七年级数学下册第一章整式的乘除1.7整式的除法1.7.2整式的除法同步检测新版北师大版
- 格式:doc
- 大小:36.50 KB
- 文档页数:3
7 整式的除法1.下列运算中,计算正确的是( B ) A .a 3+a 3=a 6B .(3a 2)3=27a 6C .x 6÷x 2=x 3D .(a +b )2=a 2+b 22.(2019·北京昌平区校级月考)计算⎝ ⎛⎭⎪⎫-12x 7÷⎝ ⎛⎭⎪⎫-12x 的结果是( A ) A.164x 6B.132x 6C .-164x 6D.116x 6 3.下列各式计算正确的是( C ) A .-12x 3y 3÷13xy =-23x 2y 2B .6a 3b 6÷2ab 3=3a 3b 2C .-a 4b 5c ÷a 3b 4c =-ab D .x 3y 2z ÷12x 2y =2xy4.如果8a 3b m ÷28a n b 2=27b 2,那么m ,n 的值分别为( A )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =35.计算:6a 6÷3a 2= 2a 4.6.计算(2x 2y )2÷xy 的结果是 4x 3y .7.一个单项式乘以-13x 2y 的结果是9x 3y 2z ,则这个单项式是 -27xyz .8.光的速度为3×108米/秒,地球和太阳的距离约为 1.5×1011米,则太阳光从太阳射到地球需要 5×102秒.9.计算:(1)⎝ ⎛⎭⎪⎫-23a 7b 5c ÷⎝ ⎛⎭⎪⎫23a 5b 5; (2)(4x 2y 3z )2÷(-2xy 2)2;(3)(2019·山东青岛崂山区期末)⎝ ⎛⎭⎪⎫-12m 3n 4·(3m 2n )÷(-mn 2)2.解:(1)原式=-a 2c .(2)原式=16x 4y 6z 2÷4x 2y 4=4x 2y 2z 2.(3)原式=⎝ ⎛⎭⎪⎫-12m 3n 4·(3m 2n )÷(m 2n 4)=-32m 3n .10.计算(6x 5-15x 3+9x )÷3x 的结果是( C ) A .6x 4-15x 2+9 B .2x 5-5x 3+9x C .2x 4-5x 2+3D .2x 4-15x 2+311.(2019·广西玉林中考)下列运算正确的是( D ) A .3a +2a =5a 2B .3a 2-2a =aC .(-a )3·(-a 2)=-a 5D .(2a 3b 2-4ab 4)÷(-2ab 2)=2b 2-a 212.(2019·河北邯郸武安期中)弟弟把嘉琪的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于( B )A .x 2-8x +6 B .5x 3-15x 2+30x C .5x 3-15x 2+6D .x 2+2x +613.计算:⎝ ⎛⎭⎪⎫14a 3-2a 2+3a ÷⎝ ⎛⎭⎪⎫-34a = -13a 2+83a -4 . 14.(2018·山东济南历城区期末)已知长方形的面积为(6a 2b -4a 2+2a ),宽为2a ,则长方形的周长为 6ab +2 .15.计算:(1)(15x 2y -10xy 2)÷5xy ; (2)(36a 4b 3-9a 3b 3+4a 2b 2)÷(-6a 2b ).解:(1)原式=15x 2y ÷5xy -10xy 2÷5xy =3x -2y .(2)原式=36a 4b 3÷(-6a 2b )-9a 3b 3÷(-6a 2b )+4a 2b 2÷(-6a 2b )=-6a 2b 2+32ab 2-23b .16.(2019·黑龙江鹤岗南山区期末)先化简,再求值:[(xy -2)2+2xy -4]÷xy ,其中x =10,y =15.解:原式=(x 2y 2-4xy +4+2xy -4)÷xy =(x 2y 2-2xy )÷xy =xy -2. 当x =10,y =15时,原式=2-2=0.易错点 多项式除以单项式时漏项 17.计算:(3a 3b 2-2a 2b +ab )÷ab . 解:原式=3a 2b -2a +1.18.下列各式中,计算结果为9a 8b 4的是( D ) A .27a 10b 8÷3a 2b 2B .-(3a 6b 2)2C .9a 10b 7÷(a 2b )3D .(3a 4b 2)219.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( C ) A .2m 2n -3mn +n 2B .2n 2-3mn 2+n 2C .2m 2-3mn +n 2D .2m 2-3mn +n20.已知7x 3y 2与一个多项式之积是28x 4y 2+7x 4y 3-21x 3y 2,则这个多项式是 4x +xy -3 . 21.先化简,再求值:[(x +2y )2-(3x +y )(3x -y )-5y 2]÷2x ,其中x =-12,y =1.解:原式=(x 2+4xy +4y 2-9x 2+y 2-5y 2)÷2x =(-8x 2+4xy )÷2x =-4x +2y .当x =-12,y =1时,原式=-4×⎝ ⎛⎭⎪⎫-12+2×1=2+2=4.22.