高中数学 第二章《函数概念》说课教案 北师大版必修1
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
《函数概念》函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和依据。
【知识与能力目标】理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
【过程与方法目标】通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
【情感态度价值观目标】通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
【教学重点】理解函数的模型化思想,用集合与对应的语言来刻画函数;会求一些简单函数的定义域与值域。
【教学难点】符号“y=f(x)”的含义,函数定义域和值域的区间表示。
电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
◆教学重难点 ◆◆课前准备 ◆◆教材分析◆教学过程◆教学目标一、导入部分情景1:提供一张表格,把本班中考得分前10名的情况填入表格,学生提供分数。
情景2:西康高速汽车的行驶速度为80千米/小时,汽车行驶的距离y 与行驶时间x 之间的关系式为:y=80x 情景3:安康市一天24小时内的气温随时间变化图:提问(1):这三个例子中都涉及到了几个变化的量?(两个)提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定) 提问(3):这样的关系在初中称之为什么?(函数)引出课题[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。
2.2.2函数的概念一、课 型:新授课二、教学目标:(1)会求一些简单函数的定义域与值域,并能用“区间”的符号表示;(2)掌握复合函数定义域的求法;(3)掌握判别两个函数是否相同的方法。
三、教学重点:会求一些简单函数的定义域与值域。
教学难点:复合函数定义域的求法。
四、教学方法:探究交流法五、教学过程(一)、复习准备1. 提问:什么叫函数?其三要素是什么?函数y =xx 23与y =3x 是不是同一个函数?为什么?2. 用区间表示函数y =ax +b (a ≠0)、y =ax 2+bx +c (a ≠0)、y =xk (k ≠0)的定义域与值域。
(二)、新课探究(Ⅰ)函数定义域的求法函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。
例1:求下列函数的定义域(用区间表示)⑴ f(x)=232--x x ; ⑵; ⑶ f(x)=1+x -x x -2;学生试求→订正→小结:定义域求法(分式、根式、组合式)解:⑴由220x -≠得x ≠(,()-∞⋃⋃+∞。
⑵由290x -≥得92x ≥,∴函数的定义域为9[,)2+∞。
⑶由{1020x x +≥-≠得12x x ≥-≠且,∴函数的定义域为[1,2)(2,)-⋃+∞。
反思小结:求定义域步骤:列不等式(组) → 解不等式(组)*复合函数的定义域求法:(1)已知f(x)的定义域为(a,b ),求f(g(x))的定义域;求法:由a<x<b ,知a<g(x)<b ,解得的x 的取值范围即是f(g(x))的定义域。
(2)已知f(g(x))的定义域为(a,b ),求f(x)的定义域;求法:由a<x<b ,得g(x)的取值范围即是f(x)的定义域。
例2.已知f(x)的定义域为[0,1],求f(x +1)的定义域。
分析:由f(x)的定义域为[0,1]可得x +1满足011,10x x ≤+≤-≤≤,f(x +1)的定义域为[1,0]-。
第二章函数2.1函数概念教学设计函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.一.教学目标:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)会求一些简单函数的定义域和值域;(3)能够正确表示某些函数的定义域;二. 核心素养1.数学抽象:借助集合语言,抽象的概述函数的概念2.逻辑推理:根据初中的函数概念,掌握函数变量之间的基本特性,从而引导学生用高中集合的语言对函数的概念重新定义。
3.数学运算:求函数的定义域;会判断两个函数是否为同一函数;求函数值4.直观想象:对于函数的定义域,可以直观理解为是满足函数有意义的所有自变量组成的集合。
5.数学建模:通过对函数的重新定义,让学生了解到如何借助集合的语言可以抽象的概述出函数的定义,这样不仅让学生学会建立数学知识间的关联,也可以将这种数学思想运用于实践中。
教学重点理解函数的模型化思想,用集合与对应的语言来刻画函数教学难点符号“y=f(x )”的含义,函数定义域和值域的区间表示PPT1.知识引入初中学习了三个重要的函数类型:一次函数y=kx+b 、一元二次函数y=ax 2+bx+c 和反比例函数 k y x=,其中k,a,b,c 为常数,0,0k a ≠≠.对于每一个x 的取值,都有唯一确 定的y 值和它对应,这是函数的基本特征.2.函数概念抽象概述:给定实数集R 中的两个非空数A 和B,如果存在一个对应关系f 使对于A 中的每一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就把对应关系f 叫作定义在 A 上的一个函数,记作y= f (x )其中集合A 叫作函数的定义域,x 叫作自变量,与x 值对应的y 值叫作函数值,集合 {()|}f x x A ∈叫作函数的值域.1.函数是建立在数与数之间的对应关系 2.对应关系指对应的结果,而不是对应过程 3. “y=f(x )”是函数符号,可以用任意的字母表示,如“y=g(x )” 4. 函数符号“y=f(x )”中的f (x )表示与x 对应的函数值重点强调知 识 扩 充函数的三要数:定义域,解析式,值域3.