选择题压轴题
- 格式:doc
- 大小:2.22 MB
- 文档页数:8
小升初数学期末压轴题50道一.选择题(共10题,共20分)1.下面各图形,()是圆柱。
A. B. C.2.把一个圆柱体的侧面展开得到一个边长4分米的正方形,这个圆柱体的侧面积是()平方分米。
A.16B.50.24C.100.483.下列说法正确的有()个。
(1)8人进行乒乓球比赛,如果每两人之间都比赛一场,一共比赛28场。
(2)王叔叔把10000元人民币存入银行,定期一年,年利率是2.25%。
一年后他可得利息225元。
(3)山羊只数比绵羊多25%,也就是绵羊只数比山羊少25%。
A.1B.2C.34.某日黄州最低气温9℃,北京最低气温-15℃,黄州最低气温比北京高()。
A.6℃B.-6℃C.24℃D.19℃5.小明做了一个圆柱形状的容器和三个圆锥形状的容器(如下图),将圆柱形状容器中的水倒入第()个圆锥形状的容器,正好可以倒满。
A. B. C.6.下列说法错误的是()。
A.0是自然数B.-2.5是小数C.-1不是负数 D.-2是整数7.下列说法正确的是()。
A.-3大于-1B.0大于所有负数C.0小于所有负数 D.0是正数8.下列说法正确的是()。
A.0既不是奇数,也不是偶数B.相关联的两种量,不成正比例关系就成反比例关系C.半径为2cm的圆,面积和周长不相等D.海拔500m与海拔-155m相差345m9.下列说法正确的是()。
A.统计中出现次数最多的数据叫做众数B.数轴上-4在-7的左边C.一个人的体重和他的身高成正比例D.扇形统计图可以表示数据增减变化10.一件商品,打八折后出售比原价便宜240元,打折前的售价是()元。
A.240B.480C.960D.1200二.判断题(共10题,共20分)1.小圆周长与半径的比和大圆周长与半径的比不可以组成比例。
()2.订活两便存取:存款时不确定存期,一次存入本金,随时可以支取。
()3.圆柱有无数条高。
()4.零和负数没有实际意义。
()5.等腰直角三角形的顶角与一个底角的度数比是2:1。
小升初数学期末压轴题50道一.选择题(共10题,共20分)1.M为数轴上表示-1的点,将M沿着数轴向右平移3个单位到N点,则N点所表示的数为( )。
A.3B.2C.-4D.2或-42.把一根长1米,底面积为3.14平方米的圆柱锯成两个小圆柱,它的表面积()。
A.增加3.14平方米B.减少3.14平方米C.增加6.28平方米 D.减少6.28平方米3.下列说法正确的是()。
A.0是最小的数B.0既是正数又是负数C.负数比正数小D.数轴上-在-的左边4.某商店进了一批笔记本,按30%的利润定价。
当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售。
问销完后商店实际获得的利润百分数是()。
A.1.2%B.17%C.20%D.18%5.(-2)×=()。
A.-2B.1C.-1D.6.数轴上,-在-的()边。
A.左B.右C.北D.无法确定7.在数轴上,左边的数一定()它右边的数。
A.大于B.小于C.等于8.圆锥体的体积一定,圆锥的底面积和高()。
A.成正比例B.成反比例C.不成比例9.温度计的液柱越高,温度()。
A.越高B.越低C.相等10.比例尺一定,实际距离扩大到原来的5倍,则图上距离()。
A.缩小到原来的B.扩大到原来的5倍 C.不变二.判断题(共10题,共20分)1.零下2摄氏度与零上5摄氏度相差3摄氏度。
()2.圆柱只有一条高,就是上下两个底面圆心的连线。
()3.一件衣服打八折,就是指衣服的现价是原价的80%。
()4.0既可以看成正数,也可以看成负数。
()5.在-4和-6之间,只有一个负数,就是-5。
()6.圆的半径和它的周长成正比例。
()7.自然数都是正整数。
()8.体积和底面积都相等的一个圆柱和一个圆锥,圆锥的高一定是圆柱高的3倍。
()9.全班学生人数一定,出勤人数和出勤率成反比例。
()10.可以稳定的站稳。
()三.填空题(共10题,共27分)1.=():15==()÷10=()成。
八年级下册数学难题压轴题一、选择题(每题3分,共30分)1. 若关于x的分式方程(m)/(x - 1)+(3)/(1 - x)=1的解为正数,则m的取值范围是()- A. m>2- B. m<2- C. m>2且m≠3- D. m<2且m≠ - 3解析:首先将分式方程(m)/(x - 1)+(3)/(1 - x)=1化简,方程变形为(m)/(x - 1)-(3)/(x - 1)=1。
两边同乘以(x - 1)得:m-3=x - 1,解得x=m - 2。
因为方程的解为正数,所以x=m - 2>0,即m>2。
又因为分母不能为0,即x-1≠0,m - 2-1≠0,m≠3。
所以m的取值范围是m>2且m≠3,答案为C。
2. 已知四边形ABCD是平行四边形,下列结论中不正确的是()- A. 当AB = BC时,四边形ABCD是菱形。
- B. 当AC⊥BD时,四边形ABCD是菱形。
- C. 当∠ ABC = 90^∘时,四边形ABCD是矩形。
- D. 当AC = BD时,四边形ABCD是正方形。
解析:- 选项A:一组邻边相等的平行四边形是菱形,当AB = BC时,四边形ABCD 是菱形,该选项正确。
- 选项B:对角线互相垂直的平行四边形是菱形,当AC⊥BD时,四边形ABCD是菱形,该选项正确。
- 选项C:一个角是直角的平行四边形是矩形,当∠ ABC=90^∘时,四边形ABCD是矩形,该选项正确。
- 选项D:对角线相等的平行四边形是矩形,当AC = BD时,四边形ABCD是矩形,而不是正方形,该选项错误。
答案为D。
二、填空题(每题3分,共15分)1. 化简frac{x^2-1}{x^2+2x + 1}的结果是______。
解析:先对分子分母进行因式分解,分子x^2-1=(x + 1)(x - 1),分母x^2+2x + 1=(x + 1)^2。
所以frac{x^2-1}{x^2+2x + 1}=((x + 1)(x - 1))/((x + 1)^2)=(x - 1)/(x + 1)。
圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA , PB 的斜率倒数之和为3,则0y =( ) A. 1 B. 2 C. 3 D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x = 上,所以200,4y P y ⎛⎫ ⎪⎝⎭ ,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=--- ,化简,得01211214y k k ⎛⎫=+-= ⎪⎝⎭, 故选D.2.已知双曲线221221(0,0)x y C a b a b-=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F ,1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为0x ,则0000011,1,121p a x ex a x x a x a a ++=-+=-=- , 001111112cos 1132111a x a a a x a aθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C.3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()1 B.⎫⎪⎪⎝⎭C.⎛⎝⎭D. )1,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-,1e < 或1e >,又01e <<,11e << ,选D .4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为A.B. C. D. 2【答案】A【解析】由()2,0F c 到渐近线by x a =的距离为d b == ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,bOA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有62c e a ==,故选A. 5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( ) A. 2y x =+或2y x =-- B. 2y x =+ C. 22y x =+或22y x =-+ D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b -=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( ) A. [)2,+∞ B. (]1,2 C. (]1,3 D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2axc=,正好是双曲的右准线.由于AF= c a-,所以AF弦,圆心)2a cO c a⎛⎫+-⎪⎪⎝⎭,半径R c a=-圆上任取一点P, 30APF∠=,现在转化为圆与准线相交问题.所以()22a c ac ac+-≤-,解得2e≥.填A.7.中心为原点O的椭圆焦点在x轴上,A为该椭圆右顶点,P为椭圆上一点,090OPA∠=,则该椭圆的离心率e的取值范围是()A.1,12⎡⎫⎪⎢⎣⎭B.⎫⎪⎪⎝⎭C.12⎡⎢⎣⎭D.⎛⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x ya ba b+=>>,设P(x,y),点P在以OA为直径的圆上。