已知多项式4x 3+ax 2+bx +1能被x 2+1整除,且商为4x +1,求代数式[8(a +b )5-4(a +b )4+2(-a -b )3]÷[2(a +b )3]的值.解:因为多项式4x 3+ax 2+bx +1能被x 2+1整除,且商为4x +1,所以(x 2+1)(4x +1)=4x 3+ax 2+bx +1,即4x 3+x 2+4x +1=4x 3+ax 2+bx +1,所以a =1,b =4.又因为[8(a +b )5-4(a +b )4+2(-a -b )3]÷[2(a +b )3]=4(a +b )2-2(a +b )-1,且a =1,b =4, 所以原式=4×(1+4)2-2×(1+4)-1=89.23.一块如图1所示的长方形铁皮,四个角都剪去边长为30 cm 的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a cm ,宽是3a cm ,这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用含a 的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面涂上某种油漆,每元钱可涂的面积为 a50 cm 2,则涂完这个铁盒需要多少钱?(用含a 的代数式表示)解:(1)原长方形铁皮的面积是(4a +30×2)(3a +30×2)=(12a 2+420a +3 600)cm 2. (2)这个铁盒需要涂油漆的面积是12a 2+420a +3 600-302×4=(12a 2+420a )cm 2.则涂完这个铁盒需要的钱数是(12a2+420a)÷a50=12a2÷a50+420a÷a50=(600a+21 000)元.。
北师大版七年级下册第一章整式的乘除单元测试1 •下列计算正确的是( ))2 ____________________5.小明计算一个二项式的平方时,得到正确结果a 10ab ■,但最后一项不慎被污染了,这一项应是())A. 5bB. 5b 2 C . 25b 2 D . 100b 26.如果 4a 2b 3ab 2 M 4a 3b ,那么单项式 M 等于().A. aB. bC. abD. ab2227..若要得到 a b ,则a 3ab b 应加上().A. abB. 3abC.5abD. 7ab8.如果 2x 2 2xkx 4,那么 k 的值是()A.2B. 2C. 4D. 4A. a 6a 2a 3B. a a 4a 4C. a 3a 7D.2a1 4a 22 •在下列计算中 ,不能用平方差公式计算的是 A. (m- n)(_m+n)3333B. x -y x yC. (-a-b)(a-b)2,2 ,2 2D. c -d d c23 .已知(x — 2 015) + (x —2 017) 2= 34, 则(x —2 016) 2的值是() A.4 B. 8 C. 12 D. 164 .已知 x y 3, xy-,则多项式 23x 23y 2的值为().A. 24B. 20C. 15D. 139 .若x2mx+16是完全平方式,那么般= __________ .10 .计算:(0.125)2 018X (2018)3= _________ .11.已知三角形ABC的面积为6m43a2m3a2m2, 一边长为3m2,则这条边上的高为__________ .12 .已知m+n=-3,mn=2,贝U n?+n2= ______ .13 .如图,长方形ABCD的面积为_______ •(用含x的式子表示)a b, 人/ 亠丄宀宀"一旨丄」 a b14 .定义|为二阶行列式,规疋匕的运算法则为|=ad —be.则二阶行列c d c dx 3 x 4| 的值为.x 2 x 31111115 .计算:1-T X 1-三X 1-~2 X-• • X-豆X 1- 22232429210-2-a9ab3+12a4b2) - 3a其中a=-1,b=2.17 .在一次测验中有这样一道题:n 1n 2n …Ca2,b3,求ab 的值.”马小虎是这样解的:解:16 .先化简,再求值:-(a2-2ab)2nab22I9a nb n丄39.结果卷子发下来,马小虎这道题没得分,而答案确2 49实是9,你知道这是为什么吗?请你作出正确的解答.418 .已知A,B 为多项式,B=2x+1,计算A+B 时,某学生把A+B 看成A + B 吉果得4x 2-2x+1,请你 求出A+B 的正确答案.19 .如图,要设计一幅长为 3xcm 、宽为2ycm 的长方形图案,其中有两横两竖的彩条, 横彩条的宽度为 acm ,竖彩条的宽度为 bcm ,问空白区域的面积是多少?20 .如图,将两个边长分别为 a 和b的正方形拼在一起,B, C, G 三点在同一直线上, 连接BD, BF ,若两个正方形的边长满足 a + b = 10, ab = 20,你能求出阴影部分的面积 吗?B aC b G北师大版七年级下册第一章整式的乘除单元测试1 / 5D A D A C D C C±81,2 2 2 24m 2a m a35 x 2+5x+6 1 11 20-49略 8X 3+2X +2.2、6xy — 6ax — 4by +4ab (cm ) 201. 2. 3. 4. 5. 6. 7. 8. 9. 10.11 .12.13.14.15.16.17. 18.19. 20.。