如何判断两个函数是同一函数方法:1.判断两个函数定义域是否相同; 2.判断两个函数解析式是否一样同时满足以上两个条件,即为同意函数例1下列各组中的两个函数是否为同一个函数?(1) 2()()f x g x == (2)22(),()(1)f x x g x x ==+ (3)21(),()11x f x g x x x -==-+ (4)11(),()f x x g t t x t=+=+ 解(1)因为f (x )的定义域是R,g (x )的定义域是[0,)+∞,两个函数的定义域不同, 所以不是同一个函数;(2) 因为两个函数的对应关系不同,所以不是同一个函数;(3)因为f (x )的定义域是{|1}x x ≠-,g (x )的定义域是R,两个函数的定义域不同,所不是同一个函数;⑷f (x )和g (t )虽然表示自变量的字母不同,但它们的定义域及对应关系都相同,所以是同 一个函数.例2求下列函数的定义域:(1)1231y x x =++- (2) 1y x= (3 y = 解(1)为使函数有意义,只需解析式中分式的分母不为零,所以函数1231y x x =++-的定义域{|1}x x ≠(2) 为使函数有意义,只需解析式中的被开方数非负,且分式的分母不为0, 即{300x x +≥≠,所以1y x=的定义域是{|30}x x x ≥-≠且(3) 为使函数有意义,只需解析式中的被开方数非负,即{3030x x +≥--≥,所以函数33y x x =++--的定义域{|3}{3}x x =-=【题型归类】题型一:函数概念考核: 1.下列从集合M 到集合N 的对应关系中,其中y 是x 的函数的是( )A.M ={x |x ∈Z },N ={y |y ∈Z },对应关系f :x →y ,其中B.M ={x |x >0,x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中y =±2xC.M ={x |x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中y =x 2D.M ={x |x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中 【解析】解:A .M 中的一些元素,在N 中没有元素对应,比如,x =3时,∉N ,∴y 不是x 的函数; B .M 中的任意元素x ,在N 中有两个元素±2x 与之对应,不满足对应的唯一性,∴y 不是x 的函数; C .满足在M 中的任意元素x ,在集合N 中都有唯一元素x 2与之对应,∴y 是x 的函数;D .M 中的元素0,通过在N 中没有元素对应,∴y 不是x 的函数.故选:C .题型二:判断函数是否为同一函数2.下列各组函数是同一函数的是( )1f (x )=x —1与2f (x )=x 与3f (x )=x 0与g (x )=1 4f (x )=x 2—2x —1与g (t )=t 2—2t —1A.1 B.2 C.3 D.4【解析】解:1中函数的定义域不相同,故不是同一函数,2函数的值域不相同,不是同一函数,3函数的定义域不相同,故不是同一函数4是同一函数,故选:D.题型三:求函数定义域3.函数f(x)=+的定义域为()A.(—∞,1] B.(—∞,0)C.(—∞,0)∪(0,1] D.(0,1]【解析】解:要使函数有意义,则,得,即x≤1且x≠0,即函数的定义域为(—∞,0)∪(0,1],故选:C.4.已知函数f(2x—1)的定义域为(0,1),则函数f(1—3x)的定义域是()A.B.C.(—1,1)D.【解析】解:∵f(2x—1)的定义域为(0,1),∴0<x<1,∴—1<2x—1<1,∴f(x)的定义域为(—1,1),∴f(1—3x)需满足—1<1—3x<1,解得,∴f(1—3x)的定义域为.故选:D.题型四:关于函数值的问题5.已知函数f(2x—4)=x2+1,则f(2)的值为()A.5B.8 C.10 D.16【解析】解:∵函数f(2x—4)=x2+1,∴f(2)=f(2×3—4)=32+1=10.故选:C.6.已知函数,记f(2)+f(3)+f(4)+…+f(10)=m,,则m+n=()A.—9 B.9 C.10 D.—10【解析】解:∵函数,∴=+=—1,∵f(2)+f(3)+f(4)+…+f(10)=m,,∴m+n=9×(—1)=—9.故选:A.从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
《函数的概念》说课稿(通用9篇)《函数的概念》说课稿(通用9篇)作为一位兢兢业业的人民教师,通常需要准备好一份说课稿,说课稿有助于提高教师的语言表达能力。
那么你有了解过说课稿吗?以下是小编整理的《函数的概念》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《函数的概念》说课稿篇1一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。
函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。
又是沟通代数、方程、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。
函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。
本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。
所以,学生对本节课的学习是相对比较容易的。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。
本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。
北师大版高一数学必修一函数的概念说课稿尊敬的各位考官大家好,我是今天的06号考生,今天我说课的题目是函数的概念。
