2018年中考数学总复习专题突破训练 第7讲 分式方程试题
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
第7讲分式方程考点1 分式方程及解法分式方程的概念分母里含有①的方程叫做分式方程.分式方程的解法解分式方程的基本思路是将分式方程转化为②方程,具体步骤是:(1)去分母,在方程的两边都乘以③,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母,如果④,则整式方程的解是原式方程的解;否则,这个解不是原分式方程的解.考点2 分式方程的应用列分式方程解应用题的步骤跟一次方程(组)的应用题不一样的是:要检验⑤,既要检验求出来的解是否为原方程的根,又要检验是否⑥ .分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.命题点1 分式方程的解法例1 (·呼和浩特)解方程:23 2x x +-212x x-=0.【思路点拨】先确定最简公分母x(x+2)(x-2),方程两边同乘最简公分母,把分式方程转化为整式方程求解,最后要检验.【解答】方法归纳:解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程,解这个整式方程,并检验该整式方程的解是不是原分式方程的解.1.(·原创)把分式方程24x+=1x转化为一元一次方程时,方程两边需同乘以( )A.xB.2xC.x+4D.x(x+4)2.(·台州)将分式方程1-21xx-=31x-去分母,得到正确的整式方程是( )A.1-2x=3B.x-1-2x=3C.1+2x=3D.x-1+2x=33.(·重庆B卷)分式方程41x+=3x的解是( )A.x=1B.x=-1C.x=3D.x=-34.(·连云港)解方程:22x-+3=12xx--.命题点2 分式方程的应用例2 (·襄阳)甲、乙两座城市的中心火车站A,B两站相距360 km,一列动车与一列特快列车分别从A、B两站同时出发相向而行,动车的平均速度比特快列车快54 km/h.当动车到达B站时,特快列车恰好到达距离A站135 km处的C站.求动车和特快列车的平均速度各是多少?【思路点拨】设特快列车的平均速度为x km/h,则动车的平均速度为(x+54)km/h,依题意有等量关系:动车行驶360 km所用时间=特快列车行驶(360-135)km所用时间.列方程求解即可.【解答】方法归纳:列分式方程解应用题的关键是分析题意,弄清楚已知量与未知量之间的关系,从而得到等量关系式,进而引进未知数,列出方程解决问题.利用分式方程解应用题一定要注意检验,找出符合实际情况的答案.1.(·莱芜)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是( )A. 40x=5012x-B.4012x-=50xC. 40x=5012x+D.4012x+=50x2.(·大连)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1 260元,A、B两种糖果的重量比是1∶3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B 两种糖果各购进多少千克?3.(·东营)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造.根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?1.(·山西)解分式方程21x -+ 21x x+-=3时,去分母后变形为( ) A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3(1-x)D.2-(x+2)=3(x-1)2.(·孝感)分式方程1x x -=233x -的解为( ) A.x=-16 B.x=23C.x=13D.x=563.(·原创)邱老师和黄老师住在同一个小区,离学校 3 000米,某天早晨,邱老师和黄老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知黄老师骑车的速度是邱老师的1.2倍,则邱老师骑车的速度是( )A.80米/分B.100米/分C.120米/分D.200米/分4.(·无锡)方程22x +=1x的解是 . 5.(·广安)解方程42x x --1=32x-,则方程的解是 . 6.(·巴中)若分式方程1x x -- 1m x -=2无解,则m 的值是 . 7.(·盘锦)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为 .8.解分式方程:(1)(·盐城)31x -=21x +;(2)(·聊城) 22xx+-+2164x-=-1.9.(·东营模拟)如图,点A、B在数轴上,它们所对应的数分别是-3和1-x2-x,且点A、B 到原点的距离相等,求x的值.10.(·娄底)娄底到长沙的距离约为180千米,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发1小时,最后两车同时到达,已知小轿车的速度是大货车的速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,小张离长沙还有多远?11.(·徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出小伙伴们的人数.12.(·威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲种粽子比乙种粽子少用100元.已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?13.(·自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成.现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?14.(·荆门)已知:点P(1-2a ,a-2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程 1x x a+-=2的解是( ) A.5 B.1 C.3 D.不能确定15.(·枣庄)对于非零的两个实数a ,b ,规定a b ⊕=1b -1a ,若()221x ⊕-=1,则x 的值为( ) A.56 B.54 C.32 D.-16 16.(·达州)某服装商预测一种应季衬衫能畅销市场,就用8 000元购进一批衬衫,面市后果然供不应求,服装商又用17 600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?17.