【初中数学】北京市各区县2015年中考一模数学试题集(共15套) 通用2
- 格式:doc
- 大小:646.00 KB
- 文档页数:15
东城区2014—2015学年第二学期中考数学试题学校 班级 姓名 考号考生须知1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷上准确填写学校名称、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷和答题卡一并交回. 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是 A .2- B .12-C .12D .22.2015年元旦期间,北京各大公园接待游客达245 000万人次。
其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯B .52.4510⨯C .62.4510⨯D .60.24510⨯ 3.一个几何体的三视图如图所示,则这个几何体是 A .圆柱 B .球 C .圆锥 D . 棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的 中位数和众数分别是分数 50 60 70 80 90 100 人数 12813144A . 70,80B . 70,90C . 80,90D . 80,1005. 在六张卡片上分别写有1π,, 1.5,3,0,23-,从中任意抽取一张,卡片上的数为无理数的概率是A . 16B .13C . 12D . 236.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的延长线于点D ,连接OC ,AC . 若50D ∠=︒,则A ∠的度数是A. 20︒ B .25︒C .40︒D .50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为A. 43.5B. 50C. 56 D . 589. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是A. 3B.2C.23D.410. 如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=︒,点A 与点D重合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是图1 图241.52.24A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my -= . 128272+3的结果为 .13. 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围 是 .14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表 单位: 元/立方米分档水量户年用水量(立方米)水价其中自来水费水资源费污水处理费 第一阶梯 0-180(含)第二阶梯 181-260(含) 第三阶梯260以上某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费 元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.ODBCA16.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1A O 为 边做正方形111A OC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图4B 的坐标是 ,点n B 的坐标是 .三、解答题(本题共30分,每小题5分)17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.求证:DC AB ∥.18. 计算:()11336043-⎛⎫--︒+-+- ⎪⎝⎭π.19.解不等式组:()2131,5 4.2x x x x --⎧⎪⎨-+⎪⎩><20.先化简,再求值:222442111a a a a a a -+-+÷+--,其中21a =. 21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?22.在平面直角坐标系xOy 中,过点()4,2A -向x 轴作垂线,垂足为B ,连接AO .双曲线ky x=经过斜边AO 的中点C ,与边AB 交于点D . (1)求反比例函数的解析式; (2)求△BOD 的面积. 四、解答题(本题共20分,每小题5分)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC 的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.第15题图 第16题图F24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,共调查 名学生; (2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数; (4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB 的延长线交于点E . (1)求证:12∠=∠;(2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值.AG BF EO DCA图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.28. 已知:Rt△A′BC′和 Rt△ABC 重合,∠A′C′B =∠ACB =90°,∠BA′C ′=∠BAC =30°,现将Rt△A′BC′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C 和线段AA′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b <时, {}min a b a =,.如:{}min 122-=-,,{}min 121-=-,.(1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.1 图2 图3ODBCA东城区2014-2015学年第二学期初三综合练习(一)数学试题一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案DBACBCADCB二、填空题(本题共18分,每小题3分) 题号11121314 1516答案()()22m x y x y +-2+439-4m >9703.084(15,8)B ;1(21,2)n n n B --三、解答题(本题共30分,每小题5分) 17. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.33tan 604313334415-⎛⎫--︒+-+- ⎪⎝⎭=-⨯+-+=-解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<,…………2分 1x -由②得,>, …………4分所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+20.解:分当21a =- 时,2-12-12==1-22-112=+原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分 根据题意,列方程得:200=120(25)x x -, …………3分 解得: 15x =. …………5分 答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E . ∵CE x ⊥轴,AB x ⊥轴,()4,2A -, ∴CE AB ∥,()4,0B -. ∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线ky x=经过点C , ∴2k =-.∴反比例函数的解析式为2y x=-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上, ∴点D 的纵坐标为12. …………4分 ∴BODS △11141222OB BD =⋅⋅=⨯⨯=.…………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵DE BC ∥,CE AB ∥, ∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线, ∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分 (2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得5AB x =.∵1122AB CF AC BC ⋅=⋅, ∴255AC BC CF x AB ⋅==. ∵1522CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生;(2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名); 补全条形图如图; …………3分 (3)二胡部分所对应的圆心角的度数为:60200×360°=108°; …………4分 (4)1500×30200=225(名). …………5分答:1500名学生中估计最喜欢古琴的学生人数为225. 25.(1)证明:连结OD ,如图.∵DE 为⊙O 的切线,OD 为半径, ∴OD DE ⊥.∴90ODE ∠=︒,即290ODC ∠+∠=︒.∵OC OD =, ∴C ODC ∠=∠. ∴290C ∠+∠=︒. 而OC OB ⊥,F∴390C ∠+∠=︒.∴23∠=∠.∵13∠=∠,∴12∠=∠. …………2分(2)解:∵:1:3OF OB =,⊙O 的半径为3,∴1OF =.∵12∠=∠,∴EF ED =.在Rt ODE △中,3OD =,设DE x =,则EF x =,1OE x =+.∵222OD DE OE +=,∴()22231x x +=+,解得4x =.∴4DE =,5OE =.∵AG 为⊙O 的切线,OA 为半径,GD 为⊙O 的切线,∴AG AE ⊥,GA GD =.∴90GAE ∠=︒.在Rt AGE △中,设DG t =,则4GE t =+.∵222AG AE GE +=.∴()22284t t +=+,解得,6t =.∴6AG =. -------------------5分26. 解:(1)AF =BE ; …………1分 (2)3AF BE=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒,∴AC BD ⊥,60ABO ∠=︒.∴90FAO AFO ∠+∠=︒.∵AG BE ⊥,∴90EAG BEA ∠+∠=︒.∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分∴AF AO BE OB= . ∵60ABO ∠=︒,AC BD ⊥,∴tan 603AO OB=︒=. ∴3AF BE =…………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B , ∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--.令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+.令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫- ⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分28.解:(1) 当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,BD A A '⊥仍然成立;------------3分(3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒.∵BC BC '=,∴BCC BC C ''∠=∠.∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠.在AEC △和A FC ''△中,90,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△.∴AE A F '=.在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△.∴AD A D '=. ∵AB A B '=,图2图1∴'ABA △为等腰三角形.∴BD A A '⊥------------7分29.解:(1)∵20x ≥,∴2x -1≥-1.∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥.∵2min{2,3}3x x k -+-=-, ∴13k --≥.∴2k -≥. ┉┉5分(3) 37m -≤≤. ┉┉8分。