接下来我将从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材《函数的概念》选自北师大版必修一第2章第二节,函数是高中数学学习的一条主线,对整个高中阶段的学习起着至关重要的作用。
二、说学情深入了解学生是新课标要求下教师的必修课,在初中阶段,学生已经根据变量的观点初步探讨函数的概念,高中也学习了集合的相关知识,这为学生重新定义函数的概念提供了必要的知识储备.三、说教学目标依据学生的知识水平和年龄特点,以及本节课在教材中所处的地位及作用,我制定了以下教学目标:1、理解函数的概念,了解构成函数的要素,能去简单函数的定义域。
2、学生经过讨论和思考的过程,提高发现问题和解决问题的能力。
3、提升学生数学抽象素养和数学运算素养。
四、说教学重难点要上好一节数学课,在教学内容上一定要做到突出重点、突破难点。
根据本节课的内容,确定教学重点为理解函数单调性的概念。
教学难点为理解f(x)的含义,从具体实例中抽象出函数的概念。
五、说教法和学法结合本节课的内容和学生的认知规律,我主要采用讲授法、启发法、小组合作、自主探究等教学方法。
在学法上,我主要采用观察法、合作交流法、归纳总结法等教学方法。
六、说教学过程古语说“凡事预则立,不预则废”,为了更好的以学定教,我会让学生在课前完成一份前置作业(预习单),分为两部分:1.是旧知连接,出一些本课知识紧密相关的已经学过的练习题,这样可以很好的摸清学生基础。
2.是新知速递,是让学生自己先进行预习,完成一些与本课知识相关的基础的练习,从而培养学生的预习能力。
为了实现这节课的教学目标,突出重点,突破难点,整节课的教学分几个部分进行1、新课导入:我将向学生提出问题:在初中所学的一次函数,反比例函数,一元二次函数,这些函数的基本特征是什么。
对于每一个x的取值,都有唯一确定的y值与之对应,这是函数的基本特征。
高中数学北师大版必修1:§2对函数的进一步认识2.1函数概念知识点一函数的有关概念[填一填]1.定义2.相关名称(1)自变量是x.(2)函数的定义域是集合A.(3)函数的值域是集合B.3.函数的记法集合A上的函数可记作:f:A→B或y=f(x),x∈A.[答一答]1.任何两个集合之间都可以建立函数关系吗?提示:不是.首先这两个集合必须为数集,其次满足对一个集合中的任意一个数x,在另一个集合中都有唯一确定的数与之对应.2.对于一个函数y=f(x),在定义域内任取一个x值,有几个函数值与其对应?提示:有唯一确定的一个函数值与其对应.3.f(x)与f(a)的区别与联系是什么?提示:当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f(a)是f(x)的一个特殊值.4.如何理解函数的对应法则?提示:对应法则指的是自变量与因变量之间的存在关系.知识点二区间及有关概念[填一填]1.区间的定义条件:a<b(a,b为实数).结论:区间闭区间开区间左闭右开区间左开右闭区间符号[a,b](a,b)[a,b)(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)5.数集都能用区间表示吗?提示:不能.连续不间断数集可以用区间表示.不连续数集不能用区间表示.6.“∞”是一个数吗?提示:“∞”不是一个数,它指的是“无穷大”.7.区间之间可以像集合之间那样进行“交、并、补”运算吗?若A=(1,+∞),B=(-∞,2],A∩B如何表示?提示:可以运算.A∩B=(1,2].1.对函数概念的三点说明(1)函数必须是建立在非空数集上的一个概念.若自变量的取值为空集,则这时函数是不存在的.(2)根据函数的概念,两个变量之间是否具有函数关系需要检验:定义域和对应法则是否给出;在对应法则之下每一个x是否只与唯一的y对应.(3)由于函数的值域被函数的定义域和对应法则完全确定,这样确定一个函数就只需要函数的定义域和对应法则,从而判定两个函数是否为同一个函数只需看其定义域和对应法则是否相同即可.2.对函数符号y=f(x)的理解在这个函数符号y=f(x)中,x是自变量,f表示的是对应法则,它可以看作是对x施行的某种运算法则,可以是一个代数式、也可以是一个表格,还可以是一个图像.3.f(x)与f(a)的区别与联系当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x 为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f (a )是当x =a 时函数f (x )的值,是一个常量.而f (x )是自变量x 的函数,一般情况下它是一个变量.(2)联系:f (a )是f (x )的一个特殊值. 4.对区间的四点说明(1)区间表示的就是一个集合,只是一个特殊的集合——非空数集. (2)区间的左端点对应的值一定比右端点对应的值小.(3)区间的端点在区间内则写成闭的,如果不在区间内则写成开的.(4)在数轴上表示区间时,用实心的点表示闭区间的端点,用空心点表示开区间的端点.类型一 相同函数的判断【例1】 下列各组函数是否表示同一个函数? (1)f (x )=2x +1与g (x )=4x 2+4x +1; (2)f (x )=x 2-xx与g (x )=x -1;(3)f (x )=|x -1|与g (x )=⎩⎪⎨⎪⎧x -1 (x ≥1),1-x (x <1);(4)f (n )=2n -1与g (n )=2n +1(n ∈Z ); (5)f (x )=x 2-2x 与g (t )=t 2-2t .【思路探究】 根据解析式判断两个函数f (x )和g (x )是否是同一个函数的步骤是:①先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相同,如果定义域相同,再执行下一步;②化简函数的解析式,如果化简后的函数解析式相同,那么它们相同,否则它们不相同.