无刷直流钻井电机无位置传感器控制方法研究
- 格式:pdf
- 大小:833.44 KB
- 文档页数:5
直流无刷电机无位置传感器控制方法摘要:在直流无刷电机的使用过程中,不能很准确的接收换相信号,因此,就导致该电机无法实现对换相良好的控制,为了解决这类问题的出现,本篇文章将对直流无刷电机中无位置传感器进行研究与分析,并且找到有效的控制方法。
具体的方法是利用电机内部的各种装置之间的联系,来建立出一个直观的电机模型,之后通过电机内部反电势力的不断变化来研究反电势对于换相位置的影响,在经过一定的计算从而能够保证换相信号的准确性,最终实现对其良好的控制。
本篇文章通过具体的试验与测试来对控制的方法进行验证,最终得出,通过上述的方法,能够实现对其换相的控制。
关键词:直流无刷电机;传感器;换相位置;控制效果前言随着经济与技术的共同发展,使得各种工业也得到了快速的发展,由于直流无刷电机在使用的过程中效率非常高且其的构成比较简单,使得直流无刷电机在各个领域中都被广泛地应用,其中包括航天、汽车、家电、工具等等。
与以往的有刷的电机来说,直流无刷电机的组成部分少了电刷这一部分,但是直流无刷电机的作用原理却比有刷的更为复杂。
在直流无刷电机的使用过程中,可以适当地将电机的电路进行调整,从而更好地实现对于换相信号的收集,实现对其的控制,并能够有效地缩小该电机的体积。
一、直流无刷电机的主要构造在直流无刷电机的使用过程中,主要是通过内部的传感器来对换相位置进行检测。
传感器的种类非常多样,最常见的一般为电磁式传感器、光电式传感器以及霍尔式传感器这三种类型,根据需求的不同来选择合适的传感器类型。
与其他的传感器相比,霍尔式传感器的使用成本比较低,且具有较强的性能条件,因此,该类型的传感器被使用得更加广泛。
为了保证直流无刷电机使用的效率,需要对其进行有效地控制,从而提高对于换相信号搜集的准确性。
二、背景介绍随着经济与技术的共同发展,使得人们对于电机的需求越来越大,随之对电机也有了更高的标准。
过去,大多数使用的是直流有刷电机,但这种电机存在诸多缺陷,无法满足需求。
无位置传感器直流无刷电机控制关键技术研究无位置传感器直流无刷电机控制关键技术研究随着电子科技的迅猛发展,越来越多的电力电子技术被应用在日常生活中,无位置传感器直流无刷电机控制技术是其中之一。
该技术能够使电机受到更好的控制,在某些应用中具有巨大的优势。
本篇文章将探讨无位置传感器直流无刷电机控制技术的研究现状以及未来的发展方向,旨在为该技术的研究和应用提供帮助。
一、无位置传感器直流无刷电机控制技术背景及概述直流无刷电机(BLDC)是一种具有潜力的驱动器,拥有高效、低噪声等优点,并且越来越多地应用于工业、农业、医疗、家用电器、交通等领域。
传统的直流电机控制系统需要使用位置传感器来确定转子位置,获得可控的旋转方向和速度。
但是,位置传感器通常是昂贵的,且在操作过程中容易出现故障,同时会产生误差,这些因素均会影响电机的运行稳定性和可靠性。
为此,研究人员逐渐转向寻找无位置传感器控制技术,以减少成本和提高可靠性。
无位置传感器控制技术可以消除电机的位置传感器,因此在电机控制系统中的总成本和故障风险都会降低。
然而,由于无位置传感器的电机控制系统无法达到传感器控制系统的高速度、低噪声、较好的控制精度等优点,在实际应用中无位置传感器的电机控制技术面临着许多挑战和难题。
为了解决这些问题,人们开始研究各种直流无刷电机无位置传感器控制技术。
二、无位置传感器直流无刷电机控制技术研究现状及挑战目前,实现无位置传感器直流无刷电机控制技术的主要方法有Hall 传感器、反电动势(back EMF)、计算力矩等多种技术。