丰台区2015年度初三毕业及统一练习数学 试 卷2015.5学校 姓名 准考证号 考生须知 1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.如图,数轴上有A ,B ,C,D四个点,其中绝对值为2的数对应的点是A.点A 与点C ﻩﻩB.点A 与点DC.点B与点C ﻩD.点B 与点D2.南水北调工程是迄今为止世界上规模最大的调水工程. 2015年3月25日,记者从北京市南水北调办获悉,北京自来水厂每日利用南水约1 300 000立方米.将1 300 000用科学记数法表示应为 A.70.1310⨯ﻩ B.71.310⨯ C .61.310⨯ﻩ D .51310⨯3. 下面平面图形中能围成三棱柱的是A B C D 4.如图,AB ∥CD ,AB 与EC 交于点F ,如果EA EF =,110C ∠=︒,那么E ∠等于A.30︒ B.40︒ C.70︒ D .110︒5. 如图,数轴上表示的是某不等式组的解集,那么这个不等式组可能是A.23x x -⎧⎨⎩≥>B.23x x -⎧⎨⎩<≤ C .23x x -⎧⎨⎩<≥ D .23x x -⎧⎨⎩>≤6. 关于x的一元二次方程2210mx x --=有两个实数根,那么字母m 的取值范围是A.1m ≥- B.1m >- C.10m m ≠≥-且 D .10m m ≠>-且D CB A 1EA CBDF13312247. 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了下边的折线图,那么符合这一结果的实验最有可能的是A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” B .袋子中有1个红球和2个黄球,它们只有颜色上的区别,ﻫ从中随机地取出一个球是黄球C .掷一枚质地均匀的硬币,落地时结果是“正面向上” D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6 8. 代数式245x x -+的最小值是A.-1 B .1 C.2 D.59. 为增强居民的节水意识,某市自2014年实施“阶梯水价”. 按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是A .240立方米ﻩﻩB .236立方米 C.220立方米 D .200立方米10.如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B便随着向右滑行y 米,反映y 与x 变化关系的大致图象是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:2mx 2-4mx +2m = .12. 某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:一周在校的体育锻炼时间(小时)5 6 7 8 人数2562那么这15名学生这一周在校参加体育锻炼的时间的众数是 小时.频率次数50040030020010000.250.200.150.100.05x (立方米)y (元)14609002601800NM BA。
通州区2015年初三模拟考试数学试卷年4月一、选择题(每题只有一个正确答案,共10个小题,每小题3分,共30分) 1.2-的绝对值是( ) A .2±B .2C .12D .12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320万人次.数据1320万用科学计数法表示正确的是( )A .113210⨯万 B .213.210⨯万 C .31.3210⨯万 D .41.3210⨯万 3.某几何体的三视图如图所示,这个几何体是( ) A .圆柱 B .三棱柱 C. 长方体D .圆锥4.下列等式一定成立的是( ). A.22a a a ⋅=B.22=÷a aC.22423a a a +=D.()33a a -=-5.如图,点A 、D 在射线AE 上,直线AB ∥CD ,∠CDE =140°, 那么∠A 的度数为( ) A .140° B .60° C .50°D .40°6.一个多边形的每一个内角均为108°,那么这个多边形是( ) A .七边形 B .六边形C .五边形D .四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A .85, 90B .85, 87.5C .90, 85D .95, 908.物理某一实验的电路图如图所示,其中K 1,K 2,K 3 为电路开关,L 1 ,L 2为能正常发光的灯泡.任意闭合开关K 1, K 2, K 3中的两个,那么能让两盏灯泡同时..发光的概率为( ) A .31B .32C .21D .61229.如图,AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,那么sin ∠ABD 的值是( )A .43B .34C .35D .4510.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从→C →A 运动.如图(1)所示,设S △DPB = y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则△ABC 的面积为( )DABA .4B .6C .12D .14二、填空题:(每题3分,共18分)11.分解因式:2a 2-4a +2=________________.12.使得分式321x -有意义的x 的取值范围是 . 13.燃灯佛舍利塔(简称燃灯塔)是通州八景之一,该塔始建于南北朝北周宇文时期,距今已有1300多年历史.燃灯塔距运河300 米,是通州的象征.某同学想利用相似三角形的有关知识来求 燃灯塔的高度.他先测量出燃灯塔落在地面上的影长为12米, 然后在同一时刻立一根高2米的标杆,测得标杆影长为0.5米, 14.生物学研究表明在8—17岁期间,男女生身高增长速度规律呈现如下图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是 岁,在 岁时男生女生的身高增长速度是一样的.15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的长等于 .16.如图,在平面直角坐标系xOy 中,四边形ABOC 是正方形,点A 的坐标为(1,1). ¼1AA 是以点B 为圆心,BA 为半径的圆弧;¼12A A 是以点O 为圆心,1OA 为半径的圆弧,¼23A A 是以点C 为圆心,2CA 为半径如图(1)AB初三数学模拟试卷第3页(共8的圆弧,¼34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述做法得到的曲线12345AA A A A A ……称为“正方形的渐开线” 点2015A 的坐标是 .第15题图 第16题图 三、解答题(每题5分,共25分)17.如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D . 求证:AC =OD .18()1201512tan 6012-⎛⎫--︒-- ⎪⎝⎭19.解不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩,并把不等式组的解集在数轴上表示出来.20.已知:2450x x +-=,求代数式22(1)(1)(2)x x x +---的值.21.如图,一次函数y 1=kx +b 的图象与反比例函数y 2= 6x的图象交于A (m ,3),B (-3,n )两点.(1)求一次函数的表达式;通州区2013年至2014年三期自行车投放数量统计图(单位:辆)通州区2013年至2014年三期所投放的自行车租赁点百分比统计图(2)观察函数图象,直接写出关于x的不等式6x>kx+b的解集.四、解答题(每题5分,共25分)22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.23.已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G 是DF中点,连接CG.求证:四边形ECGD是矩形.24.为倡导“1公里步行、3公里单车、5公里汽车(地铁、轻轨)”出行模式, 2013年5月环保公共自行车正式“驶入”通州,通州区分三期投放白绿环保公共自行车.第一期投放租赁点以八通线通州北苑、梨园站为中心,共投放21个租赁点。
2015年北京初三一模汇编---一元二次方程1.通州区已知:2450x x +-=,求代数式22(1)(1)(2)x x x +---的值.2.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某 施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.3房山区.已知x x +-=2280,求代数式x x x x x +÷---++221111211的值.4.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.下图是张磊家2014年3月和4月所交电费的收据:请问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?5.海 淀 区已知关于x 的方程220 (0)kx x k k--=≠.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.6.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)7.延庆关于x 的方程0222=++m x x有两个相等的实数根,那么m 的值为 A .2± B .1± C .1 D . 28.已知2410x x +-=,求代数式22(2)(2)(2)x x x x +-+-+的值9.八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了20分钟,其余的学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑自行车学生速度的2倍,求骑车学生每小时走多少千米?10.东城区 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围是 .11.2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?12.平谷区.关于x 的一元二次方程()2121=0m x mx m --++有两个实数根. (1)求m 的取值范围;(2)当m 为何整数时,此方程的两个根都为正整数.13.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?14西城区已知关于x 的一元二次方程0)2()1(22=+---m m x m x .(1)求证:此方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求实数m 的值.15.门头沟已知关于x 的一元二次方程x 2+2x +k -2=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数,且该方程的根都是整数时,求k 的值.。