(·娄底)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?参考答案考点解读①未知数②整式③最简公分母④不为0 ⑤两⑥符合题意各个击破例1方程两边同乘x(x+2)(x-2),去分母,得3(x-2)-(x+2)=0,去括号,得3x-6-x-2=0,移项,得3x-x=6+2,合并,得2x=8,系数化为1,得x=4.检验,当x=4时,x(x+2)(x-2)=48≠0,∴x=4是原方程的解.题组训练 1.D 2.B 3.C4.2+3(x-2)=x-1,2+3x-6=x-1,2x=3,x=32.经检验,x=32是原方程的解.例2 设特快列车的平均速度为x km/h,则动车的平均速度为(x+54)km/h,根据题意,得36054 x+=360135x-.解得x=90.经检验,x=90是这个分式方程的解,且符合题意.x+54=144.答:动车和特快列车的平均速度分别为144 km/h和90 km/h.题组训练 1.B2.设A种糖果购进x千克,则B种糖果购进3x千克,根据题意,得480 x -12603x=2.解得x=30.经检验,x=30是原方程的解,且符合题意.3x=90.答:A种糖果购进30千克,B种糖果购进90千克.3.设甲工程队单独完成此项工程需x天,则乙工程队单独完成此项工程需2x天.由题意得1x +12x =110.解得x=15. 经检验,x=15是原方程的解.∴2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天. 整合集训1.D2.B3.B4.x=25.x=-536.-17.5x -52x =168.(1)分式两边同乘(x+1)(x-1),去分母,得3(x+1)=2(x-1).解得x =-5.检验,当x =-5时,(x+1)(x-1)=24≠0.∴原分式方程的解是x =-5.(2)分式两边同乘(x+2)(x-2)去分母,得-(2+x)2+16=-(x 2-4),解得x=2.经检验,当x=2时,x 2-4=0.∴原方程无解.9.依题意可得12x x --=3,解得x=52. 经检验,x=52是原方程的解. ∴x 的值为52. 10.(1)设大货车的速度为x 千米/时,小轿车的速度为1.5x 千米/时,则180x -1801.5x=1.解得x=60. 经检验,x=60是方程的解,且符合题意.1.5x=90.答:大货车的速度为60千米/时,小轿车的速度为90千米/时.(2)180-60=120(千米).答:当小刘出发时,小张离长沙还有120千米.11.设共有x 个小伙伴,依题意,得3602x -×0.6=36072x-.解得x=8. 经检验,x=8是原方程的解,且符合题意.答:共有8个小伙伴.12.设乙种粽子的单价为x 元,则()00300120x ++400x=260.解得x=2.5. 经检验,x=2.5是原方程的解,且符合题意. ∴()00300120x +=100, 400x =160.答:乙种粽子的单价是2.5元,甲、乙两种粽子分别购买了100个、160个.13.(1)设王师傅单独整理这批实验器材需要x 分钟完成,则 (140+1x )×20+20x=1.解得x=80. 经检验得x=80是原分式方程的解,且符合题意.答:王师傅单独整理这批实验器材需要80分钟完成.(2)设李老师要工作m 分钟,则40m +3080≥1.解得x ≥25. 答:李老师至少要工作25分钟.14.C 15.A16.设第一批进货的单价为x 元,则第二批进货的单价为(x+8)元,由题意,得 2×8 000x =17 6008x .解得x=80. 经检验,x=80是原分式方程的解,且符合题意.则第一次进货100件,第二次进货的单价为88元,第二次进货200件.总盈利为:(100-80)×100+(100-88)×(200-10)+10×(100×0.8-88)=4 200(元).答:在这两笔生意中,商家共盈利4 200元.17.(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运2x 趟,依题意,得12x +122x=1.解得x=18. 经检验x=18是原方程的解,且符合题意.2x=36.答:甲车单独运完此堆垃圾需18趟,乙车需36趟.(2)设甲车每趟需运费a 元,则乙车每趟需运费(a-200)元,依题意,得12a+12(a-200)=4 800.解得a=300.a-200=100.∴单独租用甲车的费用=300×18=5 400(元),单独租用乙车的费用=100×36=3 600(元).∵5 400>3 600,∴单独租用乙车合算.。
第三讲 分式及分式方程明确目标∙定位考点分式,主要考查分式的概念及利用分式的基本性质进行分式的相关运算,灵活运用简单的分式的加、减、乘、除运算,正确的约分与通分,用适当的方法解决与分式有关的问题;分式方程,主要考查分式方程的性质和可化为一元一次方程的分式方程,能运用分式方程解决简单的实际问题。
归纳总结 思维升华1、分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA 叫做分式,A 为分子,B 为分母。
2、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)3、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
4、分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母 相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
第7讲分式方程及其应用一、选择题1.(2018·海南)若分式x2-1x-1的值为0,则x的值为(A)A.-1 B.0 C.1 D.±12.(2018·成都)已知x=3是分式方程kxx-1-2k-1x=2的解,那么实数k的值为(D)A.-1 B.0 C.1 D.23.(2018·毕节)关于x的分式方程7xx-1+5=2m-1x-1有增根,则m的值为(C)A.1 B.3 C.4 D.54.(2018·滨州)分式方程xx-1-1=3(x-1)(x+2)的解为 (C)A.x=1 B.x=-1 C.无解D.x=-25.解分式方程2x-1+x+21-x=3时,去分母后变形正确的是(D)A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3D.2-(x+2)=3(x-1)6.(2018·十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.设甲每小时做x个零件,依题意,下面所列方程正确的是(A)A.90x=60x-6B.90x=60x+6C.90x-6=60x D.90x+6=60x7.