中考压轴题之四点共圆问题精讲精练一.选择题1.如图,圆内接四边形ABCD 的外角ABE ∠为80︒,则ADC ∠度数为( )A .80︒B .40︒C .100︒D .160︒(第1题图) (第2题图) (第3题图)2.如图,在ABC ∆中,90ABC ∠=︒,4BC =,8AB =,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当CBP BAD ∠=∠时,线段CD 的最小值是( )A B .2 C .1 D .43.如图,在矩形ABCD 中,8AB =,6BC =,点P 在矩形的内部,连接PA ,PB ,PC ,若PBC PAB ∠=∠,则PC 的最小值是( )A .6B 3C .4D .44.如图,在矩形ABCD 中,5AD =,AB =E 在AB 上,12AE EB =,在矩形内找一点P ,使得60BPE ∠=︒,则线段PD 的最小值为( )A .2B .4-C .4D .5.如图,6AB AD ==,60A ∠=︒,点C 在DAB ∠内部且120C ∠=︒,则CB CD +的最大值( )A .B .8C .10D .二.填空题6.在ABC ∆中,4AB =,45C ∠=︒,则2AC BC +的最大值为 .7.如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP = .8.如图,AB BC ⊥,5AB =,点E 、F 分别是线段AB 、射线BC 上的动点,以EF 为斜边向上作等腰Rt DEF ∆,90D ∠=︒,连接AD ,则AD 的最小值为 .9.在Rt ABC ∆中,AB AC =,90BAC ∠=︒,点E 是线段AC 上一点,过E 作EG BC ⊥,交BC 于G ,连接BE ,点D 是BE 的中点,连接AD 交BC 于点F .若25AD =,3BF =,则FG = .10.如图,ABC ∆和BCD ∆均为直角三角形,90BAC BDC ∠=∠=︒,2AB =,连接AD .若30ADB ∠=︒,则AC 的长为 .11.如图,在四边形ABCD 中,6BD =,90BAD BCD ∠=∠=︒,则四边形ABCD 面积的最大值为 .12.如图,在ABC ∆和ACD ∆中,45ABC ADC ∠=∠=︒,6AC =,则AD 的最大值为 .13.如图,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,点E ,F 分别为AB ,AC 边上的点,且90EDF ∠=︒,连接EF ,则DEF ∠的度数为 .14.如图,以C 为公共顶点的Rt ABC ∆和Rt CED ∆中,90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,且点D 在线段AB 上,则ABE ∠= ,若10AC =,9CD =,则BE = . 三.解答题 15.【问题原型】如图①,在O 中,弦BC 所对的圆心角90BOC ∠=︒,点A 在优弧BC 上运动(点A 不与点B 、C 重合),连结AB 、AC .(1)在点A 运动过程中,A ∠的度数是否发生变化?请通过计算说明理由.(2)若2BC =,求弦AC 的最大值.【问题拓展】如图②,在ABC ∆中,4BC =,60A ∠=︒.若M 、N 分别是AB 、BC 的中点,则线段MN 的最大值为 .16.【问题提出】九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在O 的内接四边形ABCD 中,BD 是O 的直径.A ∠与C ∠、ABC ∠与ADC ∠有怎样的数量关系?2.如图(2),若圆心O 不在O 的内接四边形ABCD 的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的A ∠与C ∠、ABC ∠与ADC ∠都满足互补关系,请帮助他完善问题1的证明:BD是O的直径,∴,180∴∠+∠=︒,四边形内角和等于360︒,∴.A C(2)请回答问题2,并说明理由;【深入探究】如图(3),O的内接四边形ABCD恰有一个内切圆I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若90CD=,请直接写出图中阴影部分的面积.BC=,2∠=︒,3C17.综合与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果B D∠=∠,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则180∠+∠=︒(依据1)AEC D∠=∠180B DAEC B∴∠+∠=︒∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,12∠的度数为.∠=∠,345∠=︒,则4拓展探究:(3)如图4,已知ABC=,点D在BC上(不与BC的∆是等腰三角形,AB AC中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE ,DE .①求证:A ,D ,B ,E 四点共圆;②若22AB =,AD AF ⋅的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.18.如图,在矩形ABCD 中,点E 为边AD 的中点,点F 为AB 上的一个动点,连接FE 并延长,交CD 的延长线于点G ,以FG 为底边在FG 下方作等腰Rt FHG ∆,且90FHG ∠=︒.(1)如图①,若点H 恰好落在BC 上,连接BE ,EH .①求证:2AD AB =;②若tan 2BEH ∠=,1GD =,求FHG ∆的面积;(2)如图②,点H 落在矩形ABCD 内,连接CH ,若4AD =,3AB =,求四边形FHCB 面积的最大值.19.如图,ABC ∆是等边三角形,以AC 为腰在AC 右侧作等腰()ADE AD AE ∆=,点D 与点C 重合,连接BE .(1)如图①,过点C 作CG EB ⊥于点G ,若90CAE ∠=︒.①求证:BG CG =;②已知22BC =,求BCE ∆的周长;(2)如图②,若60DAE ∠=︒,将DAE ∆绕点A 逆时针旋转,使点E 落在BA 的延长线上.现DAB ∠内有一点M ,连接DM ,EM ,BM ,作DM 的垂直平分线交BM 的延长线于点N ,交EM 于点H ,直线NH 恰好过点A .若2AE =,当EH 取得最大值时,求AN 的长.20.如图,在ABC ∆中,以AB 为直径作O 交AC 于点D ,交BC 于点E ,CE BE =,过点E 作EF AC ⊥于点F ,FE 的延长线交AB 的延长线于点G ,连接DE .(1)求证:FG 是O 的切线;(2)求证:2EG AG BG =⋅;(3)若1BG =,2EG =,求sin CDE ∠的值.参考答案一.选择题1.解:四边形ABCD 为圆内接四边形,180ADC ABC ∴∠+∠=︒,180ABE ABC ∠+∠=︒,80ADC ABE ∴∠=∠=︒,故选:A .2.解:90ABC ∠=︒,90ABP CBP ∴∠+∠=︒,CBP BAD ∠=∠,90ABD BAD ∴∠+∠=︒,90ADB ∴∠=︒,取AB 的中点E ,连接DE ,CE ,142DE AB ∴==, 242EC EB ∴==,CD CE DE -, CD ∴的最小值为424-,故选:D .3.解:四边形ABCD 是矩形,90ABC ∴∠=︒,90ABP PBC ∴∠+∠=︒,PBC PAB ∠=∠,90PAB PBA ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的圆上运动,设圆心为O ,连接OC 交O 于P ,此时PC 最小,222246213OC OB BC =+=+=,PC ∴的最小值为2134-,故选:C .4.解:如图,在BE 的上方,作OEB ∆,使得OE OB =,120EOB ∠=︒,连接OD ,过点O 作OQ BE ⊥于Q ,OJ AD ⊥于J .12BPE EOB ∠=∠,∴点P 的运动轨迹是以O 为圆心,OE 为半径的O ,∴当点P 落在线段OD 上时,DP 的值最小,四边形ABCD 是矩形,90A ∴∠=︒,33AB =,:1:2AE EB =,23BE ∴=,OE OB =,120EOB ∠=︒,OQ EB ⊥,3EQ BQ ∴==,60EOQ BOQ ∠=∠=︒,1OQ ∴=,2OE =,OJ AD ⊥,OQ AB ⊥,90A AJO AQO ∴∠=∠=∠=︒,∴四边形AQOJ 是矩形,1AJ OQ ∴==,23JO AQ ==,5AD =,4DJ AD AJ ∴=-=,22224(23)27OD JD OJ ∴=+=+=,PD ∴的最小值272OD OP =-=-,故选:A . 5.解:如图,连接AC ,BD ,在AC 上取点M 使DM DC =,60DAB ∠=︒,120DCB ∠=︒,180DAB DCB ∴∠+∠=︒,A ∴,B ,C ,D ,四点共圆,AD AB =,60DAB ∠=︒,ADB ∴∆是等边三角形,60ABD ACD ∴∠=∠=︒,DM DC =,DMC ∴∆是等边三角形,60ADB ACD ∴∠=∠=︒,ADM BDC ∴∠=∠,AD BD =,()ADM BDC SAS ∴∆≅∆,AM BC ∴=,AC AM MC BC CD ∴=+=+, 四边形ABCD 的周长为AD AB CD BC AD AB AC +++=++,且6AD AB ==,∴当AC 最大时,四边形ABCD 的周长最大,则CB CD +最大,此时C 点在BD 的中点处,30CAB ∴∠=︒,AC ∴的最大值cos3043AB =⨯︒=,CB CD ∴+最大值为43AC =,故选:A .二.填空题(共9小题)6.