高频开关电源的设计
- 格式:doc
- 大小:781.01 KB
- 文档页数:42
55科协论坛·2009年第2期(下)工程技术与产业经济模块化是高频开关电源的发展方向之一,对于并联运行的模块,最关键的问题是单个模块根据各自的功率等级平均负担负载电流,也就是并联模块之间的均流问题。
1 高频开关电源模块并联均流方案之比较为了提高系统的稳定性和实用性,并联电源必须具有下列特性:各模块承受的电流能动平衡,实现均流;当输入电压或负载电流变化时,应保持输出电压稳定,并且均流的瞬态响应好;采用冗余供电系统保证任一电源模块故障时,负载可以获得足够的功率,并且能实现故障模块自动隔离和热更换。
笔者重点对输出阻抗法、主从设置法、平均值均流法和最大电流自动均流法的优缺点进行归纳总结:输出阻抗法是最简单实现并联均流的方法,不需要在并联模块之间建立连线,各个电源模块之间比较独立,它是通过改变模块等效内阻实现并联均流的。
在提高均流性能的同时必然会导致电压调整率的下降,难以应用在电压调整率要求较高的电源系统中。
由于等效内阻相对较小,此方法在大电压、高功率的电源系统中使用收到很大的限制,但由于其简单性,在小功率场合中有着广泛的应用。
主从设置法利用双环控制,提高均流效果,使电源系统的容量大大提高。
但是在工程实践中应用很少,它没有真正实现了冗余系统,主模块的稳定性决定了整个电源系统的性能,失去并联均流系统的大部分优势。
平均电流值自动均流法可以精确的实现均流,可靠性较高。
但当均流母线发生短路,或任何某个模块不工作时,均流母线电压下降,导致系统电压下降,造成电源无法正常工作。
在每个模块输出电流信号和均流母线间串接一个可控开关,在故障情况下及时断开该模块,保证系统正常的工作。
最大电流自动均流法的均流母线体现输出电流最大的那个模块的电流信号即主模块,当其它从模块的输出电流超过主模块的输出电流会自动变成主模块。
此方法可以实现较好的冗余,其控制方法也比较多,是比较理想的均流方法。
2 高频开关电源模块并联负载均流方案通过对不同均流方法的分析,可知不同方法各有各自的优点和缺点。
高频开关电源系统的优化设计及应用研究在电力系统中,直流电源作为继电保护、自动装置、控制操作回路、灯光音响信号及事故照明等电源之用,是发电厂和变电站比较重要的设备。
因直流电源故障而引发的事故时有发生,所以,对直流电源的可靠性、稳定性具有很高要求。
传统的直流电源多数采用可控硅整流型。
近几年来,我国电网已经全面采用智能化的高频开关电源,这种电源系统具有许多优点:安全、可靠、自动化程度高、具有更小的体积和重量、综合效率高以及噪音低等,大大降低了运行人员的工作量,适应电网发展的需要,值得推广使用。
1 高频开关电源优化设计研究1.1 淘汰线性电源设计相对于传统的线性电源开关设计,高频开关电源在技术上有着明显的优势。
受限,其能够在开关内节省下一定的空间,而这一空间就是传统线性电源中变压器的空间,这样就能够使开关电源的重量更轻、体积更小。
同时高频开关电源在设计上是为了满足不断提高工作频率的要求,因此其能够满足于现代不同设备的功率输出,克服输出波纹过大等诸多问题,使得高频开关电源更加适合现代市场的需求。
1.2 小型化设计趋势随着现代集成技术的发展,各类电子设备在设计和研发的过程中都向着更小、更轻便的方向进行发展,因此各电子设备的小型化设计趋势非常明显。
因此,在对开关电源进行设计的过程中也必须要考虑到其安装设备的大小,也需要向着小型化的方向进行发展。
同时,电源在使用的过程中,其内部的电容、变压器以及质量都是与电源工作频率的平方根呈现反比情况,以此,随着不断开关电源的工作效率不断提高,其本身的体积必然会朝着更加小型化的方向发展。
另外,小型化的电源开关在设计和研发的过程中其所消耗的原材料较少,能够有效降低生产企业的生产成本,具有着极重要的经济价值。
1.3 电磁干扰的屏蔽设计在高频开关电源工作的过程中,随着开关的开通和中断,这种快速的电流变化就会引发噪音,噪音经过传导传递到开关外部,就形成了一定的电磁干扰现象,而这也是高频开关电源工作效率较低的原因之一。
开关电源功率变压器的设计方法1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。
不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。
图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。
这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。
图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。
经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。