丰台区2015年度初三毕业及统一练习数学 试 卷 2015.5学校 姓名 准考证号考生须知1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.如图,数轴上有A ,B ,C ,D 四个点,其中绝对值为2的数对应的点是A .点A 与点CB .点A 与点DC .点B 与点CD .点B 与点D2.南水北调工程是迄今为止世界上规模最大的调水工程. 2015年3月25日,记者从北京市南水北调办获悉,北京自来水厂每日利用南水约1 300 000立方米.将1 300 000用科学记数法表示应为D CB A021-2-1A .70.1310⨯B .71.310⨯C .61.310⨯D .51310⨯3. 下面平面图形中能围成三棱柱的是A B C D 4.如图,AB ∥CD ,AB 与EC 交于点F ,如果EA EF =,110C ∠=︒,那么E ∠等于 A .30︒ B .40︒ C .70︒ D .110︒ 5. 如图,数轴上表示的是某不等式组的解集,那么这个不等式组可能是A .23x x -⎧⎨⎩≥> B .23x x -⎧⎨⎩<≤ C .23x x -⎧⎨⎩<≥ D .23x x -⎧⎨⎩>≤6. 关于x 的一元二次方程2210mx x --=有两个实数根,那么字母m 的取值范围是 A .1m ≥- B .1m >- C .10m m ≠≥-且 D .10m m ≠>-且7. 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了下边的折线图,那么符合这一结果的实验最有可能的是A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .袋子中有1个红球和2个黄球,它们只有颜色上的区别, 从中随机地取出一个球是黄球C .掷一枚质地均匀的硬币,落地时结果是“正面向上”频率次数50040030020010000.250.200.150.100.05D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6 8. 代数式245x x -+的最小值是A .-1B .1C .2D .59. 为增强居民的节水意识,某市自2014年实施“阶梯水价”. 按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是A .240立方米B .236立方米C .220立方米D .200立方米 10.如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B便随着向右滑行y 米,反映y 与x 变化关系的大致图象是A B C D 二、填空题(本题共18分,每小题3分)11.分解因式:2mx 2-4mx +2m = .12. 某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:x (立方米)y (元)14609002601800NM BA一周在校的体育锻炼时间(小时)5 6 7 8人数 2 5 6 2那么这15名学生这一周在校参加体育锻炼的时间的众数是 小时. 13.如图,A ,B ,C 三点都在⊙O 上,如果∠AOB =80°,那么∠ACB = °.14.请写出一个图象经过点(11 ,),并且在第二象限内函数值随着自变量的增大而增大的函数的表达式: .15.如图,O 为跷跷板AB 的中点,支柱OC 与地面MN 垂直,垂足为点C ,且OC =50cm ,当跷跷板的一端B 着地时,另一端A 离地面的高度为 cm. 16.右图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口 A ,B ,C 的机动车辆数如图所示,图中 123,,x x x 分别表示该时段单位时间通过路段»AB,»BC ,»CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则123,,x x x 的大小关系是 .(用“>”、“<”或“=”连接)三、解答题(本题共30分,每小题5分)17.已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF .OACB555035302030CB Ax 2x 1x 3求证:∠B =∠E .18. 计算:0-112sin60(3.14π)12()2+--+o.19.解分式方程:112x x x -=-.20.如果21m m -=,求代数式21)(1)(1)2015m m m -++-+(的值. 21.如图,一次函数122y x =+的图象与x 轴交于点B ,与反比例函数k y x=的图象的一个交点为A(2,m ).(1)求反比例函数的表达式;(2)过点A 作AC ⊥x 轴,垂足为点C ,如果点P 在反比例函数图象上,且△PBC 的面积等于6,请直接写出点P 的坐标. 22.列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.四、解答题(本题共20分,每小题5分)xAyOBCFDECB A23.如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD .(1)求证:四边形DBEF 是矩形;(2)如果∠A =60?,菱形ABCD 的面积为38,求DF 的长.24.根据某市统计局提供的2010~2014年该市地铁运营的相关数据,绘制的统计图表如下:2010~2014年某市地铁运营的日均客流量统计表 2014年某市居民乘地铁出行距离情况统计图根据以上信息解答下列问题:(1)直接写出“2014年某市居民乘地铁出行距离情况统计图”中m 的值;(2)从2010年到2014年,该市地铁的日均客流量每年的增长率近似相等,估算2015年该市地铁运营的日均客流量约为____________万人次;(3)自2015年起,该市地铁运营实行了新票价:乘地铁5公里内(含5公里)收费2元,乘地铁5~15公里(含15公里)收费3元,乘地铁15公里以上收费4元.如果2015年该市居民乘地铁出行距离情况与2014年基本持平,估算2015年该市地铁运营平均每日票款收入约为____________万元.25.如图,⊙O 的直径AB 垂直于弦CD ,垂足为点E ,过点C 作⊙O 的切线,交AB 的延长线于点P ,联结PD .FEDCBA(1)判断直线PD 与⊙O 的位置关系,并加以证明;(2)联结CO 并延长交⊙O 于点F ,联结FP 交CD 于点G ,如果CF =10,4cos 5APC ∠=,求EG 的长. 26.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+. 所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空: 由图2可以得到 , 整理,得 ,图1图2a b ccba c bac baGO PABCD E F所以 .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy中,抛物线22y x mx n=++经过点A(-1,a),B(3,a),且最低点的纵坐标为-4.(1)求抛物线的表达式及a的值;(2)设抛物线顶点C关于y轴的对称点为点D,点P是抛物线对称轴上一动点,记抛物线在点A,B之间的部分为图象G(包含A,B两点).如果直线DP与图象G恰有两个公共点,结合函数图象,求点P纵坐标t的取值范围.28.在△ABC中,CA=CB,CD为AB边的中线,点P是线段AC上任意一点(不与点C重合),过点P作PE交CD于点E,使∠CPE=12∠CAB,过点C作CF⊥PE交PE 的延长线于点F,交AB于点G.(1)如果∠ACB=90°,①如图1,当点P与点A重合时,依题意补全图形,并指出与△CDG全等的一个三角形;②如图2,当点P不与点A重合时,求CFPE的值;(2)如果∠CAB=a,如图3,请直接写出CFPE 的值.(用含a的式子表示)4444123123321213xOy29. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离为 ;(2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值是 ;(3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.图1 图2 图3 4444123123321213xOy丰台区2015年度初三毕业及统一练习参考答案一、选择题(本题共30分,每小题3分)题号12345678910答案B C A B D C D B C A 二、填空题(本题共18分,每小题3分)题号111213141516答案740100三、解答题(本题共30分,每小题5分)17.证明:∵BF=CE,∴BC=EF.……1分∵AC∥DF,∴∠ACB=∠DFE. (2)分∵AC=DF,∴ △ACB≌△DFE. (4)分∴∠B=∠E.……5分21.(1)Q一次函数122y x=+的图象经过点A(2,m),∴3m=.∴点A的坐标为(2,3). ………1分Q反比例函数kyx=的图象经过点A(2,3),18.解:原式=3212322⨯+-+…4分=33-....5分19.解:去分母得:2(2) 2.x x x x --=- (1)分222 2.x x x x -+=- (2)分2.x =-…….3分经检验,2x =-是原方程的解.…….4分所以,原方程的解是2.x =-…….5分20. 解:原式=222112015m m m -++-+…1分 =2222015m m -+……2分 =22()2015m m -+…….3分∵21m m -=,∴原式=2017. …….5分∴6k =………2分 ∴反比例函数的表达式为6.y x=……3分(2)(3,2)(3,2).P P --,………………5分 22. 解:设新馆的展厅总面积为x 万平方米,原两馆大楼的展览面积为y 万平方米,根据题意列方程得:…1分4.2,30.4.x y x y =+=-⎧⎨⎩………3分 解得: 6.5,2.3.x y ==⎧⎨⎩ ………4分答:新馆的展厅总面积为6.5万平方米,原两馆大楼的展览面积为 2.3万平方米. ………5分 23.(1)证明: ∵CE =CD ,CF =CB ,∴四边形DBEF 是平行四边形..…….1分 ∵四边形ABCD 是菱形, ∴CD =CB ..…….2分∴CE =CF ,∴BF =DE ,∴四边形DBEF是矩形..…….3分23.(2)过点D 作DG ⊥BC 于点G ,∴∠DGC =90°. ∵四边形ABCD 是菱形,∠A =60?,∴∠BCD =60°.在Rt△CDG 中,cos ∠BCD =12CG CD =, ∴设CG =x ,则CD =BC =2x ,DG =3x . ∵菱形ABCD 的面积为38,∴83BC DG ⋅=.∴2383x x ⋅=,得2x =±(舍负),∴DG =23..……. 4分 ∵CF =CD ,∠BCD =60°,∴∠DFC =30°. ∴DF =2DG =43..…….5分24.(1)15;…1分(2)483;…2分(3)1593.9.…2分 25.(1)PD 与⊙O 相切于点D ..……. 1分 证明:联结OD∵在⊙O 中,OD OC =,AB CD ⊥于点E , ∴12∠=∠. 又∵OP OP =,∴OCP ∆≌ODP ∆. ∴OCP ODP ∠=∠.又∵PC 切⊙O 于点C ,OC 为⊙O 半径,ABC DEFG M3421FE D CBAPO G5∴OC PC ⊥..……. 2分∴090OCP ∠=.∴090ODP ∠=.∴OD PD ⊥于点D . ∴PD 与⊙O 相切于点D ..……. 3分 (2)作FM AB ⊥于点M .∵090OCP ∠=,CE OP ⊥于点E ,∴03490∠+∠=,0490APC ∠+∠=.∴3APC ∠=∠.∵4cos 5APC ∠=,∴Rt△OCE 中,4cos 35CE OC =∠=.∵10CF =,∴152OF OC CF ===.∴4CE =,3OE =..……. 4分又∵FM AB ⊥,AB CD ⊥,∴090FMO CEO ∠=∠=.∵51∠=∠,OF OC =,∴OFM ∆≌OCE ∆.∴4FM CE ==,3OM OE ==. ∵在Rt△OCE 中,4cos 5PC OP APC =∠=,设4,5PC k OP k ==,∴3OC k =. ∴35k =,53k =.∴253OP =.∴163PE OP OE =-=,343PM OP OM =+=.又∵090FMO GEP ∠=∠=,∴FM ∥GE .∴PGE ∆∽PFM ∆.∴GE PE FM PM =,即1633443GE=.BCAxO yD x =1y =2x -2y =2x 2-4x -2-13-2-4∴3217GE =..……. 5分 26. 22142ab b a c ⨯+-=(),.…….3分 22222ab b ab a c +-+=,.……. 4分 222a b c +=..……. 5分五、解答题27 . 解:(1)∵抛物线22y x mx n =++过点 A (-1,a ),B (3,a ), ∴抛物线的对称轴x =1..……. 1分 ∵抛物线最低点的纵坐标为-4 ,∴抛物线的顶点是(1,-4)..……. 2分 ∴抛物线的表达式是22(1)4y x =--, 即2242y x x =--..…3分把A (-1,a )代入抛物线表达式,求出4a =..……. 4分(2)∵抛物线顶点(1,4)C -关于y 轴的对称点为点D ,∴(1,4)D --. 求出直线CD 的表达式为4y =-. .……. 5分求出直线BD 的表达式为22y x =-,当1x =时,0y =..……. 6分所以40t -<≤..……. 7分28.(1)①作图.……. 1分ADE ∆(或PDE ∆).…….2分②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,.…….3分 ∴CPM CAB ∠=∠.∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF CG ⊥,∴∠PFC =∠PFN =90°.∵PF =PF ,∴PFC ∆≌PFN ∆.∴CF FN =..…….4分 由①得:PME ∆≌CMN ∆.∴PE CN =.∴12CF CF PE CN ==..…….5分 (2)1tan 2α..…….7分 29. (1)4;.…….2分(2)①直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,设l 与,x y 轴的交点分别为,E F ,则1(,0)(0,1)2E F -,.GF E BC(P )A DG FEC D AP BN M∴52EF =..…….3分 ∵EOF MHE ∆∆∽∴MH ME OF EF =,即72152MH=.∴755MH =.∴点M 到直线21y x =+的距离为755..…….4分 ②135a =±..…….6分 (3)3b =-或374b =..…….8分 2020-2-8M 3—121H yOxEF y =2x +1。