解:过点B 作BD AC ⊥于点D ,45C ∠=︒,BCD ∴∆为等腰直角三角形,BD CD ∴=,设BD CD a ==,延长AC 至点F ,使得CF a =, 1tan 22a AFB a ∠==,作ABF ∆的外接圆O ,过点O 作OE AB ⊥于点E ,则122AE AB ==,AOE AFB ∠=∠, 1tan 2AOE ∴∠=,4OE ∴=,222425OA =+=, ∴222()2()22()2AC BC AC BC AC CF AF OA OF +=+=+=+,∴2AC BC +的最大值为245410⨯=.故答案为:410.7.解:以AB 为直径作半圆O ,连接OD ,与半圆O 交于点P ',当点P 与P '重合时,DP 最短, 122AO OP OB AB ='===,2AD =,90BAD ∠=︒,22OD ∴=,45ADO AOD ODC ∠=∠=∠=︒,222DP OD OP ∴'=-'=-,过P '作P E CD '⊥于点E ,则2222P E DE DP '=='=-,22CE CD DE ∴=-=+,2223CP P E CE ∴'='+=. 故答案为:23.8.解:连接BD 并延长,如图,AB BC ⊥,90ABC ∴∠=︒,90EDF ∠=︒,180ABC EDF ∴∠+∠=︒,B ∴,E ,D ,F 四点共圆,DEF ∆为等腰直角三角形,45DEF DFE ∴∠=∠=︒,45DBF DEF ∴∠=∠=︒,45DBF DBE ∴∠=∠=︒,∴点D 的轨迹为ABC ∠的平分线上,垂线段最短,∴当AD BD ⊥时,AD 取最小值,AD ∴的最小值为25222AB =,故答案为:522. 9.解:连接AG ,将ACG ∆绕点A 逆时针旋转90︒得到ABM ∆,连接MG ,MF ,EG BC ⊥,90BAC ∠=︒,180BAC BGE ∴∠+∠=︒,∴点A 、B 、G 、E 四点共圆,GBE GAE ∴∠=∠,又点D 是BE 的中点,且AB AC =,90BAC ∠=︒,AD BD ∴=,ABE BAD ∴∠=∠,45BAD GAE ABE GBE ∴∠+∠=∠+∠=︒,45FAG ∴∠=︒,由旋转性质可得:90MAG ∠=︒,AM AG =,MB CG =,45MBA C ∠=∠=︒,45MAF FAG ∴∠=∠=︒,90MBF ∠=︒,在MAF ∆和GAF ∆中,AM AG MAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()MAF GAF SAS ∴∆≅∆,MF FG ∴=,EG BC ⊥,45C ∠=︒,EG GC MB ∴==,在MBG ∆和EGB ∆中,MB EG MBG EGB BG GB =⎧⎪∠=∠⎨⎪=⎩,()MBG EGB SAS ∴∆≅∆,245MG BE AD ∴===,设CG x =,FG y =,则MB x =,FM y =,在Rt MBG ∆中,222(3)(45)x y ++=①,在Rt MBF ∆中,2223x y +=②,联立①②,解得1145x y =⎧⎨=⎩,22558x y ⎧=⎪⎨=-⎪⎩(不合题意,舍去),33558x y ⎧=-⎪⎨=-⎪⎩(不合题意,舍去),4445x y =-⎧⎨=⎩(不合题意,舍去),综上,5FG =, 解法二:如图,延长AD 到H ,使得DH AD =,连接BH ,则ADE HDB ∆≅∆设AB AC x ==,AE BH y ==,则有228023x y y x x ⎧+=⎪⎨=⎪-⎩,解得622x y ⎧=⎪⎨=⎪⎩, 12345FG ∴=--=.故答案为:5.10.解:90BAC BDC ∠=∠=︒,A ∴,B ,C ,D 四点共圆,30ADB ∠=︒,2AB =,30ACB ADB ∴∠=∠=︒,24BC AB ∴==,22224223AC BC AB ∴--2311.解:90BAD BCD ∠=∠=︒,A ∴,C 两点在以BD 为直径的圆上,∴当AB AD =,CB CD =时,四边形ABCD 面积最大,6BD =,32AB AD CB CD ∴====,∴四边形BCD 的面积为132322182⨯⨯⨯=.故答案为:18. 12.解:45ABC ADC ∠=∠=︒,A ∴,C ,D ,B 四点共圆,如图,作O 经过A ,C ,D ,B 四点,当()AD D '为直径时,AD 有最大值,45ADC ∠=︒,90AOC ∴∠=︒,OA OC =,AOC ∴∆是等腰直角三角形,6AC =,26322AO ∴=⨯=, 262AD AO ∴'==,即AD 的最大值为62.故答案为:62.13.解:如图,连接AD ,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,90ADC ∴∠=︒,AD CD =,45BAD C ∠=∠=︒,而90EDF ∠=︒,ADE CDF ∴∠=∠,在ADE ∆和CDF ∆中,BAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CDF ASA ∴∆≅∆,DE DF ∴=, 而90EDF ∠=︒,45DEF DFE ∴∠=∠=︒.故答案为:45︒.14.解:90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,60DBC DEC ∴∠=∠=︒,B ∴、C 、D 、E 四点共圆,30DBE DCE ∴∠=∠=︒,30ABE ∴∠=︒,设BC x =,则2AB x =,在Rt ABC ∆中,由勾股定理得222AB AC BC =+,10AC =,222(2)10x x ∴=+,解得:1033x =,1033BC ∴=, 设DE a =,则2CE a =,在Rt CED ∆中,由勾股定理得222CE DE CD =+,9CD =,222(2)9a a ∴=+,解得:33a =,33DE ∴=,63CE =,60ABC ∠=︒,30ABE ∠=︒,90CBE ABC ABE ∴∠=∠+∠=︒,在Rt CBE ∆中,由勾股定理得2222103442(63)()33BE CE BC =--=. 三.解答题(共9小题)15.解:【问题原型】(1)A ∠的度数不发生变化,理由如下:12A BOC ∠=∠,90BOC ∠=︒,∴190452A ∠=⨯︒=︒; (2)当AC 为O 的直径时,AC 最大,在Rt BOC ∆中,90BOC ∠=︒,根据勾股定理,得222OB OC BC +=,OB OC =,∴222222OC BC ==⨯=, ∴222AC OC ==,即AC 的最大值为22;【问题拓展】如图,画ABC ∆的外接圆O ,连接OB ,OC ,ON ,则ON BC ⊥,60BON ∠=︒,122BN BC ==,sin60BNOB∴===︒M、N分别是AB、BC的中点,MN∴是ABC∆的中位线,12MN AC∴=,AC∴为直径时,AC最大,此时2AC OB==,MN∴16.解:【问题提出】(1)BD是O的直径,90A C∴∠=∠=︒,180A C∴∠+∠=︒,四边形内角和等于360︒,180ABC ADC∴∠+∠=︒;故答案为:90A C∠=∠=︒,180ABC ADC∠+∠=︒;(2)成立,理由如下:连接AC、BD,DAC CBD∠=∠,ACD ABD∠=∠,DAC ACD DBC ABD ABC∴∠+∠=∠+∠=∠,180DAC ACD ADC∠+∠+∠=︒,180ABC ADC∴∠+∠=︒;同理,180BAD BCD∠+∠=︒;【深入探究】(3)AD BC AB CD+=+,理由如下:连接AI、BI、CI、DI ,圆I是四边形ABCD的内切圆,AG AE∴=,DE DH=,CH CF=,BF BG=,AD BC AE ED BF CF AG DH BG CH AB CD∴+=+++=+++=+,即AD BC AB CD+=+,故答案为:AD BC AB CD+=+;(4)EF GH⊥,理由如下:连接EH、IH、IG、IF、GF ,四边形ABCD是圆O的内接四边形,180B D∴∠+∠=︒,BG IG⊥,IF BF⊥,90BGI IFB∴∠=∠=︒,180B GIF∴∠+∠=︒,GIF D∴∠=∠,GI IF=,1902GFI GIF∴∠=︒-∠,ED DH=,1902DEH D∴∠=︒-∠,GFI DEH∴∠=∠,GE GE=,GFE GHE∴∠=∠,GHE GFI IFE∴∠=∠+∠,IF IE=,IFE IEF∴∠=∠,90FEH EHG FEH IEF DEH EID∴∠+∠=∠+∠+∠=∠=︒,EF GH∴⊥;(5)连接BD ,90C ∠=︒,90A ∴∠=︒,ABCD 是圆O 的内接圆,BD ∴是圆O 的直径,连接IF 、IH ,I 是四边形ABCD 的内切圆圆心,ADI IDH ∴∠=∠,ABI FBI ∠=∠,IH CD ⊥,IF BC ⊥,90BIF IBF ∴∠=︒-∠,90DIH IDH ∠=︒-∠, 1180()180()2BIF DIH IBF IDH ADC ABC ∴∠+∠=︒-∠+∠=︒-∠+∠, 180ABC ADC ∠+∠=︒,90BIF DIH ∴∠+∠=︒,IF FC ⊥,IH CD ⊥,90C ∠=︒,IH IF =,∴四边形IHCF 是正方形, 90HIF ∴∠=︒,I ∴点在BD 上,3BC =,2CD =,326ABCD S ∴=⨯=四边形,90DIH IDH ∠+∠=︒,90IBF IDH ∠+∠=︒,DIH IBF ∴∠=∠,90IHD IFB ∠=∠=︒,DHI IFB ∴∆∆∽,∴IH DH BF IF =,即23IH IH IH IH-=-, 解得65IH =,3625I S π∴=,∴阴影部分的面积36625π=-.17.