这些方法的基本原理是利用反电动势在旋转过程中产生的特征来确定旋转速度和位置。
具体来讲,Hall 传感器依赖于固定的磁场,可以直接检测到旋转方向和位置;反电动势则是利用电机的反电动势信号来估算旋转方向和位置信息;计算力矩则是利用机械特性和电特性的反馈信息,来估算输出速度和位置。
尽管无位置传感器直流无刷电机控制技术的研究在过去十年中逐渐成熟,但是目前仍然面临着许多挑战。
无刷直流电机无位置传感器控制方法综述所谓的无位置传感器控制,正确的理解应该是无机械的位置传感器控制。
在电机运转的过程中,作为逆变桥功率器件换向导通时序的转子位置信号仍然是需要的,只不过这种信号不再由位置传感器来提供,而应该由新的位置信号检测措施来代替,即以提高电路和控制的复杂性来降低电机的复杂性。
所以,目前永磁无刷直流电机无位置传感器控制研究的核心和关键就是架构一转子位置信号检测线路,从软硬件两个方面来间接获得可靠的转子位置信号,借以触发导通相应的功率器件,驱动电机运转。
1.反电势过零点法(端电压法):基于反电动势过零点的转子位置检测方法是在忽略永磁无刷直流电机电枢反应影响的前提下。
通过检测断开相反电动势过零点。
依次得到转子的六个关键位置信号。
但是存在如下缺点:反电动势正比于转速,低速时不能通过检测端电压来获得换相信息故这种方法严重影响了电机的调速范围。
使电机起动困难;续流二极管导通引起的电压脉冲可能覆盖反电动势信号。
尤其是在高速、重载、或者绕组电气时间常数很大等情况下,续流二极管导通角度很大,可能使得反电动势法无法检测。
反电势过零检测法的改进策略:针对以上缺点,利用神经网络的非线性任意逼近特性, 提出一种基于神经元网络的电机相位补偿控制。
首先由硬件电路获得有效的反电动势信息, 再利用BP 神经网络进行正确相位补偿, 实现无刷直流电机的无位置传感器控制, 获得了较好的效果[1]。
还有一种采用人工神经元网络的永磁无刷直流电机反电势预测新方法, 采用神经元网络方法对永磁无刷直流电动机反电势波形准确预测的结果进一步用于电机动、静态特性的仿真或预测, 这将比假设电机反电势波形为理想正弦波或梯形波所进行的仿真更接近电机的实际运行结果。
较之传统的路和场的计算方法, 达到了快速性和准确性的统一, 且由于神经元网络的自学习神经元网络成功训练后, 就可以用以预测所研究类型的永磁无刷直流电机的反电势波形[2]。
直接检测法,通过比较逆变器直流环中点电压和电机断开相绕组端电压的关系, 直接检测到断开相绕组反电动势的过零点, 再将该过零点延迟30°电角度即可获得无刷直流电机绕组换相所必须的转子位置信号。
永磁无刷直流电机的无位置传感器控制技术发布时间:2021-12-30T05:53:44.680Z 来源:《中国科技人才》2021年第24期作者:唐波[导读] 永磁无刷直流电机有着高效率、长寿命、低噪音和机械性能好的显著优势,在航空航天、汽车、家用电器和军事等领域应用广泛。
随着社会经济和科学技术的高速发展,工业生产技术水平得到了很大提升,永磁无刷直流电机取得了显著的发展成就,与传统永磁有刷直流电机对比而言,现代永磁无刷电机保障各项设备安全稳定运行的能力更强,具有良好的控制性能,有利于提高企业的生产效率。
基于此,本文将概述无刷直流电机的基本结构和工作特点,并探讨永磁无刷直流电机控制技术。
唐波山东黄金集团蓬莱矿业有限公司摘要:永磁无刷直流电机有着高效率、长寿命、低噪音和机械性能好的显著优势,在航空航天、汽车、家用电器和军事等领域应用广泛。
随着社会经济和科学技术的高速发展,工业生产技术水平得到了很大提升,永磁无刷直流电机取得了显著的发展成就,与传统永磁有刷直流电机对比而言,现代永磁无刷电机保障各项设备安全稳定运行的能力更强,具有良好的控制性能,有利于提高企业的生产效率。