目录引言......................................................... 1本文概述 .................................................1.1选题背景............................................................................................................................1.2本课题主要特点和设计目标 ...........................................................................................1.3课题设计思路.................................................................................................................... 2SABER软件................................................2.1SABER简介 .....................................................................................................................2.2SABER仿真流程 .............................................................................................................2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计..................................3.1工作原理............................................................................................................................3.1.1 三相桥式全控整流电路的特点......................................................................................3.2保护电路............................................................................................................................3.2.1 过电压产生的原因..........................................................................................................3.2.2 过压保护 (1)3.2.3 过电流产生的原因 (1)3.2.4 过流保护 (1)3.3SABER仿真 (1)3.3.1 设计规范 (1)3.3.2 建立模型 (1)3.3.3 仿真结果 (1)3.3.4 结果分析 (1)3.4本章小结 (2)4功率因素校正技术 (2)4.1谐波 (2)4.1.1 谐波的危害 (2)4.1.2 谐波补偿和功率因素校正 (2)4.2有源功率因数校正 (2)4.2.1 APFC技术分类 (2)4.2.2 临界导电模式APFC的控制原理 (2)4.2.3 功率因素校正电路的缺点及解决方法 (2)4.3本章小结 (2)5软开关功率变换技术 (2)5.1软开关技术的提出 (2)5.1.1 开关损耗的成因 (2)5.2软开关技术 (2)5.2.1 软开关技术的一般实现方法 (2)5.2.2 软开关的发展历程主要分类 (2)5.3本章小结 (3)6双管正激变换器的设计 (3)6.1工作原理 (3)6.2SG3525的功能介绍以及应用 (3)6.2.1 SG3525基本工作原理和应用特点 (3)6.2.2 SG3525在双管正激开关电源中的应用 (3)6.3启动电路的改进 (3)6.4SABER仿真 (3)6.4.1 设计步骤简介 (3)6.4.2 设计规范 (3)6.4.3 开环设计(功率电路设计) (3)6.4.4 调制器设计和闭环仿真 (4)6.5仿真结果 (4)6.6本章小结 (4)7BOOST变换器的设计 (4)7.1工作原理 (4)7.2SABER仿真 (5)7.2.1 设计规范 (5)7.2.2 参数设计 (5)7.2.3 仿真结果 (5)7.3本章小结 (5)8系统集成调试 (5)9结论与展望 (5)谢辞 (5)参考文献 (5)附录 (5)引言人类已经进入工业经济时代,并处于转入高新技术产业迅猛发展的时期。
高频高压开关电源的设计的开题报告
一、研究背景和意义
高频高压开关电源是一种电能转换和控制的工具,广泛应用于无线电通讯、雷达设备、医疗设备等领域。
近年来,随着科技的发展,人们对高频高压开关电源的性能和应用范围的要求也越来越高,这就要求我们必须研究和开发出更加先进、可靠的高频高压开关电源。