(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:12∠=∠,∴点A ,B ,C ,D 四点在同一个圆上,34∴∠=∠,345∠=︒,445∴∠=︒,故答案为:45︒;(3)①证明:AB AC =,ABC ACB ∴∠=∠,点E 与点C 关于AD 的对称,AE AC ∴=,DE DC =,AEC ACE ∴∠=∠,DEC DCE ∠=∠,AED ACB ∴∠=∠,AED ABC ∴∠=∠,A ∴,D ,B ,E 四点共圆;②解:AD AF ⋅的值不会发生变化,理由如下:如图4,连接CF ,点E 与点C 关于AD 的对称, FE FC ∴=,FEC FCE ∴∠=∠,FED FCD ∴∠=∠, A ,D ,B ,E 四点共圆,FED BAF ∴∠=∠,BAF FCD ∴∠=∠, A ∴,B ,F ,C 四点共圆,BAD FAB ∠=∠,ABD AFB ∴∆∆∽, ∴AD AB AB AF=,28AD AF AB ∴⋅==.18.(1)①证明:如图①中,过点E 作ET BC ⊥于点T .四边形ABCD 是矩形,90A ADC EDG ∴∠=∠=∠=︒,在AEF ∆和DEG ∆中, 90A EDG AE EDAEF DEG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()AEF DEG ASA ∴∆≅∆,EF EG ∴=, FGH ∆是等腰直角三角形,HE EF EG ∴==,HE FG ⊥, 90A ABT ETB ∠=∠=∠=︒,∴四边形ABTE 是矩形,90AET FEH ∴∠=∠=︒,AEF TEH ∴∠=∠,在EAF ∆和ETH ∆中,90A ETH AEF TEH EF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EAF ETH AAS ∴∆≅∆,EA ET ∴=,∴四边形ABTE 是正方形,AE AB ∴=,2AD AE =,2AD AB ∴=;②解:如图①1-中,时FH 交BE 于点J .FJB EJH ∠=∠,45FBJ EHJ ∠=∠=︒,BFH BEH ∴∠=∠, tan tan 2BFH BEH ∴∠=∠=,∴2BH FB =,EAF ETH EDG ∆≅∆≅∆, 1AF DG TH ∴===,设AB BT x ==,则121x x +=-,3x ∴=,2BF ∴=,4BH =, 在Rt BFH ∆中,22222425FH BF BH =+=+=,12525102DGH S ∆∴=⨯⨯=; (2)解:如图②中,过点H 作HQ AB ⊥于点Q ,过点E 作ER QH ⊥于点R ,连接BH .同法可证,EAF ERH ∆≅∆,EA ER ∴=,AF RH =,2AE ED ==,2ER AE ∴==,四边形AQRE 是正方形,2AQ AE ∴==,1BQ ∴=,14122BCH S ∆∴=⨯⨯=,设AF RH y ==, 211125(3)(2)()2228BFH S y y y ∆∴=-⋅+=--+,102-<, 12y ∴=时,BFH ∆的面积最大,最大值为258, ∴四边形BCHF 的面积的最大值2541288=+=. 19.(1)①证明:如图①中,连接AG ,延长CG 交AB 于点J ,过点A 作AM CJ ⊥交CJ 的延长线于点M ,AN BE ⊥于点N .CG BE ⊥,90OAE OGC ∴∠=∠=︒,AOE GOC ∠=∠,AOE GOC ∴∆∆∽,∴AO EO GO CO =,∴AO GO EO CO=, AOG EOC ∠=∠,AOG EOC ∴∆∆∽,45AGO ACE ∴∠=∠=︒,90OGJ ∠=︒,45AGN AGM ∴∠=∠=︒, AM GM ⊥,AN GN ⊥,AM AN ∴=,90ANB AMC ∠=∠=︒,AC AB =, Rt AMC Rt ANB(HL)∴∆≅∆,ACM ABN ∴∠=∠,AB AC =, ABC ACB ∴∠=∠,GBC GCB ∴∠=∠,GB GC ∴=;②解:GB GC =,90BGC ∠=︒,22BC =,2GB GC ∴==, AB AC =,GB GC =,AG ∴垂直平分线线段BC ,30CAG ∴∠=︒,AOG EOC ∆∆∽,30OEC OAG ∴∠=∠=︒, 24EC CG ∴==,23EG =,223BE ∴=+,BCE ∴∆的周长22223422236BC BE EC =++=+++=++;(2)解:如图②中,以A 为圆心,AE 为半径作A ,设AN 交DM 于点J .AD AE =,60DAE ∠=︒,ADE ∴∆是等边三角形,点D ,M 关于AN 对称,AD AM ∴=,∴点M 在A 上, 1302EMD EAD ∴∠=∠=︒,AN DM ⊥,90MJH ∴∠=︒,60AHE MHJ ∠=∠=︒,60AHE ADE ∴∠=∠=︒,A ∴,E ,D ,H 四点共圆, 60EHD EAD ∴∠=∠=︒,120AHD ∴∠=︒,∴当EH 是四边形AEDH 的外接圆的直径时,EH 的值最大,此时点C 与点M 重合,B ,C ,N 共线,且EM AD ⊥(如图②1-中),30AEM DEM ∴∠=∠=︒,90AEN ∴∠=︒,90BAN ∴∠=︒, 2AB AE ==,60B ∠=︒,tan 6023AN AB ∴=⋅︒=20.(1)证明:连接OE ,CE BE =,OA BO =,OE ∴是ABC ∆的中位线, //OE AC ∴,EF AC ⊥,OE EF ∴⊥,E 点在圆O 上,FG ∴是O 的切线;(2)证明:OE GF ⊥,90OEG ∴∠=︒,222OG OE EG ∴=+, 222()()EG OG OE OG OE OG OE =-=+-,EO BO OA ==, 2()()EG OG OA OG OB AG BG ∴=+-=⋅; (3)解:连接AE ,过E 点作EM AB ⊥交于点M ,2EG AG BG =⋅,1BG =,2EG 2AG ∴=,1AB ∴=,AB 是直径,90AEB ∴∠=︒,90OEG ∠=︒,AEO BEB ∴∠=∠,AO OE =,EAO OEA ∴∠=∠, BEG EAO ∴∠=∠,AEG EBG ∴∆∆∽,∴2EG EB AG AE =,设EB x =,则2AE x , 在Rt ABE ∆中,2212x x =+,解得3x =,3BE ∴=,6AE =,AE BE AB EM ⋅=⋅,23EM ∴=,A 、B 、E 、D 四点共圆,CDE ABE ∴∠=∠,263sin sin 333EM CDE EBM EB ∴∠=∠===.。
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 2ax + 1,其中a是常数。
若f(x)的图像关于直线x = a对称,则a的值为:A. 0B. 1C. -1D. 22. 在等腰三角形ABC中,AB = AC,AD是BC边上的高,若∠BAC = 60°,则∠ADB的度数为:A. 30°B. 45°C. 60°D. 90°3. 下列哪个图形的面积是其他三个图形面积之和的2倍:A. 正方形B. 矩形C. 等腰三角形D. 等边三角形4. 已知一元二次方程x^2 - 5x + 6 = 0的两个根分别为α和β,则α + β的值为:A. 5B. 6C. 1D. 25. 在平面直角坐标系中,点P的坐标为(3,4),点Q在直线y = -2x + 6上,且PQ的距离为5,则点Q的坐标为:A. (2,2)B. (4,-2)C. (6,-8)D. (8,-10)6. 下列哪个函数的图像是单调递增的:A. y = x^2B. y = -x^2C. y = 2xD. y = -2x7. 在△ABC中,若∠A = 45°,∠B = 60°,则△ABC的面积是:A. √3B. 2C. √2D. 38. 已知正方体ABCD-A1B1C1D1的棱长为2,则对角线AC1的长度为:A. 2√2B. 2√3C. 4D. 4√29. 下列哪个数是立方数:A. 64B. 81C. 100D. 12510. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项an的值为:A. 19B. 21C. 23D. 25二、填空题(每题5分,共50分)11. 已知二次函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(1,-4),则a的值为______。
12. 在△ABC中,AB = AC,若∠B = 40°,则∠C的度数为______。
选择压轴题(函数篇)1压轴题速练1一.选择题(共40小题)1(2023•方城县一模)如图,点A (0,3)、B (1,0),将线段AB 平移得到线段DC ,若∠ABC =90°,BC =2AB ,则点D 的坐标是()A.(7,2)B.(7,5)C.(5,6)D.(6,5)2(2023•东莞市校级二模)如图,在平面直角坐标系中,A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一条长为2023个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -A ⋯⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A.(-1,0)B.(0,2)C.(-1,-2)D.(0,1)3(2023•越秀区二模)抛物线G :y =-13x 2+3与x 轴负半轴交于点A ,与y 轴交于点B ,将抛物线G 沿直线AB 平移得到抛物线H ,若抛物线H 与y 轴交于点D ,则点D 的纵坐标的最大值是()A.415B.154C.32D.234(2023•上城区一模)二次函数y =ax 2+bx +c 与自变量x 的部分对应值表如下,已知有且仅有一组值错误(其中a ,b ,c ,m 均为常数).x ⋯-2023⋯y⋯-m 22-m 2-m 2⋯甲同学发现当a >0时,x =5是方程ax 2+bx +c =2的一个根;乙同学发现当a <0时,则a +b =0.下列说法正确的是()A.甲对乙错B.甲错乙对C.甲乙都错D.甲乙都对5(2023•温州二模)已知函数y=-x2+mx+n(-1≤x≤1),且x=-1时,y取到最大值1,则m的值可能为()A.3B.1C.