(2018·南宁)一艘轮船在静水中的最大航速为35 km/h,它以最大航速沿江顺流航行120 km所用时间与以最大航速逆流航行90 km所用时间相等.设江水的流速为v km/h,则可列方程为(D)A.120v+35=90v-35 B.12035-v=9035+vC.120v-35=90v+35 D.12035+v=9035-v二、填空题8.(2018·泰安)分式7x-2与x2-x的和为4,则x的值为3.9.(2018·南京)方程2x+2-1x=0的解是x=2.10.(2018·攀枝花)若关于x的方程7x-1+3=mxx-1无解,则实数m=7.11.(2018·荆州)若关于x的分式方程k-1x+1=2的解为负数,则k的取值范围为k<3且k≠1.12.(2018·营口)某市为绿化环境计划植树2 400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为2 400x-2 4001.2x=8.三、解答题13.(2018·济宁)解方程2xx-2=1-12-x.解:去分母,得2x=x-2+1,移项并合并同类项,得x=-1,经检验,x=-1是分式方程的解.∴方程的解为x=-1.14.(2018·泰州)解方程:x+1x-1+41-x2=1.解:去分母,得(x+1)2-4=x2-1,去括号,得x2+2x+1-4=x2-1,移项,得x2-x2+2x=-1+4-1,合并同类项,得2x=2,系数化为1,得x=1.经检验,x=1是原方程的增根,所以原方程无解.15.(2018·长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.解:设跳绳的单价为x元,则排球的单价为3x元.根据题意,得750x-9003x=30,解得x=15.经检验,x=15是原方程的解,且符合题意.答:跳绳的单价是15元.16.(2018·宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.解:设A型机器人每小时搬运x袋大米,则B型机器人每小时搬运(x-20)袋大米.根据题意,得700x=500x-20,解得x=70.经检验,x=70是原方程的解,且符合题意,所以x-20=50.答:A型机器人每小时搬运70袋大米,B型机器人每小时搬运50袋大米.一、选择题1.(2018·孝感)方程2x+3=1x-1的解是(B)A.x=53B.x=5C.x=4 D.x=-52.(2018·重庆A卷)若数a使关于x的分式方程2x-1+a1-x=4的解为正数,且使关于y 的不等式组⎩⎪⎨⎪⎧ y +23-y 2>1,2(y -a )≤0的解集为y <-2,则符合条件的所有整数a 的和为( A ) A .10 B .12 C .14 D .163.(2018·重庆B 卷)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧ x -22≤-12x +2,7x +4>-a 有且仅有四个整数解,且使关于y 的分式方程a y -2+22-y=2有非负数解,则所有满足条件的整数a 的值之和是( B )A .3B .1C .0D .-3二、填空题4.(2018·泸州)若关于x 的分式方程x +m x -2+2m 2-x=3的解为正实数,则实数m 的取值范围是 m <6且m ≠2 .5.(2018·绵阳)关于x 的分式方程2x -1-1x +1=11-x的解是 x =-2 . 三、解答题6.(2018·贵阳)“2018年张学友演唱会”于6月3日在我市关山湖奥体中心举办.小张去离家2 520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心.已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会 开始前赶到奥体中心?说明理由.解:(1)设小张跑步的平均速度为x 米/分钟,则小张骑车的平均速度为1.5x 米/分钟.根据题意,得2 520x -2 5201.5x =4,解得x =210.经检验,x=210是原方程的解,且符合题意.答:小张跑步的平均速度为210米/分钟;(2)不能,理由如下:小张跑步到家所需时间为2 520÷210=12(分钟),小张骑车所用时间为12-4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.7.(2018·葫芦岛)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?解:(1)设降价后每枝玫瑰的售价是x元,根据题意,得30x=30x+1×1.5,解得x=2.经检验,x=2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)设购进玫瑰y枝,则购进康乃馨(500-y)枝.根据题意,得2(500-y)+1.5y≤900,解得y≥200.答:至少购进玫瑰200枝.。
分式与分式方程一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,”建立方程即可得出结论.【解答】解:江水的流速为v km/h,则以最大航速沿江顺流航行的速度为(30+v)km/h,以最大航速逆流航行的速度为(30﹣v)km/h,根据题意得,,故选:C.【点评】此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大,可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B.(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C.===﹣,错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).3.(2018•金华、丽水•3分)若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0,则,解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.【解答】解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:﹣=2,故选:A.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2,则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2,∴x=m﹣2=2,解得:m=4.故选:B.【点评】此题主要考查了分式方程的解,正确解方程是解题关键.1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.