二、研究目的
本研究的主要目的是设计一种高效率、高稳定性、高精度、高可靠性的高频高压开关电源,以满足现代化科技的需要,同时提升工业生产和实用性。
三、研究方法
本研究采用理论研究和实验验证相结合的方法,首先根据电路理论和电子学原理设计电路,并模拟分析电路的性能,最后在实验中对电路进行验证。
四、预期结果
本研究的预期结果是设计出一种长时间稳定工作,精度高,效率高的高频高压开关电源,满足现代科技发展的要求。
五、研究内容和进度
1. 研究高频高压开关电源的基础理论和电子学原理,了解高频高压开关电源相关的研究进展和应用;
2. 设计高频高压开关电源的电路方案,进行仿真分析;
3. 制作电路并进行实验测试,验证电路方案的可行性和稳定性;
4. 进行实验数据分析和总结,得出本研究的结论。
六、研究意义和实际应用
高频高压开关电源是现代化科技的重要组成部分,其在无线电通讯、雷达设备、医疗设备等领域有着广泛的应用。
设计出更加先进、可靠的高频高压开关电源对于推动现代化科技的发展,提升工业生产和实用性,具有重要的意义和实际价值。
高频开关电源设计与应用实例
电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。
这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。
功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。
使电源的工作特性就像一个电阻一样,而不在是容性的。
目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。
而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。
DCM 模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。
CCM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。
介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MOS管。
这种类型的控制方式,在小功率PFC电路中非常常见。
今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。
要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例:
已知参数:
交流电源的频率fac——50Hz
最低交流电压有效值Umin——85Vac
最高交流电压有效值Umax——265Vac。
高频开关电源变压器的优化设计及其应用研究摘要:在开关电源当中,变压器是实现核心性能的关键技术组件,因此要把控合理设计与应用。
本文通过分析高频开关电源变压器的构成及发展现况,进一步分析了变压器的优化设计方向与实际应用。
关键词:优化设计;变压器;高频开关电源引言:目前的开关电源正不断向高频化的方向发展,因此其相应的变压器装置也开始采用高频形式,基于此,本文主要围绕着高频开关电源变压器的内部设计展开的研究,希望能够对高频开关电源变压器的实际应用有所帮助。
1.高频开关电源变压器的构成及发展现况1.1高频开关电源变压器的构成与分类高频开关电源变压器中,其开关器件是基于半导体功率,因此也可称之为开关管,而控制开关管在高频下进行关闭与开通操作,从而实现将某种电能的形态转换为其他类型电能形态,这种性能的装置就叫做开关转换器。
以开关转换器为关键部件,再利用闭环自动控制方式对输出电压进行稳定处理,同时,整个电路中还配有相应的保护电源,这种情况下的电源就叫做开关电源,而使用高频的转换器做电源开关工作的转换装置,就被称作高频开关电源,其一般是采用高频DC 转换器。
在高频开关电源当中,其运行的最基本路线包括整流滤波电路、开关型的功率变换装置、控制电路以及交流直线转换电路,而其相应的变压器装置可采用以下几种分类方式。
一是基于不同的驱动方式来划分为自激式驱动变压器以及他激式驱动变压器;二是根据电路的拓扑结构来划分变压器类型,具体可分为两类,包括隔离式变压器与非隔离式变压器,其中隔离式变压器装置还可划分为半桥式变压器、全桥式变压器、反激式变压器、正激式变压器以及推挽式变压器,非隔离式变压器则包括升压型变压器与降压型变压器;三是基于输入与输出之间是否存在电器隔离来划分变压器类型,有电器隔离则为隔离式变压器,无电器隔离则为非隔离式变压器;四是基于DC的开关条件或DC转换器类型来划分,可分为软开关型变压器与硬开关型变压器[1]。
1.2开关电源技术的发展现况电源从上世纪60年代开始就得到使用,一开始大部分使用电源的电子产品都是线性电源结构,这种电源在原理上存在许多局限,且电源本身的体积大、重量高,还具有损耗大的缺点,随后,一种基于开关调节器的直流稳压电源逐渐将其取代,对于开关电源技术的集中化研究开始于上世纪90年代,当时使用的开关电源是基于DC/DC转换器,并采用脉冲宽度调制方式来实现功能,随后还有许多新型电源材料逐渐问世,包括高频磁性材料以及半导体材料,这些材料的应用也使得开关电源的频率得到进一步增长,当前,国内外的开关电源技术都已经实现市场化发展,国内自主研发的开关电源变压器装置也逐渐变多,但大部分变压器的频率较小,高频开关电源变压器的研究还有待加强,近年来,随着对高频开关电源变压器的研究力度加大,该项技术的发展也得到了跨越式的进步[2]。