-1D.-36(2023•越秀区一模)抛物线G:y=-13x2+3与x轴负半轴交于点A,与y轴交于点B,将抛物线G沿直线AB平移得到抛物线H,若抛物线H与y轴交于点D,则点D的纵坐标的最大值是()A.415B.154C.32D.237(2023•定海区模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则S1S2与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系8(2023•雁塔区模拟)抛物线y=ax2+bx+c(a,b,c为常数)开口向上,且过点A(1,0),B(m,0)(-1 <m<0),下列结论:①abc>0;②若点P1(-1,y1),P2(1,y2)都在抛物线上,则y1<y2;③2a+c<0;④若方程a(x-m)(x-1)+2=0没有实数根,则b2-4ac<8a,其中正确结论的序号为()A.①③B.②③④C.①④D.①③④9(2023•碑林区校级模拟)已知二次函数y=a(x-1)2-a(a≠0),当-1≤x≤4时,y的最小值为-4,则a的值为()A.12或4B.4或-12C.-43或4D.-12或4310(2023•海安市一模)二次函数y=ax2+bx+c(a>0)的图象与x轴相交于A,B两点,点C在二次函数图象上,且到x轴距离为4,∠ACB=90°,则a的值为()A.4B.2C.12D.1411(2023•和平区二模)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0),9a-3b+c=m,有下列结论:①若m=0,则抛物线经过点(-3,0);②若4a-2b+c=n且m>n,当-3<x<-2,y随x的增大而减小;③若m>0,抛物线经过点A(-1,0),B(5,m)和P(t,k),且点P到y轴的距离小于2时,则k的取值范围为-3a<k<5a.其中,正确结论的个数是()A.0B.1C.2D.312(2023•杭州一模)设二次函数y=ax2+c(a,c是常数,a<0),已知函数的图象经过点(-2,p),(10,0),(4,q),设方程ax2+c+2=0的正实数根为m,()A.若p>1,q<-1,则2<m<10B.若p>1,q<-1,则10<m<4C.若p>3,q<-3,则2<m<10D.若p>3,q<-3,则10<m<413(2023•衡水模拟)某水利工程公司开挖的沟渠,蓄水之后截面呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m).某学习小组探究之后得出如下结论,其中正确的为()A.AB=24mB.池底所在抛物线的解析式为y=125x2-5C.池塘最深处到水面CD的距离为3.2mD.若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的1314(2023•宝安区二模)已知点(x1,y1),(x2,y2)(x1<x2)在y=-x2+2x+m的图象上,下列说法错误的是()A.当m>0时,二次函数y=-x2+2x+m与x轴总有两个交点B.若x2=2,且y1>y2,则0<x1<2C.若x1+x2>2,则y1>y2D.当-1≤x≤2时,y的取值范围为m-3≤y≤m15(2023•四川模拟)已知二次函数y=ax2+bx+c(a<0),跟x轴正半轴交于A、B两点,直线y=kx +b与y轴正半轴交于点D,交x轴于点C(C在A的右侧不与B重合),抛物线的对称轴为x=2,连接AD,则△AOD是等腰直角三角形,有以下四个命题:①-4ac<0;②4a+b+c>0;③k≠-1;④b=-4a.以上命题正确的是()A.①②③④B.②③C.①③④D.①②④16(2023•东莞市校级模拟)已知抛物线y=ax2+bx+c(a>0)经过两点(m,n),(4-m,n),则关于函数y=ax2+bx+c(a>0),下列说法“①4a-b=0;②当x>2时,y随着x的增大而增大;③若b2-4ac=0,则ax2+bx+c=a(x-2)2;④若实数t<2,则(t+2)a+b<0”中正确的个数有()A.1个B.2个C.3个D.4个17(2023•商河县一模)已知二次函数的表达式为y=-x2-2x+3,将其图象向右平移k(k>0)个单位,得到二次函数y1=mx2+nx+q的图象,使得当-1<x<3时,y1随x增大而增大;当4<x<5时,y1随x增大而减小.则实数k的取值范围是()A.1≤k ≤3B.2≤k ≤3C.3≤k ≤4D.4≤k ≤518(2023•佳木斯一模)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数y =a x的图象上,顶点B 在反比例函数y =bx的图象上,点C 在x 轴的正半轴上,平行四边形OABC 的面积是3,则a -b 的值是()A.3B.-3C.5D.-519(2023•雨山区校级一模)如图,在平面直角坐标系中,将一块直角三角形纸板如图放置,直角顶点与原点O 重合,顶点A 、B 恰好分别落在函数y =-1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为()A.13B.64C.25D.5520(2023•驻马店模拟)某商家设计了一个水箱水位自动报警仪,其电路图如图1所示,其中定值电阻R 1=10Ω,R 2是一个压敏电阻,用绝缘薄膜包好后放在一个硬质凹形绝缘盒中,放入水箱底部,受力面水平,承受水压的面积S 为0.01m 2,压敏电阻R 2的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深,压力F 越大),电源电压保持6V 不变,当电路中的电流为0.3A 时,报警器(电阻不计)开始报警,水的压强随深度变化的关系图象如图3所示(参考公式:I =UR,F =pS ,1000Pa =1kPa ),则下列说法中不正确的是()A.当水箱未装水(h =0m )时,压强p 为0kPaB.当报警器刚好开始报警时,水箱受到的压力F 为40NC.当报警器刚好开始报警时,水箱中水的深度h 是0.8mD.若想使水深1m 时报警,应使定值电阻R 1的阻值为12Ω21(2023•长春一模)如图,在平面直角坐标系中,点A 在反比例函数y =2x(x >0)的图象上,点B 在反比例函数y =k x (x >0)的图象上,AB ∥x 轴,BD ⊥x 轴与反比例函数y =2x的图象交于点C ,与x 轴交于点D ,若BC =2CD ,则k 的值为()A.4B.5C.6D.722(2023•翼城县一模)如图,在平面直角坐标系内,四边形OABC 是矩形,四边形ADEF 是正方形,点A ,D 在x 轴的负半轴上,点F 在AB 上,点B ,E 均在反比例函数y =kx(x <0)的图象上,若点B 的坐标为(-1,6),则正方形ADEF 的周长为()A.4B.6C.8D.1023(2023•萧县一模)如图,在Rt △OAB 中,OC 平分∠BOA 交AB 于点C ,BD 平分∠OBA 交OA 于点D ,交OC 于点E ,反比例函数y =k x 经过点E ,若OB =2,CE OE=12,则k 的值为()A.49B.89C.43D.8324(2023•仙桃校级一模)如图,菱形ABCD 的对角线AC ,BD 交于点P ,且AC 过原点O ,AB ∥x 轴,点C 的坐标为(6,3),反比例函数y =kx的图象经过A ,P 两点,则k 的值是()A.4B.3C.2D.125(2022•吴兴区校级二模)已知在平面直角坐标系xOy 中,过点O 的直线交反比例函数y =1x的图象于A ,B 两点(点A 在第一象限),过点A 作AC ⊥x 轴于点C ,连结BC 并延长,交反比例函数图象于点D ,连结AD ,将△ACB 沿线段AC 所在的直线翻折,得到△ACB 1,AB 1与CD 交于点E .若点D 的横坐标为2,则AE 的长是()A.23B.223C.22D.126(2022•太康县校级模拟)如图,△AOB 的顶点O 在原点上,顶点A 的坐标为(-3,1),∠BAO =90°,AB =OA ,点P 为OB 上一点,且OP =3BP ,将△AOB 向右平移,当点P 的对应点P ′落在反比例函数y =4x(x >0)上时,则点P ′的坐标为()A.(2,3)B.(3,2)C.3,43D.43,327(2022•丹徒区模拟)如图,平面直角坐标系中,过原点的直线AB 与双曲线交于A 、B 两点,在线段AB 左侧作等腰三角形ABC ,底边BC ∥x 轴,过点C 作CD ⊥x 轴交双曲线于点D ,连接BD ,若S △BCD =16,则k 的值是()A.-4B.-6C.-8D.-1628(2022•顺平县校级模拟)如图是反比例函数y 1=2x 和y 2=-4x在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象交于A 、B 两点,点P (-5.5,0)在x 轴上,则△PAB 的面积为()A.3B.6C.8.25D.16.529(2022•沭阳县模拟)如图,Rt △ABC 位于第一象限,AB =2,AC =2,直角顶点A 在直线y =x 上,其中点A 的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若函数y =kx(k ≠0)的图象与△ABC 有交点,则k 的最大值是()A.5B.4C.3D.230(2023•道外区二模)甲、乙两同学进行赛跑,两人在比赛时所跑的路程S (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲同学率先到达终点B.甲同学比乙同学多跑了200米路程C.乙同学比甲同学少用0.2分钟跑完全程D.乙同学的速度比甲同学的速度慢31(2023•潼南区二模)甲、乙两车分别从相距480km的A、B两地相向而行,甲、乙两车离B地的距离y(km)与甲车行驶时间x(h)关系如图所示,下列说法错误的是()A.