北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20°B .40°C .60°D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 75.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分)11.若分式21-x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a -,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据;(3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份公共自行车投放数量(万辆)利用公共自行车出行人数(万人)2012 1.4 约9.92013 2.5 约17.62014 4 约27.62015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果,精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O 切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).图1图2图328.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a ,n n an 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数.∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,=………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD ,∵ED 为⊙O 的切线,∴OD ⊥ED .……………………………………………………………………………1分 ∵AB 为⊙O 的直径,∴∠ACB =90°. ………………………………………………………………………… 2分 ∵BC ∥ED ,∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………3分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD =……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD ,∴tan ∠CBD = tan ∠BAD . 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ……………………………………………………………5分 26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE=. …………………………………………………………………………5分(2=BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分图1∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k .∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
北京市通州区2015年中考一模数学试卷一、选择题(每题只有一个正确答案,共10个小题,每小题3分,共30分) 1.2-的绝对值是( )A .2±B .2C .12 D .12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320万人次.数据1320万用科学计数法表示正确的是( ) A .113210⨯万 B .213.210⨯万 C .31.3210⨯万 D .41.3210⨯万 3.某几何体的三视图如图所示,这个几何体是( ) A .圆柱 B .三棱柱 C. 长方体D .圆锥4.下列等式一定成立的是( ). A.22a a a ⋅=B.22=÷a a C .22423a a a += D.()33a a -=-5.如图,点A 、D 在射线AE 上,直线AB ∥CD ,∠CDE =140°, 那么∠A 的度数为( ) A .140° B .60°C .50°D .40°6.一个多边形的每一个内角均为108°,那么这个多边形是( ) A .七边形B .六边形C .五边形D .四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A .85, 90B .85, 87.5C .90, 85D .95, 908.物理某一实验的电路图如图所示,其中K 1,K 2,K 3 为电路开关,L 1 ,L 2为能正常发光的灯泡.任意闭合开关K 1, K 2, K 3中的两个,那么能让两盏灯泡同时..发光的概率为( ) A .31B .32C.21D .6129.如图,AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,那么sin ∠ABD的值是()A.43B.34C.35D.4510.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从BA 运动.如图(1)所示,设S△DPB= y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则△ABCA.4 B.6 C.12 D.14二、填空题:(每题3分,共18分)11.分解因式:2a2-4a+2=________________.12.使得分式321x-有意义的x的取值范围是 .13.燃灯佛舍利塔(简称燃灯塔)是通州八景之一,该塔始建于南北朝北周宇文时期,距今已有1300多年历史.燃灯塔距运河300米,是通州的象征.某同学想利用相似三角形的有关知识来求燃灯塔的高度.他先测量出燃灯塔落在地面上的影长为12米,然后在同一时刻立一根高2米的标杆,测得标杆影长为0.5米,14.生物学研究表明在8—17岁期间,男女生身高增长速度规律呈现如下图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是岁,在岁时男生女生的身高增长速度是一样的.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿着过点B的直线折如图(1)A B叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的长等于 . 16.如图,在平面直角坐标系xOy 中,四边形ABOC 是正方形,点A 的坐标为(1,1).¼1AA 是以点B 为圆心,BA 为半径的圆弧;¼12A A 是以点O 为圆心,1OA 为半径的圆弧,¼23A A 是以点C 为圆心,2CA 为半径的圆弧,¼34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述做法得到的曲线12345AA A A A A ……称为“正方形的渐开线”,那么点5A 的坐标是 , 点A 的坐标是 .第15题图 第16题图 三、解答题(每题5分,共25分)17.如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D . 求证:AC =OD .18()1201512tan 6012-⎛⎫--︒-- ⎪⎝⎭19.解不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩,并把不等式组的解集在数轴上表示出来.20.已知:2450x x +-=,求代数式22(1)(1)(2)x x x +---的值.通州区2013年至2014年三期自行车投放数量统计图(单位:辆)通州区2013年至2014年三期所投放的自行车租赁点百分比统计图21.如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(m,3),B(-3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式6x>kx+四、解答题(每题5分,共25分)22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.23.已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形 ECGD是矩形.24.为倡导“1公里步行、3公里单车、5公里汽车(地铁、轻轨)”出行模式, 2013年5月环保公共自行车正式“驶入”通州,通州区分三期投放白绿环保公共自行车.第一期投放租赁点以八通线通州北苑、梨园站为中心,共投放21个租赁点。
北京市海淀区初三数学一模试卷及答案数学2015.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A .50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为A .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140° 6.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CEBba 217.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6 B. CD .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.A B CDS /千米13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意的观点, 理由是.16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿; (3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.25.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,过点C 作⊙O 与边AB相切于点E ,交BC 于点F ,CE 为⊙O 的直径. (1) 求证:OD ⊥CE ;(2) 若DF =1, DC =3,求AE 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC +DE 的值为_______. 参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:EDC B AEDCBA若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)b n '<二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17.(本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分18. (本小题满分5分) 解:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得3x <. ……………………………………………………2分由不等式②得2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解:22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分20. (本小题满分5分) 证明: ∠EBC =∠FCB ,ABE FCD ∴∠=∠.…………………………………………………………1分在△ABE 与△FCD 中,,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD .………………………………………………………………………5分21. (本小题满分5分) (1)证明: 0k ≠,∴220 kx x k--=是关于x 的一元二次方程. 22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x =.∴1221,x x k k==-. …………………………………………………………4分 方程的两个实数根都是整数,且k 是整数,∴1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解:设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得4x =. ………………………………………………………3分经检验,4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分)(1)证明: 四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F . ∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠= . 90DAB ∴∠=.