章节测试题1.【答题】七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为______.【答案】2a-3b+1【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,∴它的另一边长是:(6a2-9ab+3a)÷3a=2a-3b+1.2.【答题】(-12x3-4x2)÷(-4x2)等于______;【答案】3x+1【分析】此题考查多项式除以单项式法则,熟记法则是解题的关键.【解答】(-12x3-4x2)÷(-4x2)=(-12x3)÷(-4x2)-4x2÷(-4x2)= 3x+1,故答案为:3x+1.3.【答题】(-6a3-6a2c)÷(-2a2)等于______;【答案】3a+3c【分析】【解答】(-6a3-6a2c )÷(-2a2)= (-6a3) ÷ (-2a2)-6a2c÷(-2a2)= 3a+3c,故答案为:3a+3c.4.【答题】(6a3b2+14a2c)÷a2等于______;【答案】6ab2+14c【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.【解答】(6a3b2+14a2c)÷a2=6a3b2÷a2+14a2c÷a2=6ab2+14c,故答案为:6ab2+14c.5.【答题】(2a3b2+8a2c)÷2a2等于______;【答案】ab2+4c【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.【解答】(2a3b2+8a2c)÷2a2=2a3b2÷2a2+8a2c÷2a2= ab2+4c,故答案为:ab2+4c.6.【答题】(5x3y2+5x2z)÷5x2等于______;【答案】xy2+z【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.【解答】(5x3y2+5x2z)÷5x2=5x3y2÷5x2+5x2z÷5x2= xy2+z,故答案为:xy2+z.7.【答题】计算:(a2b3﹣a2b2)÷(ab)2=______.【答案】b-1【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.【解答】(a2b3﹣a2b2)÷(ab)2=(a2b3﹣a2b2)÷a2b2=a2b3÷a2b2﹣a2b2÷a2b2= .故答案为:.8.【答题】计算:______·3ab2 = 9ab5; -12a3bc÷______= 4a2 b;(4x2y- 8x 3)÷4x 2 =______。
第一章整式的乘除知识点总结一、单项式:数字与字母的乘积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。
注意:π是数字,而不是字母,它的系数是π,次数是0. 二、多项式几个单项式的代数和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:),(都是正整数n m aa a nm nm+=∙2、幂的乘方:),(都是正整数)(n m a a mnn m =3、积的乘方:)()(都是正整数n b a ab nnn= 4、同底数幂的除法:)0,,(≠=÷-a n m a a a nm nm都是正整数六、零指数幂和负整数指数幂: 1、零指数幂:);0(10≠=a a 2、负整数指数幂:),0(1是正整数p a aa p p≠=- 七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+2、完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-七年级数学(下)第一章《整式的运算》一、 知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
七年级数学下册第一章整式的乘除1.7整式的除法2说课稿新版北师大版一. 教材分析整式的乘除是初中数学的重要内容,对于培养学生的逻辑思维和运算能力具有重要意义。
在本节课中,学生将学习整式的除法,这是整式乘除的延伸,也是解决实际问题的基础。
教材通过具体的例子引导学生理解整式除法的概念,并通过练习让学生掌握整式除法的运算方法。
二. 学情分析七年级的学生已经学习了整式的乘法,对于整式的概念和运算方法有一定的了解。
但是,学生在进行整式除法运算时,可能会对除法的运算规则理解不深,导致运算错误。
因此,在教学过程中,我需要引导学生理解整式除法的本质,并通过练习让学生熟练掌握运算方法。
三. 说教学目标1.知识与技能:学生能够理解整式除法的概念,掌握整式除法的运算方法,并能运用整式除法解决实际问题。
2.过程与方法:通过小组合作、讨论交流的方式,学生能够主动探索整式除法的运算规律,培养学生的逻辑思维和运算能力。