【解】 (1)g (x )=|2x +1|,f (x )与g (x )的对应关系不同,因此是不同的函数. (2)f (x )=x -1(x ≠0),f (x )与g (x )的定义域不同,因此是不同的函数.(3)f (x )=⎩⎪⎨⎪⎧x -1 (x ≥1)1-x (x <1),f (x )与g (x )的定义域相同,对应关系相同,因此是相同的函数.(4)f (n )与g (n )的对应关系不同,因此是不同的函数.(5)f (x )与g (t )的定义域相同,对应关系相同,自变量用不同字母表示,仍为同一函数. 规律方法 函数概念含有三个要素,即定义域A ,值域C 和对应关系f ,其中核心是对应关系f ,它是函数关系的本质特征.只有当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一函数.换言之就是:(1)定义域不同,两个函数也就不同. (2)对应关系不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应关系.(1)下列每组函数是同一函数的是( B )A .f (x )=x -1,g (x )=(x -1)2B .f (x )=|x -3|,g (x )=(x -3)2C .f (x )=x 2-4x -2,g (x )=x +2D .f (x )=(x -1)(x -3),g (x )=x -1·x -3 (2)下列每组中两个函数是同一函数的组数为3. ①f (x )=x 2+1和f (v )=v 2+1 ②y =1-x 2|x +2|和y =1-x 2x +2③y =x 和y =x 3+x x 2+1解析:①中对应法则相同,定义域相同,只是表示自变量的字母不同,所以是同一函数. ②中定义域相同,化简后对应法则相同,所以是同一函数. ③化简后对应法则相同,定义域也都是R ,所以是同一函数. 类型二 求函数的定义域 【例2】 求下列函数的定义域. (1)f (x )=4-xx +1; (2)y =-x2x 2-3x -2;(3)f (x )=2x +3-12-x +1x; (4)y =31-1-x.【思路探究】 若一个函数是由两个或两个以上的数学式子的和、差、积、商构成的,则定义域是使各部分有意义的自变量的取值集合的交集.【解】 (1)由已知得⎩⎪⎨⎪⎧4-x ≥0,x +1≠0,解得x ≤4且x ≠-1.所求定义域为{x |x ≤4且x ≠-1}.(2)由已知得⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12.所求定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0且x ≠-12. (3)由已知得⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2且x ≠0.所求定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2且x ≠0.(4)由已知得⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.规律方法 函数y =f (x )以解析式的形式给出时,函数的定义域就是使这个解析式有意义的自变量的取值范围,具体来说,常有以下几种情况:(1)f (x )为整式型函数时,定义域为R ;(2)f (x )为分式型函数时,定义域为使分母不为零的实数的集合; (3)f (x )为偶次根式型函数时,定义域为使被开方数非负的实数的集合; (4)函数y =x 0中的x 不为0;(5)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合,即列出不等式组求各不等式解集的交集.求下列函数的定义域: (1)f (x )=1x -2; (2)f (x )=2x +6; (3)f (x )=1-x +15+x ;(4)f (x )=4-x 22+x.解:(1)因为使式子1x -2有意义的实数的集合为{x |x ≠2},所以函数f (x )=1x -2的定义域为{x |x ≠2}.(2)因为使式子2x +6有意义的实数的集合为{x |x ≥-3},所以函数f (x )=2x +6的定义域为{x |x ≥-3}.(3)因为使式子1-x 有意义的实数的集合为{x |x ≤1},使式子15+x有意义的实数的集合为{x |x ≠-5},所以函数f (x )=1-x +15+x的定义域为{x |x ≤1,且x ≠-5}. (4)因为使式子4-x 22+x 有意义的实数的集合为{x |x ≠-2},所以函数f (x )=4-x 22+x 的定义域为{x |x ≠-2}.类型三 求函数的值域 【例3】 求下列函数的值域: (1)y =12x 2-1,x ∈{-1,0,1,2,3,4};(2)y =3+x 4-x ;(3)y =2x 2-4x +3;(4)y =1-x 21+x 2.【思路探究】 求函数的值域就是通过函数定义域中x 的取值,根据对应关系确定y 的取值.【解】 (1)(观察法)将x =-1,0,1,2,3,4分别代入y =12x 2-1,得y =-12,-1,-12,1,72,7. ∴此函数的值域为⎩⎨⎧⎭⎬⎫-1,-12,1,72,7.(2)方法1(分离常数法):y =3+x 4-x =-(4-x )+74-x =-1+74-x. ∵74-x≠0,∴y ≠-1,∴此函数的值域为{y |y ≠-1}. 方法2(反解法):∵y =3+x4-x ,∴4y -xy =x +3,∴x =4y -3y +1,y ≠-1,∴此函数的值域为{y |y ≠-1}.(3)(配方法)∵2x 2-4x +3=2(x -1)2+1≥1, ∴y =2x 2-4x +3≥1=1, ∴此函数的值域为[1,+∞).(4)(分离常数法)∵y =1-x 21+x 2=-1+21+x 2,而该函数的定义域为R , ∴1+x 2≥1,∴0<21+x 2≤2,∴-1<-1+21+x 2≤1,∴此函数的值域为(-1,1].