【点评】本题考查了分式的加减,归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解,则a的值为.【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.3. (2018•遂宁•4分)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时,分式的值是.【分析】将x=1代入分式,按照分式要求的运算顺序计算可得.【解答】解:当x=1时,原式==,故答案为:.【点评】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为:【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解,则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在,则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值,进而得出答案.【解答】解:若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.【点评】此题主要考查了分式有意义的条件,正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则,解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义,则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解,则a的值为.【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.15. (2018•遂宁•4分)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简,再求值:,其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子,由x为整数且满足不等式组可以求得x的值,从而可以解答本题.【解答】解:===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意列出方程,求出方程的解即可.【解答】解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意得:﹣=1.5,解得:x=325,经检验x=325是分式方程的解,且符合题意,则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x 元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a 的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣•,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.9. (2018•达州•6分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4,,解①得:x≤1,解②得:x>﹣3,故不等式组的解集为:﹣3<x≤1,把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简,再求值•+.(其中x=1,y=2)【分析】根据分式的运算法则即可求出答案,【解答】解:当x=1,y=2时,原式=•+=+==﹣3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11.(2018•资阳•7分)先化简,再求值:÷(﹣a),其中a=﹣1,b=1.【分析】先根据分式混合运算顺序和运算法则化简原式,再将A.b的值代入计算可得.【解答】解:原式=÷=•=,当a=﹣1,b=1时,原式====2+.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时,即可得出关于x的分式方程,解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:﹣=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法,再计算除法即可得;(2)先去分母化分式方程为整式方程,解整式方程求解的x值,检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1,得:2x﹣5=3(2x﹣1),解得:x=﹣,检验:当x=﹣时,2x﹣1=﹣2≠0,所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程,解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•,其中a=1,b=2.【答案】原式= =a-b当a=1,b=2时,原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中,可先运算括号里的,或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简,再求值:,其中.【答案】,.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵,∴,舍,当时,原式.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天,根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天,依题可得解得x=60,经检验,x=60是原分式方程的解,∴由二号施工队单独施工,完成整个工期需要60天.(2)由题可得(天),∴若由一、二号施工队同时进场施工,完成整个工程需要24天.点睛:本题考查了列分式方程解应用题,灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,解得:x=1.5,检验:x=1.5时,3(x﹣1)=1.5≠0,所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣,检验:当x=﹣时,x(x+3)=﹣≠0,所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简,再求值:(1﹣)÷,其中a=sin30°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=sin30°时,所以a=原式=•=•==﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22..