3.情感态度与价值观:学生能够在解决问题中体验到数学的乐趣,增强对数学学习的兴趣和信心。
四. 说教学重难点1.教学重点:学生能够理解整式除法的概念,掌握整式除法的运算方法。
2.教学难点:学生能够灵活运用整式除法解决实际问题,理解整式除法的运算规则。
五. 说教学方法与手段本节课采用讲授法、引导发现法、练习法等多种教学方法,引导学生通过小组合作、讨论交流的方式,主动探索整式除法的运算规律。
同时,利用多媒体教学手段,展示整式除法的运算过程,帮助学生形象直观地理解知识。
六. 说教学过程1.导入:通过复习整式的乘法,引导学生自然过渡到整式的除法,激发学生的学习兴趣。
2.讲解:讲解整式除法的概念和运算方法,引导学生理解整式除法的本质。
3.练习:设计不同难度的练习题,让学生在实践中掌握整式除法的运算方法。
4.拓展:引导学生运用整式除法解决实际问题,提高学生的应用能力。
5.总结:对本节课的内容进行总结,强调整式除法的运算规则。
《同底数幂的除法和整式的除法》习题2一、选择题1.下列计算正确的是( )A .248a a a ∙=B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列计算正确的是( )A .325()m m =B .3710m m m ⋅=C .236(3)9m m -=-D .632m m m ÷=3.计算下列各式,结果为5x 的是( )A .()32x B .102x x ÷C .23x x ⋅D .6x x-4.下列计算中,结果是8m 的是( )A .()42m B .24•m m C .122m m ÷D .24m m +5.下列计算方法正确的是( )A .20212021a a a ⨯⨯=B .20212021a a a -÷=C .20212021a a a ++=D .20212021a a a --=6.下列运算正确的是( )A .236a a a⋅=B .842a a a÷=C .532a a -=D .()2224ab a b -=7.在①42a a ⋅,②()32a -,③212a a ÷,④23a a ⋅,⑤33a a +,计算结果为6a 的个数是( )A .1个B .2个C .3个D .4个8.马虎在下面的计算中只做对了一道题,他做对的题目是( )A .3515a a a⋅=B .()236a a -=C .()3326y y =D .632a a a ÷=9.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷=10.下列运算中,正确的是( )A .623a a a ÷=B .246a a a -=⋅C .333()ab a b =D .246()a a =11.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭的商为:( )A .214a cB .14acC .294a cD .94ac12.已知32228287m n a b a b b ÷=,则m 、n 的值为( )A .4,3m n ==B .4,1m n ==C .1,3m n ==D .2,3m n ==13.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y14.在等式210()5b b ÷=-中,括号内应填入的整式为( )A .-2bB .bC .2bD .-3b15.一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( )A .12x4B .14x4C .12x 4yD .12x216.已知M 2(2)x - =53328182x x y x --,则M =( )A .33491x xy ---B .33491x xy +-C .3349x xy -+D .33491x xy -++17.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n)的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n18.计算:(﹣6x 3+9x 2﹣3x )÷(﹣3x )=( )A .2x 2﹣3xB .2x 2﹣3x +1C .﹣2x 2﹣3x +1D .2x 2+3x ﹣119.若长方形的面积是2226a ab a -+,长为2a ,则这个长方形的周长是( )A .626a b -+B .226a b -+C .62a b-D .320.计算()3214217(7)x x x x -+÷-的结果是( )A .23x x -+B .2231x x -+-C .2231x x -++D .2231x x -+21.已知被除式是x 3+3x 2﹣1,商式是x ,余式是﹣1,则除式是( )A .x 2+3x ﹣1B .x 2+3xC .x 2﹣1D .x 2﹣3x +122.计算(﹣4a 2+12a 3b)÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab23.