规律方法 求函数的值域时,一定要将最终的结果表示成集合或者区间的形式.在用列举法表示函数的值域时,如(1),要注意相同的元素归入一个集合时,只能算作一个.(1)如果f (x )=x 2-x -6,则f (5)=14. (2)函数y =8x 2(1≤x ≤2)的值域为[2,8].(3)函数y =2x 3x -4的值域是(-∞,23)∪(23,+∞).解析:(1)由f (x )=x 2-x -6得f (5)=25-5-6=14.(2)因为1≤x ≤2,所以1≤x 2≤4,14≤1x 2≤1,故2≤8x2≤8.(3)y =2x 3x -4=23(3x -4)+833x -4=23+83(3x -4),因为83(3x -4)恒不为零,而且可以取到其他的所有实数,所以y ≠23.——易错误区—— 忽视函数的定义域导致的错误【例4】 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )【错解】 选A 或选D.【正解】 B 选项A 中,在集合M 中,当x >0时的元素在N 中没有数与之对应①,不符合函数的定义; 选项C 中,一个变量x 可能对应着两个y 的值,也不符合函数的定义; 选项D 中,一个x 对应着一个y ,但N 为值域②,所以集合N 中的每一个数在M 中也必须有数与之对应,但是N 中存在数在M 中没有数与之对应.故选B.【错因分析】 1.忽视①处即函数定义域中的每一个元素都要有元素与之对应; 2.忽视题目给出的条件即②处N 是函数的值域,而导致错选D. 【防范措施】 1.深刻理解函数定义中的条件对于定义域中的每一个数在对应法则之下都要有唯一一个数与之对应,只要在定义域中存在一个数找不到与之对应的元素,或者是一个数对应着两个或以上的数时均不能称为函数.如本例中的A 项在x >0时,没有数与之对应,故不是函数y =f (x )的图像.2.认真审题解题时,除了掌握常规的知识外,还要认真审题,如本例中的集合N 为值域,故也要保证N 中的每个数在M 中也要有数与之对应.设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如图所示的四个图形,其中能表示从集合M 到集合N 的函数关系的有( B )A .0个B .1个C .2个D .3个解析:由函数的定义知,M 中任一元素在N 中都有唯一的元素与之对应,即在x 轴上的区间[0,2]内任取一点作y 轴的平行线,与图像只有一个交点即可.由函数定义知①不是,因为集合M 中1<x ≤2时,在N 中无元素与之对应;③中的x =2对应元素y =3∉N ,所以③不是;④中x =1时,在N 中有两个元素与之对应,所以④不是.一、选择题1.下列关于函数与区间的说法正确的是( D ) A .函数定义域必不是空集,但值域可以是空集 B .函数定义域和值域确定后,其对应法则也就确定了 C .数集都能用区间表示D .函数中一个函数值可以有多个自变量值与之对应解析:函数的定义域和值域都是非空的数值,故A 错;函数的定义域和对应法则确定后,函数的值域也就确定了,故B 错;数集不一定能用区间表示,故C 错,选D.2.符号y =f (x )表示( B ) A .y 等于f 与x 的积 B .y 是x 的函数C .对于同一个x ,y 的取值可能不同D .f (1)表示当x =1时,y =1解析:符号y =f (x )是一个整体符号,表示y 是x 的函数,则A 错,B 正确;由函数的定义知,对于同一个自变量x 的取值,变量y 有唯一确定的值,则C 错; f (1)表示x =1对应的函数值,则D 错.故选B.3.与y =x 是同一个函数的是( D ) A .y =|x | B .y =x 2 C .y =x 2xD .y =t解析:对于函数y =x 定义域和值域均为R ,而选项A 与B 的值域为[0,+∞),故A 与B 错;对选项C ,定义域为{x |x ∈R 且x ≠0},只有D 正确.二、填空题4.函数y =x +1x的定义域为{x |x ≥-1,且x ≠0}. 解析:本题考查函数定义域,要使y =x +1x 有意义,则⎩⎪⎨⎪⎧x +1≥0x ≠0,所以解得x ≥-1且x ≠0,即函数定义域为{x |x ≥-1,且x ≠0},求函数定义域和值域的结果都应写成“解集”形式.本题结果还可表示为[-1,0)∪(0,+∞)等.5.下列函数是同一函数的序号为(3).(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0,-1 x <0;(2)f (x )=x 2与g (x )=3x 3; (3)f (x )=x 2-2x +1与g (t )=(t -1)2.解析:对于(1)来说,f (x )的定义域中不含有0,而g (x )的定义域为R ,定义域不同. 对于(2)来说,两个函数的定义域都为R ,但f (x )=|x |,而g (x )=x ,解析式不同. 故(1)(2)都不是同一函数.而对于(3)来说,尽管两个函数的自变量一个用x 表示,另一个用t 表示,但它们定义域相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者是同一函数.三、解答题6.已知函数f (x )=x 2+x -1,求 (1)f (2); (2)f (1x+1);(3)若f (x )=5,求x 的值. 解:(1)f (2)=4+2-1=5.(2)f (1x +1)=(1x +1)2+(1x +1)-1=1x 2+3x +1.(3)f (x )=5,即x 2+x -1=5. 由x 2+x -6=0得x =2或x =-3.。
2.1 函数的概念
【教学目标】
知识目标:
(1) 通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型; (2) 理解函数的概念及其构成要素; (3) 理解函数值的概念及表示. 能力目标:
(1) 通过函数概念的学习,培养学生的数学思维能力; (2) 通过函数值的学习,培养学生的计算能力.