基于此,本文将概述无刷直流电机的基本结构和工作特点,并探讨永磁无刷直流电机控制技术。
关键词:永磁无刷电机;控制技术;智能控制引言如今,节能减排已经成为经济与能源可持续发展的必由之路,是我国工业化发展的重要方向和重要目标,永磁无刷直流电机有着低耗能、高效率和应用广的显著优势,是国家大力支持的绿色环保高新技术项目,符合目前机电产品小型化、模块化和智能化的发展要求,具有很广的发展前景。
在材料科学技术高速发展的背景下,高性能半导体元器件不断涌现,导磁材料磁性有了大幅度提高,这是推动电机行业快速发展的重要力量,与此同时,传感器技术的进步,直接增强了角位置传感器的性能、精度和稳定性,大大提高了永磁无刷直流电机的控制精度,所以,探讨永磁无刷直流电机及其控制技术,有利于充分发挥我国是世界上最大稀土储藏国这一优势,对推动高效节能电机系统构建和促进工业生产低碳化具有重要意义。
无刷直流电动机无传感器低成本控制方法关键词:无刷直流电动机无位置传感器控制可编程逻辑器件1引言无刷直流电机的无传感器控制是近年来电机驱动领域关注的一项技术。
无位置传感器控制的关键在于获得可靠的转子位置信号,即从软、硬件两个方面间接获得可靠的转子位置信号来代替传统的位置传感器[1~3]。
采用无传感器控制技术的无刷电机具有结构简单、体积小、可靠性高和可维护性强等优点,使其在多个领域内得到了充分的利用[4]。
目前对于无传感器无刷电机的控制多采用单纯依靠DSP软件控制的方法[5],但是由于控制算法计算量大,执行速度较慢,且DSP成本较高,不利于以后向市场推广。
同时也出现了应用于无传感器BLDCM控制的一些专用的集成电路[6],但由于这些芯片可扩展性和通用性较低,而且价格昂贵,只适用于低压、小功率领域。
为了扩展无传感器BLDCM应用领域,降低其控制系统的成本,扩充控制系统的功能,增加控制系统的灵活性,本文以MCU+PLD方式组成控制系统的核心,利用PLD数字逻辑功能,分担MCU 的逻辑运算压力,使MCU和PLD的功能都得到了最大程度的发挥。
对于无位置传感器BLDCM控制系统,本文着重分析了换相控制策略和闭环调速,最后通过仿真和实验,验证了控制系统的合理性和可行性。
2系统的总体硬件设计本文中所设计系统是以8位PIC单片机和PLD构成的硬件平台,硬件结构框图如图1所示。
功率逆变电路采用三相全桥逆变结构,电机定子绕组为Y接法,电机工作模式为三相6状态方式。
在本文无传感器控制方式中采用反电动势过零位置检测方法,位置检测电路根据电机端电压获取3路位置信号,将信号送入PIC单片机进行软件移相后得到3路换相信号,由可编程逻辑器件进行逻辑解码后输出6路驱动开关管的前极信号,通过驱动芯片IR2233产生驱动信号以控制各开关管的导通与关断。
该系统采用速度单闭环方式,通过改变PWM的占空比以达到调速的目的。
本文中选用Microchip 公司的单片机PIC16F874作为控制核心,它内部有8K的FLASH 程序存储器,368字节的数据存储器(RAM),256字节的EEPROM数据存储器,14个中断源,8级深度的硬件堆栈,3个定时/计数器,两个捕捉/比较/PWM (CCP)模块,10位多通道A/D转换器等外围电路和硬件资源⑹。
无刷直流电动机无位置传感器控制技术研究的开题报告导论近年来,随着无刷直流电动机在工业、交通运输、家电等领域的广泛应用,对其控制技术的研究也越来越重要。
为了更好地实现对无刷直流电动机的控制,需要综合运用电子、计算机控制、机械工程等多个领域的知识,基于控制系统理论进行分析和设计。