一个长方形的面积为2x 2y ﹣4xy 3+3xy ,长为2xy ,则这个长方形的宽为( )A .x ﹣2y 232+B .x ﹣y 332+C .x ﹣2y +3D .xy ﹣2y 32+24.已知A=2x ,B 是多项式,在计算B÷A 时,小强同学把B÷A 误看了B+A ,结果得2x2-x ,则B÷A 的结果是( )A .2x2+xB .2x2-3xC .1+2x D .32x -25.面积为9a 2−6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a −2b +1B .2a −3bC .2a −3b +1D .3a −2b26.若2x 与一个多项式的积为3222x x x -+,则这个多项式为( )A .221x x -+B .2424x x -+C .2112x x -+D .212x x -二、计算题1.计算(1)232232213(-a b)ab a b 334() (2)223-5a 3ab -6a ()(3)()()223x x -+ (4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦(5)()34221242ayay ay ⎛⎫-⋅÷ ⎪⎝⎭(6)()()()33332424ax a x ax -÷2.化简求值.(1)求(1)(21)2(5)(2)x x x x -+--+的值,其中15x =.(2)先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =.(3)先化简,再求值:(x ﹣y )(x ﹣2y )﹣(3x ﹣2y )(x +3y ),其中x =4,y =﹣1.(4)先化简,再求值:()()()()223443x y x y x y y ⎡⎤-+-÷⎣⎦-﹣,(其中x =﹣4,y =3).(5)先化简,再求值(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b),其中11.54a b =-=,.三、解答题1.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.2.已知:53a =,58b =,572c =.(1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.王老师给学生出了一道题:先化简,在求值:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-),其中12a =,1b =-.同学们看了题目后发表不同的看法.小张说:“条件1b =-是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若m x 的值等于此题计算的结果,试求2m x 的值.答案一、选择题1.D .2.B .3.C4.A .5.B .6.D .7.A .8.B .9.D .10.C .11.B .12.A .13.D .14.A .15.A.16.D .17.C .18.B .19.A .20.B .21.B.22.A .23.A24.D.25.A.26.C 二、计算题1.(1)232232213(-a b)ab a b334()6324328132794a b a b a b ⎛⎫⎛⎫⎛⎫=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭6233428132794a b ++++=-⨯⨯119281a b =-;(2)223-5a 3ab -6a ()3251530a b a =-+;(3)()()223x x -+22436x x x =-+-226x x =--;(4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦()32223223x y x y x y x y x y =--+÷()3222223x y x y x y=-÷322222323x y x y x y x y=÷-÷2233xy =-.(5)原式3448361242a y ay a y ⎛⎫=⋅÷ ⎪⎝⎭344138161242a y+-+-⎡⎤⎛⎫=⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦8232a y =23256a y =(6)原式396123384a x a x a x =-÷396312384a x a x --=-393984a x a x =-394a x =2.(1)解:(x-1)(2x+1)-2(x-5)(x+2)=2x 2+x-2x-1-2x 2-4x+10x+20=5x+19,当15x =时,原式=5×15+19=20.(2)原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x-+÷=2x y -+当3x =-,12y =时,原式314=+=.