甲车比乙车提前出发1hB.甲车的速度为80km/hC.当乙车到达A地时,甲车距离B地80kmD.t的值为5.232(2023•南岗区校级二模)在全民健身越野比赛中,乙选手匀速跑完全程,甲选手1.5小时后的速度为每小时10千米,甲、乙两选手的行程y(千米)随时间z(时)变化的图象(全程)如图所示.下列说法:①起跑后半小时内甲的速度为每小时16千米;②第1小时两人都跑了10千米;③两人都跑了20千米;④乙比甲晚到0.3小时.其中正确的个数有()A.1个B.2个C.3个D.4个33(2023•延庆区一模)如图,用绳子围成周长为10m 的矩形,记矩形的一边长为xm ,它的邻边长为ym .当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系34(x +y )=10,35(2023•西乡塘区一模)定义:如果两个函数图象上至少存在一对点是关于原点对称的,我们则称这两个函数互为“守望函数”,这对点称为“守望点”.例如:点P (2,4)在函数y =x 2上,点Q (-2,-4)在函数y =-2x -8上,点P 与点Q 关于原点对称,此时函数y =x 2和y =-2x -8互为“守望函数”,点P 与点Q 则为一对“守望点”.已知函数y =x 2+2x 和y =4x +n -2022互为“守望函数”,则n 的最大值为()A.2020B.2022C.2023D.408436(2023•武汉模拟)A ,B 两地相距80km ,甲、乙两人沿同一条路从A 地到B 地.l 1,l 2分别表示甲、乙两人离开A 地的距离s (km )与时间t (h )之间的关系,当乙车出发2h 时,两车相距是()A.403km B.803km C.13km D.40km37(2023•东至县一模)已知二次函数y =ax 2+bx +c 的图象如右图,其对称轴为x =-1,它与x 轴的一个交点的横坐标为-3,则一次函数y =ax -2b 与反比例函数y =cx在同一平面直角坐标系中的图象大致是()A. B. C. D.38(2023•六安三模)甲,乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.当甲与乙相遇时距离A地()A.16千米B.18千米C.72千米D.74千米39(2023•东莞市二模)如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,下列结论不正确的是()A.AC=4B.BC=23C.tan∠BAP=32D.∠ABC=90°40(2023•黄埔区一模)如图,在边长为2的正方形ABCD中,点P从点A出发,沿A→B→C→D匀速运动到点D,若点E是BC的中点,则△APE的面积y与点P运动的路程x之间形成的函数关系图象是()A. B.C. D.41(2023•鞍山一模)如图,在正方形ABCD中,AB=2,点E从点B出发以每秒2个单位长度的速度沿路径B-D-C运动,点F从点C出发以每秒1个单位长度的速度沿路径C-D-A运动,当点E与11点C 重合时停止运动,设点E 的运动时间为x 秒,△BEF 的面积为y ,则能反映y 与x 之间函数关系的图象大致为()A.B.C.D.。
一、选择题(26个小题)1.有学者说,在中国古代的政治制度建设中,古人为我们留下了诸多的治国智慧和法则,但也留下了许多的无奈。
它最大的局限在于是一个统治性政权,不是一个发展性政权,更不是一个为国民共享的服务性政权。
可见中国古代所有制度设计都围绕的一个核心是()A.维护统一多民族国家主权B.维护专制主义的中央集权制度C.维护儒家思想的正统地位 D.维护以‚家天下‛为核心的王权2.某教授认为:元朝行省制中央集权是秦汉以来郡县制中央集权模式的较高级演化形态,也是两宋否定唐后期藩镇分权的继续,相当于自隋朝始第三个‚正一反一合‛阶段的‚合‛。
作者认为()A.行省制实现了中央集权和地方分权的有机结合 B.行省制主要着眼于政治上的统治和军事上的控制C.行省制巩固了元朝的中央统治和国家的统一 D.行省制借鉴了郡县制的优点,摈弃了两宋政治制度的缺点3.美国历史学家包弼德在《唐宋转型的反思——以思想的变化为主》中认为宋代标志了中国历史现代性的开端,但同时也出现了逆现代性的因素。
以下属于宋代‚逆现代性‛的是()A.社会流动更趋频繁B.皇室权威更趋强化 C.世俗文化蓬勃发展D.货币经济地位提高4.苏轼曾说:‚民庶之家,置庄田,招佃客,本望租课,非行仁义,然犹至水旱之岁,必须放免欠负、贷借种粮者,其心诚恐客散而田荒,后日之失必倍于今故也。
‛这句话反映出的主要问题是()A.宋代地主主要依靠土地剥削来积累财富 B.宋代地主有开展民间赈济的社会责任感C.宋代佃户租地有较大的选择权和自由度 D.宋代农村开始出现以租佃关系经营土地5.清初地理学家刘献廷在其《广阳杂记》中说:‚天下有四聚,北则京师,南则佛山,东则苏州,西则汉口,然东海之滨,苏州而外,更有芜湖、扬州、江宁、杭州以分其势,西则惟汉口耳。
‛据此可知清初()A.已形成统一国内市场 B.区域经济发展不平衡 C.工商业市镇繁荣发展D.苏州是江南经济中心6.明洪武二十八年规定,凡洪武二十七年以后新垦的田地,‚不论多寡,俱不起科‛,‚若有司增科扰害者罪之‛。
2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
2023年中考数学压轴题专项训练压轴题27选择压轴题(几何篇)一.选择题(共40小题)1.(2023•朝阳区校级三模)如图,AB是⊙O的直径,将OB绕着点O逆时针旋转40°得到OC,P是⊙O 上一点,且与点C在AB的异侧,连结P A、PC、AC,若P A=PC,则∠P AB的大小是()A.20°B.35°C.40°D.70°2.(2023•河北区二模)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,且∠COA=45°,OA =4,则点B的坐标为()A.(4+2√2,2√2)B.(2√2,2√2)C.(2+2√2,2)D.(√2,2)3.(2023•奉贤区二模)如图,矩形ABCD中,AB=1,∠ABD=60°,点O在对角线BD上,圆O经过点C.如果矩形ABCD有2个顶点在圆O内,那么圆O的半径长r的取值范围是()A.0<r≤1B.1<r≤√3C.1<r≤2D.√3<r≤24.(2023•广灵县模拟)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点O,D,E是AB边上的点,以点O为圆心,DE长为直径的半圆O与AC相切于点M,与BC相切于点N,则图中阴影部分的面积为()A .5B .9﹣2πC .9﹣πD .5﹣π5.(2023•普陀区二模)如图,△ABC 中,∠BAC =60°,BO 、CO 分别平分∠ABC 、∠ACB ,AO =2,下面结论中不一定正确的是( )A .∠BOC =120°B .∠BAO =30°C .OB =3D .点O 到直线BC 的距离是16.(2023•瓯海区模拟)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH ,连结DH 并延长交AB 于点K ,若DF 平分∠CDK ,则DH HK =( )A .2√33B .65C .√5−1D .4√577.(2023•花溪区模拟)勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题的最重要工具也是数形结合的组带之一,如图,秋千静止时,踏板离地的垂直高度BE =1m ,将它往前推6m 至C 处时(即水平距离CD =6m ),踏板离地的垂直高度CF =4m ,它的绳索始终拉直,则绳索AC 的长是( )A .152mB .92mC .6mD .212m8.(2023•承德一模)如图,在菱形ABCD 中,AC 、BD (AC >BD )相交于点O ,E 、F 分别为OA 和OC 上的点(不与点A 、O 、C 重合).其中AE =OF .过点E 作GH ⊥AC ,分别交AD 、AB 于点G 、H ;过点F 作IJ ⊥AC 分别交CD 、CB 于点J 、I ;连接GJ 、HI ,甲、乙、丙三个同学给出了三个结论:甲:随着AE 长度的变化,GH +IJ =BD 始终成立.乙:随着AE 长度的变化,四边形GHIJ 可能为正方形.丙:随着AE 长度的变化,四边形GHIJ 的面积始终不变,都是菱形ABCD 面积的一半.下列选项正确的是( )A .甲、乙、丙都对B .甲、乙对,丙不对C .甲、丙对,乙不对D .甲不对,乙、丙对 9.(2023•石家庄二模)如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是OB 与OD 的中点,依连接点A ,E ,C ,F ,A ,当四边形AECF 是矩形时,与线段BE 相等的线段有( )A .4条B .5条C .6条D .7条10.(2023•青山区二模)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O ,E 是BC 边上一点,F 是BD 上一点,连接DE ,EF .若△DEF 与△DEC 关于直线DE 对称,则OF 的长为( )A .√22B .2√2−2C .2−√2D .√2−111.(2023•柳城县一模)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.(清)陆以活《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图,是一个用七巧板拼成的装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则BF BE 的值为( )A .1+√22B .