【教学重点】
体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念.
【教学难点】
函数的概念及记号)(x f y 的理解.
【教学过程】
实际上当去掉集合的外衣后,可发现两个概念的本质是一样的;高中函数概念明确了自变量x的取值范围是数集D,明确了对应法则f,把()
y f x
=就叫做函数.
*函数概念的初步应用
问:举出生活中两个函数的例子,并用函数的概念进行描述,并且写出它们的定义域、对应法则和值域.
1.如图,可表示函数y=f(x)的图象的只可能是()
2.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的有()
辨析回味概念
1、请大家提炼下概念中的关键词有哪些?
定义域D,对应法则f,值域,而定义域D和对应法则f确定后,值域也就被确定了,所以确定函数只需确定定义域D和对应法则f,此处定义域D、对应法则f和值域叫做函数的三要素.当函数的三要素相等时两函数相等。
通过对例题的辨析,加深学生对高中函数概念的理解,培养学生运用概念思考问题的能力,特别是运用图像来观察数集之间的对应关系,对学生来说,更是全新的问题,但这是数形结合基础,应该培养这方面能力.
鉴于函数定义的重要和理解的困难,本环节分二个步骤来辨析新概念,促进学生理解新概念.
(0,)
+∞1
*。
2.1 函数概念-北师大版高中数学必修第一册(2019版)教案一、教学目标1.了解函数的概念及其表示方法;2.掌握函数的定义、函数的符号表示及其实例;3.认识函数的性质,特别是函数的单调性和奇偶性;4.掌握常见函数的图像和性质,如一次函数、二次函数、绝对值函数等。
二、教学重点1.函数的符号表示及其实例;2.函数的单调性和奇偶性;3.一次函数、二次函数、绝对值函数的图像和性质。
三、教学难点1.如何理解函数的概念及其表示方法;2.如何掌握函数的定义及其符号表示;3.如何理解并掌握函数的单调性和奇偶性。
四、教学过程1. 导入(5分钟)教师引入本节课的主体——函数,从自然数到实数,再到函数观点的演变,让学生从认识到理解,从而为学生接下来的学习打下基础。
2. 讲授(25分钟)教师讲解函数的概念、定义、符号表示及其实例。
如函数的概念就是把自变量的每一值都对应唯一的一个因变量的数的规律性描述。
同时,教师将重点解析函数在数学中的应用以及函数的性质,特别是函数的单调性和奇偶性。
3. 练习(30分钟)教师设计了一系列与函数相关的练习,让学生通过练习巩固所学知识。
通过练习,教师让学生更加深入地理解函数相关的定义、符号、实例及性质,提高学生解决实际问题的能力。
4. 总结(10分钟)教师对本节课的重点知识再次进行总结,并对学生在练习中出现的错误进行纠正,让学生更加深入地理解函数相关的概念、性质及其应用。
5. 作业(5分钟)教师布置一定量的作业,以帮助学生总结本节课内容,并提高学生的应用能力。
五、教学反思本节课通过导入、讲授、练习、总结和作业等环节,全面切实地实现了教学目标,成功地让学生明白了函数的概念,掌握了函数的定义和符号表示,理解并掌握了函数的性质,特别是函数的单调性和奇偶性,学习并掌握了一次函数、二次函数、绝对值函数的图像和性质。
但是,在教学过程中还有一些不足之处,如教师讲解的时候有时不够清晰,也没有针对学生的具体疑难问题进行更好的解答。
第二章函数章末复习课一.三维目标:1.知识与技能:总结《函数》的知识结构,会结合所学知识解决与“集合”相关的问题;2.过程与方法:通过对知识结构的完善,体会分类讨论、数形结合的思想在数学中的应用。
3.情感态度与价值观:体会函数在实际生活中的应用。
二.教学重难点教学重点:函数知识的总结与应用教学难点:函数知识的综合应用三.教学方法:讲练结合法四.教学过程一.画一画知识结构二.学习要求一、对函数的进一步认识1.函数是描述变量之间依赖关系的重要数学模型.它的三要素是定义域、值域和对应法则.函数的值域是由定义域和对应法则所确定的.2.研究函数要遵从“定义域优先”的原则,表示函数的定义域和值域时,要写成集合的形式,也可用区间表示.3.函数的表示方法有三种:解析法、图像法和列表法.在解决问题时,根据不同的需要,选择恰当的方法表示函数是很重要的.4.分段函数是一种函数模型,它是一个函数而并非几个函数.5.函数与映射是不同的概念,函数是一种特殊的映射,是从非空数集到非空数集的映射.在映射f:A→B中,A中的元素x称为原像,B中的对应元素y称为x的像.二、函数的单调性1.函数的单调性是函数的一个重要性质.它具有突出的地位和作用,它从定义域或定义域的部分区间上反映了函数值的变化趋势.2.有些函数在整个定义域上是增函数或减函数,有些函数是在定义域的某个子集上是增加的或减少的.要能从图像上写出函数的单调区间,更要能从定义理解上证明或判断函数的单调性.三、二次函数性质的再研究1.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x+h)2+k(a≠0),其中(-h,k)为顶点;(3)两根式:y=a(x-x1)(x-x2)(a≠0),其中(x1,0),(x2,0)是函数的图像与x轴的两个交点坐标.并且只有抛物线与x轴有交点时才可写出两根式.四、简单的幂函数1.幂函数是形式定义,只有具备形式y=xα的函数才是幂函数.