针对无刷直流电动机的控制技术研究,传统的方法是使用位置和速度传感器来获取电机的状态,然后通过闭环控制系统实现电机的精准控制。
然而,这种方法不仅增加了系统的成本和复杂度,而且使得电机的可靠性下降。
为了解决这一问题,无刷直流电动机无位置传感器控制技术应运而生。
通过无位置传感器技术,仅凭感应电机内部反电势,就可以精准地获得电机的转子位置和运动状态,实现控制系统的闭环控制。
这种技术可以极大地减少系统成本、提高电机的可靠性,并简化控制系统的设计。
本文旨在研究无刷直流电动机无位置传感器控制技术,并探讨其相关理论和应用,以期为无位置传感器控制技术的研究和应用提供一定的参考和指导。
主体1. 无刷直流电动机的控制方法无刷直流电动机的控制方法主要包括:开环控制和闭环控制。
在开环控制中,电机的控制信号直接由控制器产生,通过PWM技术控制电机的电流。
这种方法的优点是简单、成本低,但受到环境变化的影响较大,容易导致电机转速波动。
因此,一般情况下,无刷直流电动机采用闭环控制方法。
在闭环控制中,控制器通过传感器获取电机的转子位置和速度信息,根据设定值进行控制。
控制器将电机输出的反电势信号与设定值进行比较,计算出误差信号,并通过PID算法等方式进行修正,不断调整输出信号以达到设定值。
此种方法可以实现电机转速的精确控制,但由于需要使用传感器,增加了系统成本和复杂度。
2. 无位置传感器控制方法无位置传感器控制技术是一种不需要使用位置传感器就能精确控制电机的方法。
通常使用的方法是基于电子换相技术和反电势建立闭环控制系统。
这种方法的核心思想是利用电机自身的反电势作为位置检测信号,通过控制器将电机的反电势精准地转化成位置和速度信号,并与设定值进行比较后进行控制。
一种无位置传感器的直流无刷电机控制系统设计与实现传统上把具有梯形波反电势的永磁同步电机称为直流无刷电机。
直流无刷电机的转矩控制需要转子位置信息来实现有效的定子电流控制。
而且,对于转速控制,也需要速度信号,使用位置传感器是直流无刷电机矢量控制的基础,但是,位置传感器的存在也给直流无刷电机的应用带来很多的缺陷与不便:首先,位置传感器会增加电机的体积和成本;其次,连线众多的位置传感器会降低电机运行的可靠性,即便是现在应用最多的霍尔传感器,也存在一定程度的磁不敏感区;再次,在某些恶劣的工作环境、例如在密封的空调压缩机中,由于制冷剂的强腐蚀性,常规的位置传感器根本无法使用;最后,传感器的安装精度还会影响电机的运行性能,增加了生产的工艺难度。
无位置传感器控制技术是近30年来无刷直流电机(BLDCM)研究的一个重要方向。
论述了国内外BLDCM无位置传感器控制的研究现状。
着重介绍了目前应用和研究较多的几种常规方法的基本原理、实现途径、应用场合以及优缺点等,并对它们作了综合分析和比较。
无位置传感器控制就是在没有机械式位置传感器的情况下进行的控制。
此时,作为逆变器开关换向导通时序信号的转子位置信号仍然是必不可少的,只不过不再由位置传感器来提供,而应该由新的位置信号检测措施来代替,即以提高电路和控制的复杂性来降低电机结构的复杂性。
目前,BLDCM无位置传感器控制研究的核心是构架转子位置信号检测电路,从软硬件两方面间接获得可靠的转子位置信号,从而触发导通相应的功率器件,驱动电机运转。
到目前为止,在众多的位置信号检测方法中,应用和研究较多的主要有定子电感法、速度无关位置函数法、反电势法、基波电势换向法和状态观测器法等。
1 基于反电势的转子位置检测方案无刷直流电机(Bushless DC Motor,BLDCM)具有无换向火花、运行可靠、维护方便、结构简单等优点,因而在很多场合得到了广泛应用。
但是传统的BLDCM需要一个附加的位置传感器来控制转子位置,这给其应用带来了很多不利的影响。