(2018·湖北省恩施·8分)先化简,再求值:•(1+)÷,其中x=2﹣1.【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••=,把x=2﹣1代入得,原式===.【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1),得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时, 3(x -1) ≠ 0所以,原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母,然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值,再计算加减可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•,再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子,再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===,当x=2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确它们各自的计算方法.30.(2018•贵州贵阳•10 分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10 元,用 480 元购买乙种树苗的棵数恰好与用360 元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50 棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500 元,那么他们最多可购买多少棵乙种树苗?【解(1)设甲种树苗每棵的价格是x 元,由题意知:乙种树苗每棵的价格是x 10元.则480 360,解得:x 30 x 10 x即,甲、乙两种树苗每棵的价格分别是30 元、40 元(2)设他们购买乙种树苗y 棵,则购买甲种树苗50 y 棵. 由(1)知:甲种树苗每棵30 元,乙种树苗每棵40 元甲种树苗降低10%后为:30(110%) 27 元由题意知:27(50 y)40y 1500 解得:y 15011.54 13所以,他们最多可以购买11 棵乙种树苗.31.(2018年湖南省娄底市)先化简,再求值:( +)÷,其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=时,原式==3+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.32.(2018湖南省邵阳市)(8分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.。
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
分式与分式方程一、选择题1. (2018•江西•3分)计算的结果为A.bB.C.D.a【解析】本题考察代数式的乘法运算,容易,注意 ,约分后为b【答案】A★4. (2018•四川成都•3分)分式方程的解是()A. x=1B.C.D.【答案】A【考点】解分式方程【解析】【解答】解:方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2)x2-x-2+x=x2-2x解之:x=1经检验:x=1是原方程的根。
故答案为:A【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,再解整式方程,然后检验即可求解。
8.(2018·山东临沂·3分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A. =B. =C. =D. =【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得: =,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.9.(2018·山东威海·3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.10.(2018•北京•2分)如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.3B.23C.33D.43【答案】A【解析】原式()2222222a ba b ab a a a ba ab a a b-+--=⋅=⋅=--,∵23a b-=,∴原式3=.【考点】分式化简求值,整体代入.11.(2018•甘肃白银,定西,武威•3分)若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.13. (2018•株洲市•3分)关于x的分式方程解为,则常数a的值为( )A. B. C. D.【答案】D详解:把x=4代入方程,得,解得a=10.故选:D.点睛:此题考查了分式方程的解,分式方程注意分母不能为0.14. (2018·天津·3分)计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15. (2018年江苏省宿迁)函数中,自变量x的取值范围是()。
分式方程一、选择题1.方程的解为().A. x=-1B. x=0C. x=D. x=12.解分式方程分以下几步,其中错误的一步是()A. 方程两边分式的最简公分母是(x-1)(x+1)B. 方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C. 解这个整式方程,得x=1 D. 原方程的解为x =13.方程的解的个数为()A. 0个B. 1个C. 2个 D. 3个4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.5.若关于x的分式方程= 的根为正数,则k的取值范围是( )A. k<- 且k≠-1 B. k≠-1C. -<k<1 D. k<-6.若方程=1有增根,则它的增根是()A. 0B. 1C. ﹣1 D. 1和﹣17.已知= - ,其中A,B为常数,则4A-B的值为( )A. 13B. 9C. 7D. 58.为响应“绿色校园”的号召,八年级(5)班全体师生义务植树300棵.原计划每小时植树棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.9.