、练和小测验,评估学生对联立方程的概念、方法和应用的掌握程度。
北师大版数学八年级上册2《求解二元一次方程组》教案1一. 教材分析《求解二元一次方程组》是人教版初中数学八年级上册的一章内容。
这一章主要让学生掌握二元一次方程组的解法,以及应用方程组解决实际问题。
此章节在数学知识体系中起着承前启后的作用,为后续学习更复杂的方程组和函数打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了方程和一元一次方程的解法,但对于二元一次方程组,他们可能还缺乏直观的认识和解决方法。
因此,在教学过程中,需要引导学生从实际问题中抽象出二元一次方程组,并通过实例让学生感受方程组的意义和应用。
三. 教学目标1.理解二元一次方程组的含义,掌握二元一次方程组的解法。
2.能够应用二元一次方程组解决实际问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.重点:二元一次方程组的解法及应用。
2.难点:如何引导学生从实际问题中抽象出二元一次方程组,以及解二元一次方程组的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中提出问题,并探索解决问题的方法。
2.使用多媒体教学,通过动画和实例,帮助学生直观地理解二元一次方程组的概念和解法。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生提出二元一次方程组的问题,激发学生的学习兴趣。
2.呈现(10分钟)介绍二元一次方程组的概念,并通过多媒体展示实例,让学生直观地理解二元一次方程组的意义。
3.操练(10分钟)引导学生通过小组讨论,探索解二元一次方程组的方法。
教师在旁边给予指导,并引导学生总结解法。
4.巩固(10分钟)让学生独立解决一些简单的二元一次方程组问题,检验学生对解法的掌握情况。
5.拓展(10分钟)引导学生思考如何应用二元一次方程组解决实际问题,并让学生举例说明。
6.小结(5分钟)教师引导学生总结本节课所学内容,强调二元一次方程组的概念和解法。