√22C .2+√24D .2+√2212.(2023•泉州模拟)如图,在矩形ABCD 中,AB =2,BC =4,将△ABC 沿BC 的方向平移至△A 'B 'C ',使得A ′E =A ′F ,其中E 是A ′B ′与AC 的交点,F 是A ′C ′与CD 的交点,则CC ′的长为( )A .52−√52B .112−√5C .5−√5D .92−√5 13.(2023•定远县二模)如图,在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .3B .2.5C .2.4D .214.(2023•烟台一模)如图,在矩形ABCD 中,AB =12,AD =10,点E 在AD 上,点F 在BC 上,且AE =CF ,连结CE ,DF ,则CE +DF 的最小值为( )A .26B .25C .24D .2215.(2023•郯城县一模)如图,在Rt △ABC 中,∠BAC =90°,AB =6,BC =10,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .4.8B .5C .2.4D .416.(2023•白云区一模)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则下列结论错误的是( )A .FD =√2MNB .△DEF 是等腰直角三角形C .BN =1D .tan ∠FBE =√317.(2023•九龙坡区校级模拟)如图,在正方形ABCD 中,O 为AC 、BD 的交点,△DCE 为直角三角形,∠CED =90°,OE =3√2,若CE •DE =6,则正方形的面积为( )A .20B .22C .24D .2618.(2023•杭州一模)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且B 点D 与点G 重合,当两张纸片交叉所成的角α最小时,tan α等于( )A .14B .815C .12D .81719.(2023•高明区二模)矩形ABCD 和直角三角形EFG 的位置如图所示,点A 在EG 上,点D 在EF 上,若∠2=55°,则∠1等于( )A.155°B.135°C.125°D.105°20.(2023•余姚市一模)如图,由两个正三角形组成的菱形内放入标记为①,②,③,④的四种不同大小的小正三角形5个,其中编号①的有2个.设未被覆盖的浅色阴影部分的周长为C1,深色阴影部分的周长为C2,若要求出C1﹣C2的值,只需知道其中两个小正三角形的边长,则这两个小三角形的编号为()A.①②B.②③C.①③D.②④21.(2023•衡水二模)如图,点P是正方形ABCD的边BC上一点,点M是对角线BD上一点,连接PM 并延长交BA的延长线于点Q,交AD于点G,取PQ的中点N.连接AN.若AQ=PC,有下面两个结论:①DM=DG,②AN⊥BD,则这两个结论中,正确的是()A.①对B.②对C.①②都对D.①②都不对22.(2023•新乡二模)如图,在矩形ABCD中,点B(0,4),点C(2,0),BC=2CD,先将矩形ABCD 沿y轴向下平移至点B与点O重合,再将平移后的矩形ABCD绕点O逆时针旋转90°得到矩形EOMN,则点D的对应点N的坐标为()A.(3,3)B.(4,4)C.(3,4)D.(4,3)23.(2023•荆门一模)如图,菱形ABCD各边的中点分别是E、F、G、H,若EH=2EF,则下列结论错误的是()A.EH⊥EF B.EH=AC C.∠B=60°D.AB=√5EF24.(2023•中原区校级二模)如图,在Rt△ABO中,AB=OB,顶点A的坐标为(2,0),以AB为边向△ABO的外侧作正方形ABCD,将组成的图形绕点O逆时针旋转,每次旋转45°,则第98次旋转结束时,点D的坐标为()A.(1,﹣3)B.(﹣1,3)C.(﹣1,2+√2)D.(1,3)25.(2023•中原区模拟)如图,▱ABCD的边BC在x轴的负半轴上,点B与原点O重合,DE⊥AB,交BA 的延长线于点E,已知∠ABC=60°,AB=4,BC=6,则点E的坐标为()A.(﹣2,﹣,2√3)B.(﹣3,3√3)C.(−72,72√3)D.(−52√3,52)26.(2023•武邑县二模)如图,N是正六边形ABCDEF对角线CF上一点,延长FE,CD相交于点M,若S△ABN=2,则S五边形ABCMF=()A.10B.12C.14D.1627.(2023•承德一模)如图,正六边形的两条对角线AE、BE把它分成Ⅰ、Ⅱ、Ⅲ三部分,则该三部分的面积比为()A.1:2:3B.2:2:4C.1:2:4D.2:3:528.(2023•罗湖区二模)如图,AB为圆O的直径,C为圆O上一点,过点C作圆O的切线交AB的延长线于点D,DB=13AD,连接AC,若AB=8,则AC的长度为()A.2√3B.2√5C.4√3D.4√529.(2023•杭州一模)如图,过⊙O外一点A作⊙O的切线AD,点D是切点,连结OA交⊙O于点B,点C是⊙O上不与点B,D重合的点.若∠A=α°,则∠C的度数为()A.(45−12α)°B.12α°C.2α°D.(45+12α)°30.(2023•西宁一模)如图,扇形纸片AOB的半径为3,沿AB所在直线折叠扇形纸片,圆心D恰好落在AB̂上的点C处,则阴影部分的面积是()A.3π−9√32B.3π−3√32C.2π−3√32D.2π−9√3231.(2023•太原一模)如图,在扇形纸片OAB 中,∠AOB =105°,OA =6、点C 是半径OA 上的点、沿直线BC 折叠△OBC 得到△DBC ,点O 的对应点D 落在AB̂上,图中阴影部分的面积为( )A .9π−92B .9π−182C .9π﹣18D .12π﹣1832.(2023•西山区校级模拟)如图,分别以等边△ABC 的三个顶点为圆心,边长为半径画弧,得到的封闭图形是莱洛三角形,若AB 为6,则图中阴影部分的面积为( )A .18π−27√3B .6π−9√3C .12π−9√3D .18π−18√333.(2023•莆田模拟)如图,在⊙O 中,∠AOB =120°,点C 在AB̂上,连接AC ,BC ,过点B 作BD ⊥AC 的延长线于点D ,当点C 从点A 运动到点B 的过程中,∠CBD 的度数( )A .先增大后减小B .先减小后增大C .保持不变D .一直减小 34.(2023•蚌埠二模)如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆O 中的阴影部分是一个正六边形,其中心与圆心O 重合,且AB =BC ,则阴影部分面积与圆的面积之比为( )A .3√38πB .√32πC .√3πD .2√39π35.(2023•鄞州区校级模拟)如图,AB 为⊙O 的直径,将弧BC 沿BC 翻折,翻折后的弧交AB 于D .若BC =4√5,sin ∠ABC =√55,则图中阴影部分的面积为( )A .256πB .253πC .8D .1036.(2023•九龙坡区模拟)如图,在⊙O 中,AB 是圆的直径,过点B 作⊙O 的切线BC ,连接AC 交⊙O 于点D ,点E 为弧AD 中点,连接AE ,若AE =AO ,AB =6,则CD 的长为( )A .2B .3√32C .√3D .3√337.(2023•宁德模拟)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”.若等边三角形ABC 的边长为2,则该“莱洛三角形”的周长等于( )A .2πB .2π−√3C .23πD .2π+√338.(2023•虹口区二模)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AB =5,BC =12.分别以点O 、D 为圆心画圆,如果⊙O 与直线AD 相交、与直线CD 相离,且⊙D 与⊙O 内切,那么⊙D 的半径长r 的取值范围是( )A .12<r <4B .52<r <6C .9<r <252D .9<r <1339.(2023•苏州一模)东南环立交是苏州中心城区城市快速内环道路系统的重要节点,也是江苏省最大规模的城市立交.左图是该立交桥的部分道路示意图(道路宽度忽略不计),A 为立交桥入口,D 、G 为出口,其中直行道为AB 、CD 、FG ,且AB =CD =FG ;弯道是以点O 为圆心的一段弧,且BC 、CE 、EF 所在的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以16m /s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如右图所示.结合题目信息,下列说法错误的是( )A .该段立交桥总长为672mB .从G 口出比从D 口出多行驶192mC .甲车在立交桥上共行驶22sD .甲车从G 口出,乙车从D 口出40.(2023•滨城区一模)如图,点A ,B 是半径为2的⊙O 上的两点,且AB =2√3,则下列说法正确的是( )A .圆心O 到AB 的距离为√3B .在圆上取异于A ,B 的一点C ,则△ABC 面积的最大值为3√3C .以AB 为边向上作正方形,与⊙O 的公共部分的面积为3+√34πD .取AB 的中点C ,当AB 绕点O 旋转一周时,点C 运动的路线长为3π。
选择题专题1.右图是某位游客蹦极时的照片,下列对这位游客落至最低点时的分析不正确的是()A.此时运动员的速度为零B.测试运动员所受合力为零C.此时运动员受到拉力和重力的作用D.此时运动员仍有惯性2.某探空气球(包括其下方的吊篮)与其下方吊篮中物体的质量之比为1:2,吊篮所受的浮力和空气阻力忽略不计,气球所受的空气阻力与速度成正比、所受浮力始终保持不变,此时气球以1 m/s的速度竖直向下运动。
如果吊篮中物体的质量减少一半,经过一段时间后,气球恰好能以1m/s的速度竖直向上运动。