高频开关电源系统中整流模块的功能设计引言随着我国科技生产水平的不断提高,各行各业对供电质量的要求越来越高,而智能高频开关电源作为一种继电保护装置和控制回路装置,为生活和生产中的供电的可靠性提供了有力的保障。
当市电供电中断时还可以作为后备电源,所以说智能高频开关电源是对供电质量保证的重要组成部分之一。
它具有高度灵活组合、自主监控的特点,另外可靠性强、稳定性好且具有体积小、噪声低、节能高效、维护方便等也是它的一大优点。
可以说智能高频开关电源是一种集计算机技术、控制技术、通信技术于一体的高科技产品,可实现系统的自动诊断、自动测试和自动控制。
本文主要阐述的是智能高频开关电源的整流模块的设计方案。
1 系统总体结构介绍智能高频开关电源系统的总体结构主要由主监控单元、配电模块、交流配电单元、整流模块等组成,系统总体的结构图如图1 所示。
系统中的各个监控单元受主监控单元的管理和控制,通过通信线将各个监控单元采集的信息送给主监控统一管理。
主监控显示直流系统各种信息,用户也可以触摸显示屏查询信息及操作,系统信息还可以接入到远程监控系统中。
系统除了交流监控、直流监控、开关量监控等基础单位外,还配置了绝缘监测、降压装置、电池巡检等功能单元,以达到对直流系统进行全面监控的目的。
图1 系统控制原理图工作时两路市电(交流)经过交流切换装置输入一路交流,给各个整流模块供电。
整流模块将输入三相交流电转换为直流电,给备用电源(蓄电池)充电,同时也给合闸母线负载供电,另外合闸母线通过降压装置给控制母线供电。
所以说本文设计的整流模块是将整流和充电两项功能结合于一体的一种新型的整流模块。
2 整流模块的设计整流模块是智能高频开关电源系统中的一个重要部分,关系到系统的直流电压输出和工作时电压输出的稳定状况。
本文的设计主要是对模块整流原理的改进和完善,利用无源PFC 和DC/ DC 变换器的原理,使得改进后的模块能够有效完成整流作用。
本文设计的整流模块的工作原理框图如图2 所示,工作时,模块首先通过过防雷处理和滤波对输入的三相交流进行处理,这样才能保证模块后级电路的安全;经过处理后的三相交流经过整流和无源PFC 后转换成高压直流时,这时转换的高压直流要经过DC/ DC 变换器再次转换成可变的直流电压输出;另外模块控制部分还有负责过压、过流以及短路保护等作用,这样才能保证输出电压的稳定,也同时能对模块各部件进行保护。
高频开关电源设计与应用实例电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。
这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。
功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。
使电源的工作特性就像一个电阻一样,而不在是容性的。
目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。
而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。
DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。
CCM 模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。
介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MOS管。
这种类型的控制方式,在小功率PFC电路中非常常见。
今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。
要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例:已知参数:交流电源的频率fac——50Hz最低交流电压有效值Umin——85Vac最高交流电压有效值Umax——265Vac输出直流电压Udc——400VDC输出功率Pout——600W最差状况下满载效率η——92%开关频率fs——65KHz输出电压纹波峰峰值Voutp-p——10V那么我们可以进行如下计算:1,输出电流Iout=Pout/Udc=600/400=1.5A2,最大输入功率Pin=Pout/η=600/0.92=652W3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。