关于x的分式方程的解为正实数,则实数m的取值范围是()A. m<-6且m≠2B. m>6且m≠2 C. m<6且m≠-2 D. m<6且m≠210.在今年抗震赈灾活动中,小明统计了自己所在学校的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.D.11.己知关于x的分式方程=1的解是非正数,则a的取值范围是()A. a≤-lB. a≤-2 C. a≤1且a≠-2 D. a≤-1且a≠-212.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A. ﹣=1 B . ﹣=1C. ﹣=1 D . ﹣=1二、填空题13.方程的解是________14.当x=________时, 与互为相反数.15.若分式方程有增根,则这个增根是________16.已知关于x的方程x+ =a+ 的解是x1=a,x2= ,应用此结论可以得到方程x+ =[x]+ 的非整数解为________([x]表示不大于x的最大整数).17.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设米,根据题意可列出方程:________.18.若关于x的分式方程=2的解为负数,则k的取值范围为________.19.当________时,解分式方程会出现增根.20.已知a>b>0,且,则________。
第7讲分式方程知识点1 分式方程的解知识点2 分式方程的解法知识点3 分式方程的增根知识点4 分式方程的实际应用知识点1 分式方程的解(2018株洲)5、关于的分式方程解为,则常数的值为A、B、C、D、(2018张家界)2.若关于的分式方程的解为,则的值为( )知识点2 分式方程的解法(2018德州)8.分式方程的解为( D )A. B. C. D.无解(2018龙东)(2018荆州)5.解分式方程时,去分母可得()A. B. C.D.(2018成都)8.分式方程的解是( A )A.x=1 B. C. D.(2018兰州)(2018哈尔滨)(2018海南)(2018黄石)13、分式方程的解为________________(2018铜仁)(2018甘肃)(2018湘潭)11.(3分)分式方程=1的解为x=2 .(2018无锡)(2018常德)10.分式方程的解为.(2018眉山)15.已知关于x的分式方程-2=有一个正数解,则k的取值范围为 .(2018广州)13.方程的解是__x= 2__.知识点3 分式方程的增根(2018潍坊)14.当时,解分式方程会出现增根.(2018达州)13.若关于的分式方程无解,则的值为 . (2018齐齐哈尔)知识点4 分式方程的实际应用(2018临沂)10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1-5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%。
今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为万元根据题意.列方程正确的是()A. B.C. D.(2018黔东南、黔南、黔西南)8.施工队要铺设米的管道,因在中考期间需停工天,每天要比原计划多施工米才能按时完成任务.设原计划每天施工米,所列方程正确的是()A. B.C. D.(2018淄博)10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为万平方米,则下面所列方程中正确的是()A. B.C. D.(2018通辽)(2018昆明)(2018怀化)(2018毕节)13.某商厦进货员预测一种应季衬衫国畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为元,则所列方程正确的是( )A. B.C. D.(2018衡阳)8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为()A. B. C. D.(2018新疆建设兵团)(2018宿迁)15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是▲ .(2018嘉兴、舟山)答案:(2018遂宁)A、B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早米小时到达目的地。
分式与分式方程一、选择题1. (2018•江西•3分)计算的结果为A. B. C. D.【解析】本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】A★2.(2018•山东淄博•4分)化简的结果为()A. B.a﹣1 C.a D.1【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+==a﹣1故选:B.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.3.(2018•山东淄博•4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4. (2018•四川成都•3分)分式方程的解是()A. x=1B.C.D.【答案】A【考点】解分式方程【解析】【解答】解:方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2)x2-x-2+x=x2-2x解之:x=1经检验:x=1是原方程的根。
故答案为:A【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,再解整式方程,然后检验即可求解。
5.(2018·湖北省武汉·3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.6. (2018·湖北省孝感·3分)已知x+y=4,x﹣y=,则式子(x﹣y+)(x+y﹣)的值是()A.48 B.12C.16 D.12【分析】先通分算加法,再算乘法,最后代入求出即可.【解答】解:(x﹣y+)(x+y﹣)=•=•=(x+y)(x﹣y),当x+y=4,x﹣y=时,原式=4=12,故选:D.【点评】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.7.(2018·湖南省衡阳·3分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D.+=10【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:﹣=10.故选:A.8.