即三个特征:①幂底数为自变量x;②幂指数为常数α;③只有一项且系数为1.2.函数的奇偶性是函数的另一重要性质,它从定义域整体上反映了函数的性质 .3.判断函数的奇偶性首先观察定义域是否关于原点对称,若不对称,则称为非奇非偶函数.若对称,再通过研究f(-x)与f(x)的关系作出判断.4.奇函数的图像关于原点对称,偶函数的图像关于y轴对称.三.典例精讲题型一函数的概念及表示法[例1] 已知函数f(x)的定义域为[-1,3],在同一坐标系下,函数y=f(x)的图像与直线x=1的交点个数为()A.0B.1C.2 D.0或1题型二求函数最值(值域)的方法1.直接法求基本初等函数(正、反比例函数,一次、二次函数)的最值,应用基本初等函数的最值结论,直接写出其最值.[例2] 函数f(x)=x2-4x+3在[0,3]上的值域是()A.[0,3] B.[-1,0]C.[0,2] D.[-1,3]2.观察法当函数的解析式中仅含有x2或|x|或x时,通常利用常见的结论x2≥0,|x|≥0,x≥0等,直接观察写出函数的最值.[例3] 求下列函数的值域.(1)y=3x-1,x∈{1,2,3,4};(2)y=|x|+1.3.配方法当函数的解式中出现二次式的结构时,常用配方法求值域.[例4] 求函数y=5+4x-x2的值域.4.换元法求形如函数y=ax2m+bx m+c(ab≠0)或y=ax+bx+c(ab≠0)的最值时,设x m=t或bx+c=t,利用换元法转化为求二次函数等常见函数的最值问题,这种求最值的方法称为换元法.此时要注意换元后函数的定义域.[例5] 求函数y=x+1-2x的最大值.5.图像法画出函数图像,最高点的纵坐标是函数的最大值,最低点的纵坐标是函数的最小值.[例6] 函数y=|x+1|-|x-1|的最大值是________.四.课堂小结本节课我们有什么收获?五.布置作业练习册单元测试题。
第二章函数§1生活中的变量关系§2对函数的进一步认识2.1 函数概念(教师用书独具)●三维目标1.知识与技能函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2.过程与方法(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的要素.(3)会求一些简单函数的定义域和值域.(4)能够正确使用“区间”的符号表示某些函数的定义域.3.情感、态度与价值观使学生感受到学习函数的必要性的重要性,激发学习的积极性.●重点难点重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示.本节的重点的突破方法是通过教材中的实例让学生自己尝试用集合与对应的语言进行描述.对难点来说,学生不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值,其突破方法是可以列举一些对应关系相同但定义域不同的函数,或定义域、值域相同但对应关系不同的函数,让学生在比较、判断中体会.在函数教学中,应强调对函数概念本质的理解,避免求函数的定义域时出现过于烦琐的技巧训练,避免人为地编制一些求定义域的偏题,以便学生有时间重点理解函数的概念及符号“y=f(x)”的含义.(教师用书独具)●教学建议函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图像、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是函数学习的第二阶段,这是对函数概念的再认识阶段.第三阶段是选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,教材采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数的概念.●教学流程复习引入初中学过的函数有哪些,它们分别有哪些变量⇒新课讲解,给出函数的概念及其表示方法⇒完成例1、例2及其变式训练,加深学生对函数概念的理解⇒给出区间的概念,并注意表示过程中区间的开闭⇒质疑答辨,排难解惑,发展思维,完成例3及变式训练,强化对定义域的理解⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正世界是千变万化的,变量与变量之间有的有依赖关系,而具有依赖关系的两个变量并不一定具有函数关系.1.某十字路口,通过汽车的数量与时间的关系是否具有依赖关系?是函数关系吗?【提示】没有依赖关系.不是函数关系.2.储油罐的储油量Q与油面宽度W的关系是否具有依赖关系?是函数关系吗?【提示】具有依赖关系,但不是函数关系.3.在公路上匀速行驶的汽车,它行驶的里程s与时间t具有依赖关系吗?是函数关系吗?【提示】具有依赖关系,也是函数关系.并非有依赖关系的两个变量都有函数关系.只有满足对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称它们之间具有函数关系.1.初中我们学习过哪些函数?你能说出函数描述了几个变量之间的关系?它们分别是什么变量?【提示】初中学过正比例函数,一次函数、反比例函数和二次函数;函数描述了两个变量之间的关系,一个是自变量,另一个是因变量.2.因变量y与自变量x之间是怎样的依赖关系?【提示】因变量y随自变量x的变化而变化.