又 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°,∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分在Rt △AHB 中,∠HAB=45°,∴sin 45BH AB =⋅= …………………………………………4分 在Rt △BHE 中,∠BHE=90°, ∴sin ∠AEB=BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分 (2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)(1)证明: ⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在⊙O 上, ∴∠EFC =90°. CE ⊥AB , ∴∠BEC =90°.∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠. ∴tan tan BEF ECF ∠=∠. ∴BF EF EFFC=.又 DF =1, BD=DC =3,∴ BF =2, FC =4.∴EF = ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得BE . ……………………4分EF ∥AD , ∴21BE BF EA FD ==.∴AE = ……………………………………………………5分26. (本小题满分5分)解:BC +DE. ……………………………………………………2分解决问题:连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形, ∴AB // FE ,BF =AE . ∴DC //FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-,∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上. 设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2)∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =,当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时,点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分图 1图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC .,. 是菱形ABCD 的对角线,∴. ……………………………………………………………2分GFEDCBA120ADC ∠=︒60DCB ∴∠=︒AC 1302DCA DCB ∠=∠=︒GFEDCBA.由菱形的对称性可知,, .……………………………………………………………………3分.GEB CBE ∴∠=∠.,.…………………………………………………………4分EBG BEC ∴∠=∠.在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC .,. 是菱形ABCD 的对角线,∴. ………………………2分.由菱形的对称性可知,,.……………………………………………3分50FBC ∠=︒ ,图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分BH EH ∴=.180100EDC DEC DCA ∴∠=︒-∠-∠=︒50BEC DEC ∠=∠=︒100EBC EDC ∠=∠=︒100GEB DEC BEC ∴∠=∠+∠=︒50FBC ∠=︒ 50EBG EBC FBC ∴∠=∠-∠=︒120ADC ∠=︒60DCB ∴∠=︒AC 1302DCA DCB ∠=∠=︒180100EDC DEC DCA ∴∠=︒-∠-∠=︒50BEC DEC ∠=∠=︒100EBC EDC ∠=∠=︒HGF EDCBA在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分(3). …………………………………………………………………7分 29.(本小题满分8分) 解:(1)①; ……………………………………………………………………1分②点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当时,取最大值2.当时,.5x ∴=. ………………………………………3分当时,或.2x ∴=-或8x =. ………………………………4分52≤≤b '- ,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分(3),∴顶点坐标为.………………………………………………………………6分若,的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,的最小值为,即;AE BG +=1x =b '2b '=-23x -=-+5b '=-53x -=-53x -=-+2222()y x tx t t x t t =-++=-+ (,)t t 1t <b 'y t m t =当时,的值小于,即..∴s 关于t 的函数解析式为211)s t t =+≥ ( . ……………………………7分当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分海 淀 区 九 年 级 第 二 学 期 期 中 练 习(二模)数学2015.6下面各题均有四个选项,其中只有一个..是符合题意的. 1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3119万册,其中古籍善本约有2000000册.2000000用科学记数法可以表示为1x <y 2[(1)]t t --+2[(1)]n t t =--+22(1)1s m n t t t t ∴=-=+-+=+A .70.210⨯B .6210⨯C .52010⨯D .6102⨯ 2.若二次根式x 的取值范围是A . 0≤xB .0≥xC .2≤xD . 2≥x3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为A .13B .4C .6D .124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形A B C D5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立A .()2222a b a ab b +=++ B.()2222a b a ab b -=-+C.()()22a b a b a b +-=-D.()2a a b a ab -=-6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是 A .甲的方差比乙的方差小 B .甲的方差比乙的方差大 C .甲的平均数比乙的平均数小 D .甲的平均数比乙的平均数大7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:a对于“想一想”中的问题,下列回答正确的是:A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱A .45元B .50元C .55元D . 60元9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A ,B 两点间的距离为 A .2BC.10.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQDBAC PQO的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为.12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是.13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为. 14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,则点B 与点C 的距离为米.15.如图,在Rt △ABC 中,∠C =90°,∠BAC =30°, BC =1,以B 为圆心, BA 为半径画弧交CB 的延长线与点D ,则 AC 的长为.16.五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为 (7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.三、解答题(本题共30分,每小题5分)17.计算:11tan 45+()3-+︒-.18.解不等式2(1)13x x -≤+,并把它的解集在数轴上表示出来.19.如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°,BE=BD .求证:∠E =∠D .20.已知2410x x --=,求代数式314x x x---的值.21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.22.已知关于x 的方程24310x x a -+-=有两个实数根. (1)求实数a 的取值范围; (2)若a 为正整数,求方程的根.四、解答题(本题共20分,每小题5分)23.已知,ABC △中,D 是BC 上的一点,且∠DAC=30°,过点D 作ED ⊥AD 交AC 于点E ,4AE =,2EC =.(1)求证:AD=CD ;(2)若tan B=3,求线段AB 的长.24. 小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:经过调查,他们得到了如下36个数据:DAB C B A D A C D B C B C D C D C E C C A B E A D E C B C B C E D E D D C(1)小明用表格整理了上面的调查数据,写出表格中m 和n 的值; (2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗?.(填“适中”或者“不适中”)25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.26.阅读下面材料:小明研究了这样一个问题:求使得等式20(0)kx x k +-=>成立的x 的个数.小明发现,先将该等式转化为2kx x +=,再通过研究函数2y kx =+的图象与函数y x =的图象(如图)的交点,使问题得到解决.F请回答:(1) 当k =1时,使得原等式成立的x 的个数为_______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为_______.参考小明思考问题的方法,解决问题:关于x的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.()28.如图1,在△ABC 中,AB =AC ,∠ABC =α,D 是BC 边上一点,以AD 为边作△ADE ,使AE =AD , DAE ∠+BAC ∠=180°. (1)直接写出∠ADE 的度数(用含α的式子表示); (2)以AB ,AE 为边作平行四边形ABFE ,①如图2,若点F 恰好落在DE 上,求证:BD =CD ; ②如图3,若点F 恰好落在BC 上,求证:BD =CF .图1 图2 图329. 如图1,在平面直角坐标系xOy 内,已知点(1,0)A -,(1,1)B -,(1,0)C ,(1,1)D ,记线段AB 为1T ,线段CD 为2T ,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与1T ,2T 都有公共点,则称点P 是12T T -联络点.例如,点P 1(0,)2是12T T -联络点.(1)以下各点中,__________________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).图1备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部分表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点, ①若1r =,求点M 的纵坐标; ②求r 的取值范围.海淀区九年级第二学期期末练习数学试卷答案及评分参考2015.6一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17.(本小题满分5分)解:原式213=+-……………………..……………………………………………………...4分4=.……………………………………………………………………………………...5分18. (本小题满分5分) 解法一:去括号,得22133x x -+≤.…………………………………………………………………..1分 移项, 得22133x x -+≤.…………………………………………………………………..2分 合并,得 1533x -≤.……………………………………………………………………3分系数化为1,得 5x -≥.…………………………………………………………...……4分不等式的解集在数轴上表示如下:. …………………………………………………………5分解法二:去分母,得 2233x x -+≤.