摘要通信电源是电信网的能源,其供电质量的好坏直接关系到整个电信网的畅通,本课题首先分析了近年来国内外高频通信开关电源的发展状况,在理论分析和电路实验的基础上,开发出了一种新型的高频通信开关电源(交流配电模块、直流配电模块、4只高频开关整流模块和监控模块置于同一机架内),该电源优化了电路的主要参数,设计了相移脉宽调制零电压开关谐振(PS-ZVS PWM)全桥变换器电路和以集成控制器UC3875芯片为核心的控制电路,实现了功率开关管的零电压开通和近似零电压关断,研制出高效率(达93%)、高稳定度(±0.5%)、高可靠性、低电磁干扰的高频开关整流模块。
同时文中还提到了以MCS-51单片机电路为核心的的电源监控模块与监控设计思路。
保证了整机能够安全可靠工作。
关键词:高频开关电源;相移脉宽调制;零电压开关ABSTRACTThe correspondence power switch is the telecommunication network energy, its power supply quality quality relates directly to the entire telecommunication network unimpededness, this topic has first analyzed the recent years domestic and foreign communications switching power supply development condition, tests in the theoretical analysis and the electric circuit in the foundation, developed one kind of new communication switching power supply (alternating-current distribution module, direct current power distribution module, 4 high frequency switches rectification module and monitoring module puts in identical rack), this power source optimized the electric circuit main parameter, has designed the phase-shift pulse-duration modulation zero potential switch resonance (PS-ZVS PWM) the entire bridge converter electric circuit and take integrates the controller UC3875 chip as the core control circuit, Realized the power switching valve zero potential to clear with the approximate zero potential shuts off, develops the high efficiency (toreach 93%), the high stability (±0.5%), redundant reliable, the low electronmagetic interference high frequency switch rectification module. At the same time in the article also proposed based on MCS-51 is the core power source monitoring module and monitoring design mentality. Has guaranteed entire machine safe reliable work.Keywords: High frequency switching power; Phase-Shifting PWM ZVS;Zero V oltage Switching目录1绪论 (1)1.1开关电源的发展及国外现状 (1)1.2国内通信电源的发展及现状 (4)1.3研究内容 (5)2电路原理方案分析和选择 (7)2.1高频开关整流模块 (7)2.2交流配电模块 (12)2.3直流配电模块 (13)2.4监控模块 (14)3 主要电路设计 (16)3.1高频开关整流模块主电路设计 (16)3.2高频开关整流模块控制电路的设计 (23)3.3监控模块的设计 (28)4零电压开关的理论分析和电路实验 (31)4.1实现零电压开关的 (31)4.2左右两支路电路转换过程的区别 (33)4.3占空比丢失现象 (33)4.4电路实验结果 (35)5结论 (36)参考文献 (37)致谢 (39)1绪论1.1开关电源的发展及国外现状通信电源是整个电信网的重要组成部分,电源设备质量的优劣,决定着整个电信网能否安全稳定运行。
通信设备发生故障时,可能会影响部分用户或使接通率下降。
而电源发生故障时,将会造成通信全部中断,所以人们一直将电源视为整个通信系统的心脏,受到足够的重视。