(3)原式=(x 2﹣2xy ﹣xy+2y 2)﹣(3x 2+9xy ﹣2xy ﹣6y 2)=x 2﹣3xy+2y 2﹣3x 2﹣7xy+6y 2=﹣2x 2﹣10xy+8y 2当x =4,y =﹣1时,原式=﹣2×42﹣10×4×(﹣1)+8×(﹣1)2=﹣32+40+8=16(4)】解:()()()()223443x y x y x y y ⎡⎤--+-÷⎣⎦﹣=()()2222412941643x xy y x xy xy y y -+-+-+÷-=()()23133xy yy +÷-=133x y --,当x =﹣4,y =3时,原式=4-13=-9.(5)(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b)=(6a 2+4ab ﹣9ab ﹣6b 2)﹣(2a 2-4ab ﹣ab+2b 2)=6a 2+4ab ﹣9ab ﹣6b 2﹣2a 2+4ab+ab ﹣2b 2=4a 2﹣8b 2,当a=﹣1.532=-,b=14时,原式=4×(32-)2﹣8×(14)2=9-12=172.三、解答题1.解:(1)①()()2323232222248m nm n m n m n ab +=⋅=⋅=⋅=;②()()2224646232222222248mnm nmnmna b-=÷=÷=÷=;(2)343526281622222x x x +⨯⨯=⨯⨯==,得3526x +=,解得7x =.2.解(1)∵53a =,∴)(22539a==;(2)∵53a =,58b =,572c =,∴5537252758a c ab cb-+⨯⨯===;(3)∵22(5)53898725a b c ⨯=⨯=⨯==,∴255a b c +=,即2c a b =+.3.解:(1)小张说的有道理,理由如下:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-)22222(2)2(44)(8)a b a ab b b ab =-+-++-+2222248828a b a ab b b ab =-+-+-+212a =∵化简得结果为212a ,212a 中不含字母b ∴条件1b =-是多余的,小张说的有道理.(2)当12a =时,2211212()2a =⨯3=由题意得:3m x =,222()39m m x x ===∴.即2m x 的值为9.。
2019版七年级数学下册第一章整式的乘除1.7 整式的除法(第1课时)一课一练基础闯关(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版七年级数学下册第一章整式的乘除1.7 整式的除法(第1课时)一课一练基础闯关(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版七年级数学下册第一章整式的乘除1.7 整式的除法(第1课时)一课一练基础闯关(新版)北师大版的全部内容。
整式的除法一课一练·基础闯关题组单项式除以单项式1。
计算(-4x3)÷2x的结果正确的是( )A。
-2x2 B。
2x2 C.-2x3D。
-8x4【解析】选A.(-4x3)÷2x=(—4÷2)(x3÷x)=-2x2.2。
计算:(—2a3)2÷a2的正确结果是( )A。
—4a4 B.4a4C。
—4a8D。
4a8【解析】选B原式=4a6÷a2=4a43.(2017·黔东南州中考)下列运算结果正确的是( )A。
3a-a=2 B。
(a-b)2=a2—b2C.6ab2÷(—2ab)=-3b D。
a(a+b)=a2+b【解析】选C.A。
原式=2a,不符合题意;B。
原式=a2—2ab+b2,不符合题意;C.原式=-3b,符合题意;D。
原式=a2+ab,不符合题意.4.计算:a2b÷ab=.【解析】原式=(a2÷a)(b÷b)=a.答案:a5。
计算:(1)(a2bc)2÷ab2c.(2)(9.8×108)÷(-7×105)。
北师大版七年级数学下册第1章《整式的乘除》单元测试试卷及答案(3)一、选择题(共10小题)1.下列运算正确的是()2.在天文学上,计算星球之问的距离通常用“光年”作单位,1光年即光在一年内通过的路程.已知光的速度是3×105km/s,一年约等于3×107s,则1光年约等于()3.对于x的任意一个值,(2x﹣5)2=4x2+kx+25永远成立,则k等于()4.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()5.下列四个算式:(1);(2)16a6b4c÷8a3b2=2a2b2c;(3)9x8y2÷3x3y=3x5y;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2+4m+2.其中正确的个数有()6.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()7.计算20a7b6c÷(﹣4a3b2)÷ab的结果是()8.已知x+y=2,则等于()9.计算(﹣0.125)2013•(﹣8)2012的结果是()10.如图,沿着正方形的对称轴对折,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()二、填空题(共10小题)11.