…………………………………………………………………1分移项, 得 2332x x -+≤.……………………………………………………………………2分合并, 得 5x -≤.………………………………………………………………..3分 系数化为1,得 5x -≥.…………………………………………………………………..4分不等式的解集在数轴上表示如下:. …………………………………………………………5分19.(本小题满分5分) 证明:在△ABC 中 ∵∠BAC =∠BCA ,∴AB =CB .……………………………………………1分 ∵∠BAE =∠BCD =90°, 在Rt △EAB 和Rt △DCB 中, ,,AB CB BE BD =⎧⎨=⎩∴Rt △EAB ≌Rt △DCB .……………………………………4分 ∴∠E =∠D . …………………………………………5分20.(本小题满分5分) 解:原式()()()3444x x x x x x x --=---……………………………………………………………………….1分()2344x x x x x --+=-……………………………………………..………………………………2分22444x x x x-+=-.………………………………………………………………………………3分 ∵2410x x --=,∴241x x -=.………………………………………………………………………………………4分 ∴原式1451+==.………………………………………………………………………………..5分 21. (本小题满分5分)解:设小明家到学校的距离为x 米.……………………………………………………………………..1分由题意,得403025x x +=.………………………………………………………………………..3分解得 6000x =.……………………………………………………………………..4分答:小明家到学校的距离为6000米.………………………………………………………………….5分22. (本小题满分5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………………………..1分解得 53a ≤.……………………………………………………………………………………2分∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.…………………………………………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x ==………………………………………………………5分DA四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt △ADE 中,∠DAE=30°,AE =4, ∴60DEA =∠o ,122DE AE ==.………………………………………………………………1分 ∵2EC =, ∴DE EC =. ∴EDC C =∠∠.又60,EDC C DEA +=∠=∠∠o Q∴30C DAE =∠=∠o.∴AD=DC . ………………….…………………………………………………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图. ∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt △AFC 中,∠AFC =90°,∠C=30°, ∴132AF AC ==…………………………………………………………………………3分 在Rt △AFB 中,∠AFB =90°,tan B=3, ∴1tan AFBF B==.……….………………………………………………………………………4分∴AB ……….……………………………………………………………5分24. (本小题满分5分)(1)8m =;5n =;………………………………………………………………………………...2分 (2)………………………………………………………………...4分(3)适中. ………………………………………………………………………………….5分 25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩∴△OEC ≌△OAC .………………………………………………………………………………..1分 ∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E .∴CF 与⊙O 相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.FF在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF ,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=,∴tan 6AC AF F =⋅=.…………………………………………………………………………4分 ∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC =∴BD=.26. (本小题满分5分)解:(1)当k =1时,使得原等式成立的x (2)当0<k <1(3)当k >1时,使得原等式成立的x 解决问题:将不等式240 (x a a x +-<研究函数2(0)y x a a =+>与函数4y x=∵函数4y x=的图象经过点A (1,4),B 函数2y x =的图象经过点C (1,1),D 若函数2(0)y x a a =+>经过点A (1,4)结合图象可知,当03a <<时,关于x 也就是当03a <<时,关于x 的不等式x五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-.∴抛物线的表达式为232y x x =-++.…………………………………………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧,∴点B 的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分 (2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D ,∴点D 的坐标为(1,0).…………………………………………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………………………………………5分 (3)1t <或3t >……………………………………………………………………………………………7分(1)∠ADE =90α︒-.…………………………………………………………………………………….…1分 (2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=.…………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC ,∴BD =CD .……………………………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF .∴EAC C α∠=∠=.……………………………………………………………………………………………5分 由(1)知,2DAE α∠=,∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠. ∴AD =CD . ∵AD =AE =BF , ∴BF =CD .∴BD =CF .………………………………………………………………………………………………………7分α∴AF=,sinAOAFOAF∠==.在Rt△FEM中,∠FEM=90°,FM = FO + OM = r +12,sin sinEFM AFO∠=∠=,∴sinME FM EFM=⋅∠=.r>.又∵0r>,∴02r<<.……………………………………………………………………………………8分。
北京市怀柔区2015年高级中等学校招生模拟考试(一)数学试卷 2015.5考生须知1.本试卷共6页,共五道大题,29道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.1.把8000用科学计数法表示是A.28010⨯ B.3810⨯ C.40.810⨯D.4810⨯2.数轴上有A,B,C,D四个点,其中绝对值相等的点是A.点A与点DB. 点A与点CC. 点B与点CD. 点B与点D3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球. 袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为A.101B.51C.41D.215. 如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为A.30° B.60° C.80° D.120°6.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是A. 3B. 4C. 5D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的颜色红色橙色黄色绿色蓝色紫色褐色数量 6 4 3 3 2 2 5xDCBA123–1–2–3A .平均数B .众数C .中位数D .方差 8.如图,已知正方形ABCD 中,G 、P 分别是DC 、BC 上的点,E 、F 分别 是AP 、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时, 下列结论成立的是A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3), 则不等式2x≥ax+4的解集为 A .x≥B. x≤3 C . x ≤D .x ≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x 的取值范围是_________________. 12.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第 个.G FE PD CBA①②③④⑤xy 图2OPEDCBA图114.如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16,则矩形ABCD的面积为 .15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个 “半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2014年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为 立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到 元(一年按365天计算).三、解答题(本题共30分,每小题5分)17.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-︒+19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b =,求代数式2243(3)9a b a b a b++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.22.已知:关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值.FEDCB A四、解答题(本题共20分,每小题5分)23. 如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;(2)若∠ABC =60°,BD =4,求平行四边形ADEF 的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司的股东总利润情况见右表:该公司老板根据表中数据,作出了图1,并声称股东利润和工人工资同步增长,公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:(1)这三个月工人个人的月收入分别是 万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)25. 如图,AB 是⊙O 的直径,C 是弧AB 的中点,D 是⊙O 的切线CN 上一点,BD 交AC 于点E ,且BA= BD . (1)求证:∠ACD=45°;(2)若OB=2,求DC 的长.月份 工人工资总额(万元) 股东总利润(万元)1 28 142 30 163 32 18N EC BA O 股东利润工人工资(万元)图1 123股东(万元)个人收入图226.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中, ∠A =2∠B,CD 平分∠A CB ,AD=2.2,AC=3.6 求BC 的长.小聪思考:因为CD 平分∠A CB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.