(2018·山东临沂·3分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A. =B. =C. =D. =【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x 万元,则去年的销售价格为(x+1)万元/辆,根据题意,得: =,故选:A .【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.9.(2018·山东威海·3分)化简(a ﹣1)÷(﹣1)•a 的结果是( ) A .﹣a 2 B .1C .a 2D .﹣1 【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a ﹣1)÷•a=(a ﹣1)••a=﹣a 2, 故选:A .【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.10.(2018•北京•2分) 如果a b -=,那么代数式22()2a b a b a a b+-⋅-的值为A B . C . D .【答案】A【解析】原式()2222222a b a b ab aa ab a a b a a b -+--=⋅=⋅=--,∵a b -=,∴原式=.【考点】分式化简求值,整体代入.11.(2018•甘肃白银,定西,武威•3分) 若分式的值为0,则的值是( )A. 2或-2B. 2C. -2D. 0 【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零. 【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.12. (2018•湖南省永州市•4分)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13. (2018•株洲市•3分)关于的分式方程解为,则常数的值为( )A. B. C. D.【答案】D详解:把x=4代入方程,得,解得a=10.故选:D.点睛:此题考查了分式方程的解,分式方程注意分母不能为0.14. (2018·天津·3分)计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15. (2018年江苏省宿迁)函数中,自变量x的取值范围是()。
第7讲 分式方程
(时间35分钟 满分85分)一、选择题(每小题3分,共21分)
1.(2017·哈尔滨)方程2x +3=1x -1
的解为( C ) A .x =3 B .x =4 C .x =5 D .x =-5
2.(2017·河南)解分式方程1x -1-2=31-x
,去分母得( A ) A .1-2(x -1)=-3 B .1-2(x -1)=3
C .1-2x -2=-3
D .1-2x +2=3
3.(2016·齐齐哈尔)若关于x 的分式方程x x -2=2-m 2-x
的解为正数,则满足条件的正整数m 的值为( C ) A .1,2,3 B .1,2 C .1,3 D .2,3
4.(2017·南宁)一艘轮船在静水中的最大航速为35 km /h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行90 km 所用时间相等.设江水的流速为v km /h ,则可列方程为( D )
A .
120v +35=90v -35 B .12035-v =9035+v C .120v -35=90v +35 D .12035+v =9035-v
5.(2017·毕节)关于x 的分式方程7x x -1+5=2m -1x -1
有增根,则m 的值为( C ) A .1 B .3 C .4 D .5
6.某学校食堂需采购部分餐桌,现有A 、B 两个商家,A 商家每张餐桌的售价比B 商家的优惠13元.若该校花费2万元采购款在B 商家购买餐桌的张数等于花费1.8万元采购款在A 商家购买餐桌的张数,则A 商家每张餐桌的售价为( A )
A .117元
B .118元
C .119元
D .120元
7.(2016·十堰)用换元法解方程x 2-12x -4x x 2-12=3时,设x 2
-12x =y ,则原方程可化为( B ) A .y -1y -3=0 B .y -4y
-3=0
C .y -1y +3=0
D .y -4y +3=0
二、填空题(每小题3分,共18分)
8.(2017·南京)方程2x +2-1x
=0的解是_x =2_. 9.(2017·泰安)分式7x -2与x 2-x
的和为4,则x 的值为_3_. 10.(2018·原创)若关于x 的分式方程mx -1x -2+1x -2
=2有整数解,整数m 的最小值是_-2_. 11.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:
_160x =200x +5_. 12.如果实数x 满足(x +1x )2-(x +1x )-2=0,那么x +1x
的值是_-1或2_. 13.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数
比小博多10步,求小博每消耗1千卡能量需要行走_30_步.
三、解答题(本大题5小题,共46分)
14. (8分)(2017·宁夏)解方程:x +3x -3-4x +3
=1. (导学号 58824123)
解:去分母得(x +3)2-4(x -3)=(x -3)(x +3),
去括号得x 2+6x +9-4x +12=x 2-9,
移项,合并同类项得x =-15,
令x =-15时,(x -3)(x +3)≠0,
∴原分式方程的解为:x =-15.
15. (8分)(2016·上海)解方程:
1x -2-4x 2-4=1. 解:去分母得,x +2-4=x 2-4,
移项、合并同类项得,x 2-x -2=0,
解得x 1=2,x 2=-1,
经检验x =2是增根,舍去;x =-1是原方程的根,
所以原方程的根是x =-1.
16.(10分)(2017·通辽)一汽车从甲地出发开往相距240千米的乙地,出发后第一小时内按原计划的速
度匀速行驶,1小时后比原来的速度加快14
,比原计划提前24分钟到达乙地,求汽车出发后第1小时内的行驶速度.
解:设汽车出发后第1小时内的行驶速度是x 千米/小时,根据题意可得:240x =1+240-x 54x +2460, 解得:x =80,
经检验得:x =80是原方程的根.
答:汽车出发后第1小时内的行驶速度是80千米/小时.
17.(10分)(2017·贵阳)“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小张跑步的平均速度;
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
(导学号 58824124)。