若(x n y•xy m)5=x10y15,则3m(n+1)的值为_________ .12.用科学记数法表示﹣0.00012= _________ .13.已知:(x3n﹣2)2x2n+4÷x n=x2n﹣5,则n= _________ .14.(x+2y﹣3)(x﹣2y﹣3)= _________ ﹣_________ .15.(2012•遵义)已知x+y=﹣5,xy=6,则x2+y2= _________ .16.观察下列等式:9﹣1=8;16﹣4=12;25﹣9=16;36﹣16=20,…这些等式反映正整数间的某种规律,设n(n≥1)表示正整数,用关于n的等式表示这个规律为_________ .17.已知6x=5,6y=2,则6x+y= _________ .18.(29×31)×(302+1)= _________ .19.已知长方形的面积是3a2﹣3b2,如果它的一边长是a+b,则它的周长是_________ .20._________ .三、解答题(共8小题,满分60分)21.(10分)计算.(1)(a﹣2b+3c)2﹣(a+2b﹣3c)2;(2);(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)﹣5;(4)[(x+2y)(x﹣2y)+4(x﹣y)2﹣6x]÷6x;(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].22.(9分)求值.(1)(a+b)(a﹣b)+a(2b﹣a),其中a=1.5,b=2.(2)已知2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b2=3,求(a+2b)(a﹣2b)的值.23.(6分)解方程.(1)(x﹣1)2+21=(x+1)2﹣1;(2)(2x﹣1)(4x2+2x+1)=8x(x﹣2)(x+2).24.(5分)两个两位数的十位数字相同,一个数的个位数字是6,另一个数的个位数字是4,它们的平方差是220,求这两个两位数.25.(5分)已知a(a﹣1)﹣(a2﹣b)=4,求代数式的值.26.(5分)我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.27.(10分)观察下列式子.①32﹣12=(3+1)(3﹣1)=8;②52﹣32=(5+3)(5﹣3)=16;③72﹣52=(7+5)(7﹣5)=24;④92﹣72=(9+7)(9﹣7)=32.(1)求212﹣192= _________ .(2)猜想:任意两个连续奇数的平方差一定是_________ ,并给予证明.28.(10分)(1)图(1)是一个长为2m,宽为2他的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图(2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式表示为_________ .(3)由前面的探索可得出的结论是:在周长一定的矩形中,当_________ 时,面积最大.(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案与试题解析一、选择题(共10小题)1.下列运算正确的是()2.在天文学上,计算星球之问的距离通常用“光年”作单位,1光年即光在一年内通过的路程.已知光的速度是3×105km/s,一年约等于3×107s,则1光年约等于()3.对于x的任意一个值,(2x﹣5)2=4x2+kx+25永远成立,则k等于()4.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()5.下列四个算式:(1);(2)16a6b4c÷8a3b2=2a2b2c;(3)9x8y2÷3x3y=3x5y;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2+4m+2.其中正确的个数有()÷再把所得的商相加.6.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()7.计算20a7b6c÷(﹣4a3b2)÷ab的结果是()8.已知x+y=2,则等于()x y==9.计算(﹣0.125)2013•(﹣8)2012的结果是()10.如图,沿着正方形的对称轴对折,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()二、填空题(共10小题)11.若(x n y•xy m)5=x10y15,则3m(n+1)的值为12 .,解得:12.用科学记数法表示﹣0.00012= ﹣1.2×10﹣4.13.已知:(x3n﹣2)2x2n+4÷x n=x2n﹣5,则n= ﹣1 .14.(x+2y﹣3)(x﹣2y﹣3)= (x﹣3)2﹣(2y)2.15.(2012•遵义)已知x+y=﹣5,xy=6,则x2+y2= 13 .16.