(2)BC 的长为__________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC 中,AB=AC, ∠A =20°, BD 平分∠ABC,BD=2.3,BC=2.求AD 的长. 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a(1)求a 的值. (2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m 2+1个单位,当 -2≤x ≤1时,二次函数有最小值-3求实数m 的值.28.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD 交直线AP 于点E .(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB <120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.C ED C B A BC 27题图29. 对某种几何图形给出如下定义: 符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1)如图1,在△ABC 中,AB=AC ,∠BAC=90°,A(0,2),B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE ,且DE ⊥x 轴于点G. 则直线DE 的表达式是 .(2)当△ABC 是等边三角形时,在(1①当点B 运动到如图2的位置时,AC ∥x 轴,则C 点的坐标是 . ②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式.③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,则CE 的取值范围是 .ABCP ABCP怀柔区2014—2015学年度中考模拟练习(一)数学试卷答案及评分参考二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17.(本小题满分5分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分 ∴BC=DE. …………………………………5分 18.解:原式=1+-222+……………………………………4分 =1+5分 19. 解①得:x<2,…………………………………………………………2分解②得:x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分20. 解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b +=-……………………………………………3分∵32a b =, ∴23a b =. ………………………………………………4分∴原式=662aa a =--. ……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分. 由题意,得120040028x x=+……………………………………3分. 解得x=14. ……………………………………4分.经检验,x=14是原方程的解,且符合题意. ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.22.(1)证明:△2(41)4(33)k k k =+-+2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数 ∴12k ≠即210k -≠. ∴△2(21)0k =->∴方程有两个不相等的实数根. ………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形. ………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°,∴DG =BD =×4=2,………………………………………3分 ∵BE =DE ,∴BH =DH =2,∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分 24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一.…………………………………5分25. (1)证明:∵C 是弧AB 的中点,∴弧AC=弧BC,∴AC=BC.∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠BAC=∠CBA=45°, 连接OC, ∵OC=OA, ∴∠AC0=45°. ∵CN 是⊙O 切线,∴∠OCD=90°,∴∠ACD=45°. ………………………………2分.(2) 解:作BH ⊥DC 于H 点,…………………………3分. ∵∠ACD=45°,∴∠DCB=135°, ∴∠BCH=45°, ∵OB=2,∴BA= BD=4,AC= BC=. ∵BC=,∴BH= CH=2, 设DC=x,在Rt △DBH 中,利用勾股定理:2222)24x ++=(,………4分. 解得:x=2-±,∴x=2-+∴DC的长为:2-+5分. 26.解:(1)△BDE 是等腰三角形. ………………………1分. (2)BC 的长为5.8.………………………………2分. ∵△ABC 中,AB=AC, ∠A =20°, ∴∠A BC=∠C= 80°,∵BD 平分∠B. ∴∠1=∠2= 40°,∠BDC= 60°,.在BA 边上取点E ,使BE=BC=2,连接DE ,. (3)则△DEB ≌△DBC ,∴∠BED=∠C= 80°, ∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF=DB ,连接FE ,…………………………4则△BDE ≌△FDE ,∴∠5=∠1= 40°,BE=EF=2, ∵∠A =20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.五、解答题(本题共22分,第27题7分,第28题7分,第29题27.解:(1)∵二次函数y=(a-1)x 2+2x+1与x 轴有交点,令y=0,则(a-1)x 2+2x+1=0,∴=4-4(a-1)0∆≥,解得a ≤2. …………………………………1分. ∵a 为正整数. ∴a=1、2又∵y=(a-1)x 2+2x+1是二次函数,∴a-1≠0,∴a ≠1, ∴a 的值为2. ………………………………………2分(2)∵a=2,∴二次函数表达式为y=x 2+2x+1,将二次函数y=x 2+2x+1化成顶点式y=(x+1)2二次函数图象向右平移m 个单位,向下平移m 2+1个单位后的表达式为y=(x+1-m )2-(m 2+1).此时函数的顶点坐标为(m-1, -m 2-1). …………………………………4分 当m-1<-2,即m <-1时, x=-2时,二次函数有最小值-3,∴-3=(-1-m )2-(m 2+1),解得32m =-且符合题目要求. ………………………………5分 当 -2≤m-1≤1,即-1≤m ≤2,时,当 x= m-1时,二次函数有最小值-m 2-1=-3,解得m =.∵m =-1≤m ≤2的条件,舍去.∴m =.……………………………………6分当m-1>1,即m >2时,当 x=1时,二次函数有最小值-3, ∴-3=(2-m )2-(m 2+1),解得32m =,不符合m >2的条件舍去. 综上所述,m 的值为32-……………………………………7分 28.解:(1)补全图形,如图1所示. …………………………… 1分(2)连接AD ,如图2.∵点D 与点B 关于直线AP 对称,∴AD=AB ,∠DAP = ∠BAP =30°.∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°…………………………… 3分(3)线段AB,CE,ED 可以构成一个含有60°角的三角形. …………………………… 4分 证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称, ∴AD=AB ,DE=BE , 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.∴AD=AC, ∴∠ADE = ∠ACE.∴∠ABE = ∠ACE.设AC ,BE 交于点F,又∵∠AFB = ∠CFE.∴∠B AC = ∠BEC=60°.∴线段AB,CE,ED 可以构成一个含有60°角的三角形.………7分29. 解:(1)x=2. …………………………1分.(2)①C 点坐标为:2)…………………………3分.P E D C BA P E D C BA②由①C点坐标为: ,23()再求得其它一个点C1),或(0,-2)等代入表达式y=kx+b,解得b=-2 k⎧⎪⎨=⎪⎩∴直线的表达式是2y=-.………………………5分.动点C运动形成直线如图所示.……………6分.EC≤<…………………………8分.11北京中考网-北达教育旗下 名师一对一辅导 电话400-668-7882北京中考网—北达教育旗下 名师一对一辅导 电话 400-668-788212 相关信息链接:北达教育|百度百科|百度贴吧北达教育北达教育总部位于北京大学校内,分校遍及北京各城区40多所,多年来被家长认可的教育机构,法制晚报曾报道:是什么让北达教育成为京城良好口碑课外辅导品牌?为此北达教育被法制晚报评为:公众最信赖知名教育品牌!曾多次被新浪网,中国网评为课外绿色发展机构!北达教育为中央电视台推荐品牌。
2015年大兴区中考数学综合练习(一)学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的相反数是A .12 B . 12- C .2 D .2- 2.截止到2015年4月9日0时,北京小客车指标申请累计收到个人申请491671个,第四轮摇号中签率接近28比1. 将491671用科学记数法表示应为A .4101671.49⨯ B .51091671.4⨯ C .61091671.4⨯ D .710491671.0⨯ 3.如图,△ABC 中,D 、E 分别为AC 、BC 边上的点,AB ∥DE , 若AD =5,CD =3,DE =4,则AB 的长为 A .332B .316 C .310D .384.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为 A .150人B .300人C .600人D .900人5.布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是 A .271 B .91 C .92 D .136.下列图形中,阴影部分面积为1的是A .B .(x ≥C .D .21-7.如图3,四边形OABC 为菱形,点A 、B 在以点O 为圆心的弧DE 上, 若OA =3,∠1=∠2,则扇形ODE 的面积为 A.3π2 B. 2π C.5π2D. 3π 8. 如图,已知点F 的坐标为(3,0),点A 、B 分别是某函数图像与x 轴、y 轴的交点,点P 是此图像上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:d =5-35x (0≤x ≤5),则结论:① AF = 2 ② BF =4③OA =5 ④ OB =3,正确结论的序号是A .①②③B ①③C .①②④D .③④ 二、填空题(本题共16分,每小题4分) 9.函数1-=x y 中,自变量x 的取值范围是 .10.分解因式: 22ay ax -= .11.如图,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠ACE +∠BDE = . 12..将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n (n 为正整数)个图中,挖去的所有三角形形的面积和为 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分)13. 计算:21)2011(60tan 3201-+-+--π.14.解不等式组1(4)223(1) 5.x x x ⎧+<⎪⎨⎪-->⎩,ED CBA O DB O15.已知,在△ABC 中,DE ∥AB ,FG ∥AC ,BE =GC . 求证:DE =FB .16.已知直线b x k y 1+=与双曲线xk y 2=相交于点A (2,4),且与x 轴、y 轴分别交于B 、C 两点,AD 垂直平分OB ,垂足为D ,求直线和双曲线的解析式。