通信电源分为一次电源和二次电源两大类,一次电源将交流电转换成稳定的直流电接入通信设备,二次电源一般位于通信设备内部,将一次电源的直流电转换成多种电压值的稳定直流电以供通信设备内部各部分使用。
自1957年第一只可控硅(SCR)问世后[1],[2],可控硅取代了笨重而且效率低下的硒或氧化亚铜整流器件,可控硅整流器就作为通信设备的一次电源使用。
在随后的20年内,由于半导体工艺的进步,可控硅的电压、电流额定值及其它特性参数得到了不断提高和改进,满足了通信设备不断发展的需要,因此,直到70年代,发达国家还一直将可控硅整流器作为大多数通信设备的一次电源使用。
虽然可控硅整流器工作稳定,能满足通信设备的要求,但其是相控电源,工作于工频,有庞大笨重的电源变压器、电感线圈、滤波电容,噪声大,效率低,功率因数低,稳压精度也较低。
因此,自1947年肖克莱发明晶体管[3,4],并在随后的几年内对晶体管的质量和性能不断完善提高后,人们就着力研究利用晶体管进行高频变换的方案。
1955年美国罗耶(GH²Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换电路的开始[5],1957年美国查赛(J. J. Jen Sen)又发明了自激式推挽双变压器变换器电路。
在此基础上,1964年,美国科学家提出了取消工频变压器的串联开关电源的设想,并在NEC杂志上发表了“脉宽调制应用于电源小型化”等文章,为使电源实现体积和重量的大幅下降提供了一条根本途径。
随着大功率硅晶体管的耐压提高和二极管反向恢复时间的缩短等元器件性能的改善,1969年终于做成了25KHz的开关电源。
电源界把开关电源的频率提高到20KHz 以上称为电源技术的“20KHz革命”。
开关电源技术的这一新的发展,在世界上引起了强烈的反响和重视,开关电源的研究成了国际会议的热门话题。
经过几年的努力,从开关电源的电路拓扑型式到相配套的元器件等研究都取得了相当大的进展。
在电路拓扑型式上开发出了单端贮能式反激电路、双反激电路、单端正激式电路、双正激电路、推挽电路、半桥电路、全桥电路,以适应不同应用场合、不同功率档次的需要;在元器件方面,功率晶体管和整流二极管的性能也有了较大的提高。
1976年美国硅通用公司第一个做出了SG1524的脉宽调制(PWM,Pulse Width Modulation)控制芯片,极大地提高了开关电源的可靠性,并进一步减小了体积。
尽管如此,由于功率器件的电压、电流额定值的限制,直到上世纪70年代末开关电源主要用于通信设备的二次电源,而通信设备的一次电源大多数仍采用可控硅整流器(相控电源)。
在随后的几年中,大功率晶体管(GTR)和功率场效应管(MOSFET)相继被研制出来[6],其电压、电流额定值大为提高,工作频率也提高较多,可靠性也显著增加。
在电路拓扑、功率器件和控制芯片发展的基础上,80年代初,英国研制出48V成套直流电源[5],作为通信设备的一次电源使用,一个机架包括多个整流模块,交、直流配电模块等,这是当时利用高频直流变换技术为主开发的新成果。
在1982年国际通信能源会议上,关于这一成果发表的论文受到了普遍重视。
这一新技术,在研究开发和应用方面得到了迅速的发展。
到80年代中后期,绝缘栅双极晶体管(IGBT)已研制出来并投入了市场,各种通信设备所需的一次电源大多采取PWM集成控制芯片、双极型晶体管、场效应管、绝缘栅双极晶体管;半桥或桥式变换电路;开关频率约为几十KHz,效率约90%左右的高频开关电源。
随着微电子学的发展和元器件生产技术的提高,相继开发出了耐压高 (400-500V)的功率场效应管(VMOS管)和高电压、大电流的绝缘栅晶体管(IGBT),具有软恢复特性的大功率高频整流管,各种用途的集成脉宽调制控制器和高性能的铁氧体磁芯,高频用的电解电容器,低功耗的聚丙烯电容等。
主要元器件技术性能的提高,为高频开关电源向大功率、高效率、高可靠性方向发展奠定了良好基础。
考虑到将交流电直接整流滤波后给开关电源供电时,由于PWM直流——直流变换将使交流电网侧功率因数恶化,对交流电网不利。
人们经过努力研制了功率因数校正电路(PFC,Power Factor Corrector),该种电路将交流电压经全波整流滤波得到的直流电压进行直流—直流变换,并使输入电流平均值自动跟随全波整流直流电流基准,并且保持输出电压稳定,从而实现对PWM直流变换器稳压输出和接近单位输入功率因数。
当高频开关整流模块的功率容量较大时,加上功率因数校正电路就避免了对交流电网的影响。
为减少开关损耗和提高工作频率,在电路拓扑方面也取得了较大进展[5],在90年代设计并研制出准谐振开关变换器(QRC,Quasi Resonant Convertor)和多谐振变换器(MRC,Multi Resonant Convertor),在这方面日本九洲大学原田(耕介)研究室、美国佛吉尼亚理工学院等走在前面,研制出了功率密度为3W/cm3,开关频率从2.5-3.85MHz、效率达80-83%的多谐振变换器。
这种变换器的优点是实现了软开关,大大降低了开关损耗,可以吸收电路的寄生参数(不在乎电路寄生参数的存在),而且几乎不产生电磁干扰。