观察下列等式:9﹣1=8;16﹣4=12;25﹣9=16;36﹣16=20,…这些等式反映正整数间的某种规律,设n(n≥1)表示正整数,用关于n的等式表示这个规律为(n+2)2﹣n2=4n+4 .故答案为:17.已知6x=5,6y=2,则6x+y= 10 .18.(29×31)×(302+1)= 304﹣1 .19.已知长方形的面积是3a2﹣3b2,如果它的一边长是a+b,则它的周长是(8a﹣4b).20..((xx故答案为xx三、解答题(共8小题,满分60分)21.(10分)计算.(1)(a﹣2b+3c)2﹣(a+2b﹣3c)2;(2);(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)﹣5;(4)[(x+2y)(x﹣2y)+4(x﹣y)2﹣6x]÷6x;(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].)÷6x=x y22.(9分)求值.(1)(a+b)(a﹣b)+a(2b﹣a),其中a=1.5,b=2.(2)已知2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b2=3,求(a+2b)(a﹣2b)的值.23.(6分)解方程.(1)(x﹣1)2+21=(x+1)2﹣1;(2)(2x﹣1)(4x2+2x+1)=8x(x﹣2)(x+2).x=.24.(5分)两个两位数的十位数字相同,一个数的个位数字是6,另一个数的个位数字是4,它们的平方差是220,求这两个两位数.25.(5分)已知a(a﹣1)﹣(a2﹣b)=4,求代数式的值.==826.(5分)我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.27.(10分)观察下列式子.①32﹣12=(3+1)(3﹣1)=8;②52﹣32=(5+3)(5﹣3)=16;③72﹣52=(7+5)(7﹣5)=24;④92﹣72=(9+7)(9﹣7)=32.(1)求212﹣192= 80 .(2)猜想:任意两个连续奇数的平方差一定是这两个数和的2倍,并给予证明.28.(10分)(1)图(1)是一个长为2m,宽为2他的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图(2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式表示为(m﹣n)2或m2﹣2mn+n2.(3)由前面的探索可得出的结论是:在周长一定的矩形中,当长和宽相等时,面积最大.(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?)得出:当边长为:=6。
D. (- a 3 ) = a2. - ⎪ ⨯- 2 ⎪ 2 第 1 章 整式的乘除 单元测试卷一、选择题(共 10 小题,每小题 3 分,共 30 分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.下列运算正确的是()A. a 4 + a 5 = a 9B. a 3 ⋅ a 3 ⋅ a 3 = 3a 3C. 2a 4 ⨯ 3a 5 = 6a 94 7⎛ 5 ⎫ 2012 ⎛ 3 ⎫ 2012 ⎝ 13 ⎭ ⎝ 5 ⎭= ( )A. - 1B. 1C. 0D. 1997 3.设 (5a + 3b )2 = (5a - 3b )2 + A ,则 A=( )A. 30 abB. 60 abC. 15 a bD. 12 a b4.已知 x + y = -5, xy = 3, 则 x 2 + y 2 = ( )A. 25.B - 25C 19D 、 - 195.已知 x a = 3, x b = 5, 则 x 3a -2b = () A 、27 25 9 3 B 、 C 、 D 、52 10 56. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式: a b a①(2a +b )(m +n );②2a (m +n )+b (m +n ); m ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , n你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含 x 的一次项,则 m 的值为() A 、 –3B 、3C 、0D 、11 8.已知.(a+b)2=9,ab= -1 ,则 a²+b2 的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知 P = 7 8 m - 1, Q = m 2 - m (m 为任意实数),则 P 、Q 的大小关系为 15 15()A 、 P > QB 、 P = QC 、 P < QD 、不能确定2x ⎪(2)(2)()⋅(-2x y)+-2x y)÷(x)332()(((a(二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.设4x2+mx+121是一个完全平方式,则m=_______。