若去掉吊篮中所有的物体,气球能达到的最大速度为()A.2m/s B.3m/s C.4m/s D.5m/s3.如图所示,小王在探究“力和运动的关系”的实验中,他将物体M放在水平桌面上,两边用细线通过滑轮与吊盘相连.若在左盘中放重为G的砝码,右盘中放重为2G的砝码时,物体M能以速度v向右作匀速直线运动.如果左、右盘中的砝码不变,要让物体M能在水平桌面上以2v的速度向左作匀速直线运动,则应在左盘中再加上砝码,所加砝码的重为(吊盘重、滑轮与细线间和滑轮与轴间摩擦不计)()A.G B.2G C.3G D.4G4.如图甲所示,用一拉力传感器(能感应力大小的装置)水平向右拉一水平面上的木块,A 端的拉力均匀增加,0-t l时间木块静止,木块运动后改变拉力,使木块t2后处于匀速直线运动状态.计算机对数据拟合处理后,得到如图乙所示拉力随时间变化图线,回答下列问题:当用F=5.3牛的水平拉力拉静止的木块时,木块所受摩擦力大小为N;若用F=5.8牛的水平拉力拉木块,木块所受摩擦力大小为N.木块在时间t2-t 的阶段内将做运动.5.某家庭有父母与子女共四人。
他们决定采用投票表决的方式决定周末是否要外出旅游。
如果两个孩子都要去,而父母中有一位要去,另一位愿意留守在家中,那么他们就去旅游。
为此他们设计了一架简易的投票机,由四个单刀双掷开关、一节电池、一只小灯泡组成一个电路,四人各自操纵自己的开关,选择“是”或“否”。
只要灯泡发光,就表示去旅游。
则下列投票机电路正确的是( )6.下列电路图中电源电压U保持不变,小灯泡的额定电压为U0,且U>U0,定值电阻的阻值为R。
在不改变电路连接的情况下,能测出小灯泡额定功率的是()7.如图所示,在小瓶里装一些带颜色的水,再取一根两端开口的细玻璃管,在它上面画上刻度,使玻璃管穿过橡皮塞插入水中,从管子上端吹入少量气体,就制成了一个简易气压计。
小明把气压计从水平地面移到高楼楼顶的阳台上,下列说法正确的是A.玻璃管内水柱的高度变小,水对容器底的压强变小B.玻璃管内水柱的高度变小,水对容器底的压强变大C.玻璃管内水柱的高度变大,水对容器底的压强变小D.玻璃管内水柱的高度变大,水对容器底的压强变大8.下列物理现象解释正确的是( )9.如图所示,小汽车在平直的高速公路上以100km/h的速度行驶,若考虑周围空气对它的影响,则此时( )A.小汽车运动时对地面的压力小于静止时对地面的压力B.小汽车运动时对地面的压力等于静止时对地面的压力C.小汽车运动时与地面的压力大于静止时对地面的压力D.无法比较小汽车运动时和静止时对地面的压力大小10.在如图所示的电路中,闭合开关后,小灯泡正常发光。
若两只电表中有一只电表的示数明显变小,而另一只电表的示数明显变大,则下列判断中正确的是 A .一定是灯L 断路 B .可能是灯L 短路C .一定是滑动变阻器R 断路D .可能是滑动变阻器的滑片向左滑动11.下列电路图中,电源电压U 保持不变,小灯泡的额定电压为U 1,且U> U 1,R 0是已知的定值电阻。
若只通过改变电路的连接方式,并可移动变阻器的滑片,则不能测出小灯泡额定电功率的电路是()12.如图所示,不计绳重和摩擦,吊篮与动滑轮总重为450N ,定滑轮重力为40N ,人的重力为600N ,人在吊篮里拉着绳子不动时需用拉力大小是A .218 NB .220 NC .210 ND .236 N13.如图所示的滑轮组中,每个滑轮的自重为1N ,物体G 重为4N ,不记绳重和摩擦,当滑轮组处于静止状态时,测力计A 的示数为 N ,测力计B 的示数为 N .14.如图所示,电源电压保持不变,L 1上标有“1.2V ?W ”,L 2上标有“9V ?W ”。
闭合开关S 1后,当开关S 接“1”,滑片P 在最左端时,电压表示数为5.4V ,L 1此时的实际功率是额定功率的14;当开关S 接2时,P 在中点,电压表示数为2V 。
若将L 1和L 2串联后接在该电源上时,电路中电流为0.2A ,下面说法中正确的是:(设灯丝电阻不随温度改变)A .电源电压为10VB .L 1的额定功率为2WC .L 2的额定功率3WD .滑动变阻器的最大阻值20Ω15.在如图所示的电路中,闭合开关,调节滑动变阻器,发现两只电表中有一只电表的示数明显变小,另一只电表的示数明显变大。
下列判断中正确的是 ( )A.可能是灯L 断路B.一定是灯L 短路C.可能是滑动变阻器R 断路D.一定是滑动变阻器R 的滑片向左滑动16.在如图所示的电器中,电源电压保持不变,R 1、R 2均为定值电阻。
当①、②都是电流表时,闭合开关S 1,断开开关S 2,①表的示数与②表的示数之比为m ;当①、②都是电压表时,闭合开关S 1和S 2,①表的示数与②表的示数之比为n 。
下列关于m 、n 的关系正确的是 A .mn=n-2m B .mn=n-1C .mn=n+1D .因R 1、R 2未知,故m 、n 的关系无法确定17.如图所示,在水平桌面上的条形磁铁和邻近的铁块均处于静止状态。
下列有关说法正确的是( )S NA .铁块受到磁铁的吸引力和磁铁受到铁块的吸引力是一对平衡力B .铁块受到磁铁的吸引力大于磁铁受到铁块的吸引力C .磁铁与桌面间的摩擦力和铁块与桌面间的摩擦力一定相等D .磁铁受到的合力和铁块受到的合力一定都等于零18.如图甲所示,弹簧测力计下挂着一个实心圆柱体,将它逐渐浸入装有水的烧杯中,弹簧测力计的示数F 随圆柱体下表面浸入的深度h 的变化如图乙所示。
下列结论错误的是(g 取10N/kg)A .圆柱体的质量为0.3kgB .圆柱体的体积为2.0×10-4m 3 C .圆柱体的密度为3×103kg/m 3 D .圆柱体刚好浸没时其下表面受到水的压强为400Pa19.某种活动黑板的示意图如下,其上端分别用两根绕过两只定滑轮的细绳相连。
两块形状相同的黑板的重力均为G 。
当其中一块黑板沿竖直方向匀速运动时,另一块黑板同时做反向等速运动,不计一切摩擦,每根绳的拉力为( ) A .0 B .2GC .GD .2G20.在一个高为h 、长为l 的斜面上,用沿斜面向上的力F 把重为G 的木块匀速向上拉的过程中,如果斜面的机械效率为η,则下列木块和斜面间的摩擦力表达式错误..的是( ) A.)1(η-F B. G L h F - C.G L h ηη)1(- D.F hL21.某同学利用图甲所示的电路测量小灯泡的电功率。
电路中电源电压保持4.5 V不变,灯泡上标有“3V,1W”字样。
闭合开关,将滑片P滑到某一位置时,电压表的指针指示的位置如图乙所示。
下列说法错误..的是A.灯泡的额定功率为1 W B.灯泡正常发光时的电阻为9ΩC.灯泡的实际功率为0.64W D.此时灯泡和滑动变阻器的阻值之比为8:722.某人在超市内用40N的水平推力推购物车匀速直线前进,突然发现车辆前方出现紧急情况,他马上改用120N的水平拉力使车减速,在减速的过程中,购物车受到合力大小为A.40N B.80N C.120N D.160N23. 2014年武汉体育中考有一个项目是坐位体前屈。
学校的测量坐位体前屈成绩的装置如右图所示,测试时需要从刻度尺上读数。
物理活动小组利用实验室器材对该仪器进行了改进,改进后可以直接从电表的表盘上读出对应的长度值。
下列四种方案中,表盘上的长度刻度值均匀的是( )24.通过一只标有“6V6W”小灯泡的电流随两端电压变化关系如图所示,若把这样的两只灯泡串联起来接在6V的电源两端,则电路的总功率为A.1.5WB.3WC.4.8WD.12W25.下图是甲、乙两个电阻的电流I与电压U的关系图像,将它们并联接入电路,下列说法正确的是A、通过甲的电流大于通过乙的电流B、通过甲的电流小于通过乙的电流C、甲、乙并联的总电阻随它们两端电压的升高而减小D、甲、乙并联的总电阻随它们两端电压的升高而增大26.航模小组的某位同学在操场上利用如图所示的电动遥控飞机进行训练,他操作遥控器,使重为3N的飞机从水平地面由静止开始竖直上升,飞机先后经历加速、匀速、减速三个阶段,然后悬停在距离地面10m的高度处。
飞机竖直上升的总时间为12s匀速上升阶段的速度为1m/s。
假设飞机在空中的受力情况可以简化为仅受重力和竖直向上的升力,则下列说法正确的是A、在离开地面的过程中飞机对地面的压力先增大后减小B、在上升的阶段受到的升力大于重力C、在上升阶段飞机的功率为2.5WD、在悬停阶段飞机升力的功率为3W27.如图所示,弹簧下端固定的物体浸没在水中处于静止状态。
设想从某一时刻起地球的引力突然减为原来的一半,则弹簧对物体的弹力(不计弹簧受到的浮力)A、不变B、减为原来的一半C、变为原来的两倍D、变为零28.如图①所示,将物块甲和乙分别挂在轻质杠杆的两端,O是杠杆的支点,杠杆在水平位置平衡时发现OA:OB=1:2;再将物块甲浸没到水中,如图②所示,杠杆平衡时发现OA:OC=1:1。
则下列说法正确的是A、甲乙的质量之比是1:2B、甲乙的质量之比是3:1C、甲的密度是1.5ρ水D、甲的密度是2ρ水29.如图所示,条形磁铁A和B的质量分别为m和2m,用弹簧测力计通过一根细线竖直向上拉磁铁A。
若弹簧测力计的示数为mg,则B对A的支持力F1和水平地面对B的支持力F2分别为( )A、F1=0 ,F2=3mgB、F1=0 ,F2=2mgC、F1>0 ,F2=3mgD、F1>0 ,F2=2mg30.如图所示的电路中,电源电压恒为8V,电阻R1=2R2.当滑动变阻器的滑片P在A端,S1闭合、S2断开时,电流表的示数为0.8A。
此时若再将S2闭合,发现电流表的示数变化了0.4A,则下列说法正确的是( )A、当滑片P在A端,且S1、S2都闭合时、电路的总功率为6.4WB、当滑片P在A端,且S1、S2都闭合时、电路的总功率为3.2WC、当滑片P在B端,且S1、S2都闭合时、电路的总功率为9.6WD、当滑片P在B端,且S1、S2都闭合时、电路的总功率为6.4W31.如图所示电路,电源电压不变,电阻R1=10Ω,当开关S闭合时,电表V1和V2的示数之比为3∶1,当开关S断开时R2和R3的功率之和是R1功率的4倍。