17.列方程或方程组解应用题:根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路. 铺设600 m 后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?18.在平面直角坐标系中,点A 的坐标是(0,6),点B 在一次函数y =-x +m 的图象上,且AB =OB =5.求一次函数的解析式.G FE DCB A四、解答题(本题共20分,每小题5分)19.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90°,∠C =45°,上底AD = 8,AB =12,CD边的垂直平分线交BC 边于点G ,且交AB 的延长线于点E ,求AE 的长.20.如图,在边长为1的正方形网格内,点A 、B 、C 、D 、E 均在格点处.请你判断∠x +∠y的度数,并加以证明.21.2010年5月20日上午10时起,2010年广州亚运会门票全面发售.下表为抄录广州亚运会官方网公布的三类比赛的部分门票价格,下图为某公司购买的门票种类、数量所绘制成的条形统计图.依据上面的表和图,回答下列问题:(1)其中观看羽毛球比赛的门票有 张;观看田径比赛的门票占全部门票的 %. (2)公司决定采用随机抽取的方式把门票分配给部分员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小丽抽到艺术体操门票的概率是 .(3)若该公司购买全部门票共花了36000元,试求每张田径门票的价格.GFE DCBA22.一块矩形纸片,利用割补的办法可以拼成一块与它面积相等的平行四边形(如图1所示): 请你根据图1作法的提示,利用图2画出一个平行四边形,使该平行四边形的面积等于所给的矩形面积.要求:(1)画出的平行四边形有且只有一个顶 点与B 点重合; (2)写出画图步骤;(3)写出所画的平行四边形的名称.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,矩形ABCO 的面积为15,边OA 比OC 大2,E 为BC 的中点,以OE 为直径的⊙O ′交x 轴于D 点,过点D 作DF ⊥AE 于F . (1) 求OA ,OC 的长; (2) 求证:DF 为⊙O ′的切线;(3)由已知可得,△AOE 是等腰三角形.那么在直线BC 上是否存在除点E 以外的点P ,使△AOP 也是等腰三角形?如果存在,请你证明点P 与⊙O ′的位置关系,如果不存在,请说明理由.图1D 'D CB A图2DCBA24.已知:如图,在四边形ABCD 中, AD =BC ,∠A 、∠B 均为锐角.(1) 当∠A =∠B 时,则CD 与A B 的位置关系是CD AB ,大小关系是CD AB ; (2) 当∠A >∠B 时,(1)中C D 与A B 的大小关系是否还成立,证明你的结论.25.如图,在平面直角坐标系中,点A 的坐标为(1,点B 在x 轴的负半轴上, ∠ABO =30°.(1)求过点A 、O 、B 的抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点C ,使AC +OC 的值最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)在(1)中x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴的垂线,交直线AB 于点D ,线段OD 把△AOB 分成两个三角形.使其中一个三角形面积与四边形BPOD 面积比为2:3 ?若存在,求出点P 的坐标;若不存在,请说明理由.D CBA参考答案及评分标准一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.二、填空题(本题共16分,每小题4分) 9.1≥x .10. a(x+y)(x-y) .11. 90º .12.⎪⎭⎫⎝⎛25681)43(4或,n )(431-. 三、解答题(本题共30分,每小题5分) 13. 计算:21)2011(60tan 3)2(01-+-+--π. 解:原式=2113321++⨯- …………………………………………4分 =1-. ……………………………………………………5分 14.解:解不等式2)4(21<+x ,得0<x . …………………………2分 解不等式5)1(3>--x x ,得1-<x .………………………………4分 ∴原不等式组的解集为1-<x . …………………………………5分 15.证明:∵DE ∥AB∴∠B=∠DEC ………………………………1分又∵FG ∥AC ∴∠FGB=∠C∵BE=GC …………………………2分 ∴BE+EG=GC+EG即BG=EC …………………………3分 在△FBG 和△DEC 中⎪⎩⎪⎨⎧∠=∠=∠=∠C FGB EC BG DEC B∴△FBG ≌△DEC ……………………4分∴DE=FB …………………5分16.解法一:∵双曲线xk y 2=经过点A (1,2) ∴22=k …………………………1分 ∴双曲线的解析式为xy 2=…………………………2分 由题意,得OD=1,OB =2∴B 点坐标为(2,0) …………………………3分∵直线b x k y +=1经过点A (1,2),B (2,0)∴⎩⎨⎧=+=+02211b k b k ∴⎩⎨⎧=-=421b k ………………4分∴直线的解析式为42+-=x y ……………………5分解法二:同解法一,双曲线的解析式为xy 2= ∵AD 垂直平分OB ,∴AD //CO ∴点A 是BC 的中点,∴CO =2AD =4∴点C 的坐标是(0,4) ……………………………3分∵直线b x k y 1+=经过点A (1,2),C (0,4)∴⎩⎨⎧==+421b b k∴⎩⎨⎧=-=421b k ………………4分∴直线的解析式为42+-=x y ……………………5分17.【答案】解:设原计划每天铺设公路x 米,根据题意,得……………………1分926004800600=-+x x . ……………………3分 去分母,得 1200+4200=18x (或18x =5400)解得 300x =. ……………………4分 经检验,300x =是原方程的解且符合题意. ……………………5分 答:原计划每天铺设公路300米.18.解:∵AB =OB ,点B 在线段OA 的垂直平分线BM 上,如图,当点B 在第一象限时,OM =3,OB =5.在Rt △OBM 中,4BM ==. …………1分∴ B (4,3). …………………………………2分 ∵ 点B 在y =-x +m 上, ∴ m =7.∴ 一次函数的解析式为7y x =-+. …………3分 当点B 在第二象限时,根据对称性,B '(-4,3) …………4分 ∵ 点B'在y =-x +m 上, ∴ m =-1.∴ 一次函数的解析式为1y x =--. ……………………5分 综上所述,一次函数的解析式为7y x =-+或1y x =--.四、解答题(本题共20分,每小题5分)19. 解:联结DG ………………………………………1分 ∵EF 是CD 的垂直平分线∴DG =CG ………………………………………2分 ∴∠GDC =∠C , 且∠C =45° ∴∠DGC =90° ∵AD ∥BC ,∠A =90° ∴∠ABC =90°∴四边形ABGD 是矩形………………………………………3分 ∴BG =AD =8∴∠FGC =∠BGE =∠E = 45°∴BE =BG =8 ………………………………………4分 ∴AE =AB +BE =12+8=20………………………………………5分20.答:∠x +∠y =45°. ……………………………………1分 证明:如图,以AG 所在直线为对称轴,作AC 的轴对称图形AF ,连结BF ,∵网格中的小正方形边长为1,且A 、B 、F 均在格点处, ∴AB=BF =13,AF =26. ∴222BF AB AF +=∴△ABF 为等腰直角三角形,且∠ABF =90°. …………………2分 ∴∠BAF=∠BF A =45°.∵AF 与AC 关于直线AG 轴对称, ∴∠F AG =∠CAG . 又∵AG ∥EC , ∴∠x =∠CAG .∴∠x =∠F AG. ………………………………………………………3分 ∵DB ∥AG ,∴∠y =∠BAG . ………………………………………………………4分 ∴∠x +∠y=∠F AG+∠BAG =45°. ………………………………5分 21.解:(1) 30 ; 20 %. ……………………………………………2分 (2)21. …………………………………………………3分 (3)解:由图可知,该公司购买羽毛球门票30张、艺术体操门票50张、田径门票20张, ∴30×400+50×240+20x =36000. 解得,x =600(元).答:每张田径门票的价格是600元. ………………………………5分 22.解:(1)过点C 作射线CE (不过A 、D 点); ………………………1分 (2)过点B 作射线BF ∥CE ,且交DA 的延长线于点F ; ………2分 (3)在CE 上任取一点G ,连结BG ; ………………………3分 (4)过点F 作FE ∥BG ,交射线CE 于点E . …………………4分则四边形BGEF 为所画的平行四边形.……………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. (1)解:在矩形ABCO 中,设OC=x ,则OA=x +2,依题意得,x(x+2)=15.解得.5,321-==x x (不合题意,舍去)∴ OC=3 ,OA =5 . …………………………………1分(2)证明:连结O′D ,在矩形OABC 中,∵ OC=AB ,∠OCB =∠ABC ,E 为BC 的中点,∴△OCE ≌△ABE .∴ EO=EA .∴∠EOA =∠EAO .又∵O′O = O′D ,∴ ∠O′DO =∠EOA =∠EAO .∴ O′D ∥EA .∵ DF ⊥AE ,∴ DF ⊥O′D .又∵点D 在⊙O′上,O′D 为⊙O′的半径,[来源:学科网]∴ DF 为⊙O′的切线. …………………………………3分(3)答:存在 .① 当OA=AP 时,以点A 为圆心,以AO 为半径画弧,交BC 于点1P 和4P 两点, 则△AO 1P 、△AO 4P 均为等腰三角形.证明:过1P 点作1P H ⊥OA 于点H ,则1P H =OC=3,∵ A 1P =OA=5,∴ AH =4,OH=1.∴1P (1,3).∵1P (1,3)在⊙O′的弦CE 上,且不与C 、E 重合,∴ 点1P 在⊙O′内.类似可求4P (9,3).显然,点4P 在点E 的右侧,∴点4P 在⊙O′外.② 当OA=OP 时,同①可求得,2P (4,3),3P (-4,3).显然,点2P 在点E 的右侧,点3P 在点C 的左侧因此,在直线BC 上,除了E 点外,还存在点1P , 2P ,3P ,4P ,它们分别使△AOP 为等腰三角形,且点1P 在⊙O ′内,点2P 、3P 、4P在⊙O ′外. …………7分 24.解:(1)答:如图1,CD ∥AB ,CD <AB . …………2分(2)答:CD <AB 还成立. …………3分证法1:如图2,分别过点D 、B 作BC 、CD 的平行线,两线交于F 点.∴ 四边形DCBF 为平行四边形.∴.,FB DC BC FD ==∵ AD =BC ,∴ AD =FD . …………4分作∠ADF 的平分线交AB 于G 点,连结GF .∴ ∠ADG =∠FDG .在△ADG 和△FDG 中⎪⎩⎪⎨⎧=∠=∠=,,,DG DG FDG ADG FD AD∴ △ADG ≌△FDG .∴ AG =FG . …………5分∵在△BFG 中,BF BG FG >+.∴ .DC BG AG >+ …………6分∴ DC <AB . …………7分证法2:如图3,分别过点D 、B 作AB 、AD 的平行线,两线交于F 点.∴ 四边形DABF 为平行四边形.∴ .,BF AD AB DF ==∵ AD =BC ,∴ BC =BF .作∠CBF 的平分线交DF 于G 点,连结CG .以下同证法125.解:(1)过点A 作AF ⊥x 轴于点F ,∵∠ABO =30°,A 的坐标为(1,∴ BF =3 .∵ OF =1 ,∴ BO =2 .∴ B (-2,0).设抛物线的解析式为y=ax (x +2),代入点A (1,,得a =,∴2y =+ …………………………………2分 (2)存在点C .过点A 作AF 垂直于x 轴于点F ,抛物线的对称轴x = - 1交x 轴于点E . 当点C 位于对称轴与线段AB 的交点时,AC+OC 的值最小.∵ △BCE ∽△BAF , ∴AFCE BF BE = . ∴33=⋅=BF AF BE CE ∴C (1-,33)…………………………………4分 (3)存在.如图,连结AO ,设p(x,y),直线AB 为y=kx+b ,则20.k k b k b b ⎧=⎪⎧+⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得, ∴直线AB为y =+, BO D BPO BPO D ∆∆+=S S S 四 =12|OB||y P |+12|OB ||y D |=|y P |+|y D |=2333x x --+. ∵S △AOD = S △AOB -S △BOD =3-21×2×∣33x +332∣=-33x +33. ∴ODB OD S S P A 四∆=33233-33-33332++-x x x =32. ∴x 1=-21 , x 2=1(舍去). ∴p (-21,-43) . 又∵S △BOD =33x +332, ∴OD B BOD S S P 四∆ =3323333332332+--+x x x = 32.∴x 1=-21 , x 2=-2. P (-2,0),不符合题意. ∴ 存在,点P 坐标是(-21,-43). …………………………………8分。