给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把对应关系f叫作定义在集合A上的函数,记作f:A→B或y=f(x),x∈A.此时,x叫作自变量,集合A叫作函数的定义域,集合{f(x)|x∈A}叫作函数的值域.习惯上我们称y是x的函数.1.区间:设a ,b 是两个实数,而且a <b ,规定如下表:这里实数a ,b 都叫作相应区间的端点. 2.无穷大的概念及无穷区间:下列过程中,各变量之间是否存在依赖关系?其中哪些是函数关系?(1)将保温瓶中的热水倒入茶杯中缓慢冷却,并将一温度计放入茶杯中,每隔一段时间,观察温度计示数的变化.冷却时间与温度计示数的关系;(2)做自由落体运动的物体下落的距离与时间的关系; (3)商品的销售额与广告费之间的关系; (4)家庭的食品支出与电视价格之间的关系;(5)在高速公路上匀速行驶的汽车所走的路程与时间的关系. 【思路探究】 两个变量中的一个变量发生变化时,根据另一个变量是否发生变化来确定依赖关系;根据另一个变量发生变化且取值唯一来确定函数关系.【自主解答】 (1)温度计示数随冷却时间的变化而变化,所以冷却时间与温度计示数存在着依赖关系.又因为对于冷却时间的每一个取值,都有唯一的温度计示数与之对应,所以,温度计示数是冷却时间的函数;(2)科学家通过实验发现,做自由落体运动的物体下落的距离(h )与时间(t )具有关系h =12gt 2,其中g 是常量,很显然,对于时间t 在其变化范围内的每一个取值,都有唯一的下落距离h 与之对应,故这两个变量存在依赖关系,且距离是时间的函数;(3)商品的销售额与广告费这两个变量在现实生活中存在依赖关系,但商品的销售额还受其他因素的影响,比如产品的质量、价格、售后服务等,所以商品的销售额与广告费之间不是函数关系;(4)家庭的食品支出与电视价格之间不存在依赖关系;(5)在高速公路上匀速行驶的汽车所走路程(因变量)随时间(自变量)的变化而变化,所以它们之间存在着依赖关系,且路程是时间的函数.综上可知,(1)(2)(5)中的变量间存在依赖关系,且是函数关系;(3)中变量间存在依赖关系,不是函数关系;(4)中两个变量间不存在依赖关系.1.判断两个变量之间是否存在依赖关系,只需看一个变量发生变化时,另一个变量是否会随之变化.2.判断两个具有依赖关系的变量是否是函数关系,关键是看二者之间的关系是否具有确定性,即验证对于一个变量的每一个值,另一个变量是否都有唯一确定的值与之对应.(1)下列说法不正确的是( ) A .依赖关系不一定是函数关系 B .函数关系是依赖关系C .如果变量m 是变量n 的函数,那么变量n 也是变量m 的函数D .如果变量m 是变量n 的函数,那么变量n 不一定是变量m 的函数(2)张大明种植了10亩小麦,每亩施肥x 千克,小麦总产量y 千克,则( ) A .x ,y 之间有依赖关系 B .x ,y 之间有函数关系 C .y 是x 的函数 D .x 是y 的函数【解析】 (1)根据依赖关系与函数关系的区别可知A 、B 正确.若变量m 是变量n 的函数.因为满足函数关系的自变量n 对因变量m 可以是多对一,此时若把m 换成自变量,n 换成因变量,显然对于m 的每一个取值,会有多个n 与之对应,所以变量n 不是变量m 的函数.(2)虽然小麦总产量y 与每亩施肥量x 之间存在依赖关系,但小麦总产量y 还受气候、管理等其他因素的影响,所以x ,y 之间无函数关系.【答案】 (1)C (2)A下列对应关系是否为A 到B 的函数.(1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =R ,B =Z ,f :x →y =x .【思路探究】 解答本题可从函数的定义入手,即对于A 中的任何一个元素在确定的对应关系之下,是否有唯一的y 值与之对应.【自主解答】 (1)A 中的元素0在B 中没有对应元素,故不是A 到B 的函数; (2)对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2,在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数;(3)A 中元素负数没有平方根,故在B 中没有对应的元素且x 不一定为整数,故此对应关系不是A 到B 的函数.1.判断一个对应关系是否是函数,要从以下三个方面去判断,即A 、B 必须是非空数集;A 中任何一个元素在B 中必有元素与其对应;A 中任一元素在B 中必有唯一元素与其对应.2.函数的定义中“任一x ”与“有唯一确定的y ”说明函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”而不能是“一对多”.下列说法正确的是( ) A .f (x )=1-x +x -2是函数B .A =N ,B =Z ,f :x →y =±x ,则f 是从集合A 到集合B 的一个函数C .A ={-1,1,2,-2},B ={1,2,4},f :x →y =x 2,则f 是从A 到B 的一个函数 D .y 2=x 是函数【解析】 对于A ,由于⎩⎪⎨⎪⎧1-x ≥0x -2≥0,则⎩⎪⎨⎪⎧x ≤1x ≥2无解,所以f (x )不是函数.对于B ,对集合A 中的元素4,在B 中有2个元素与之对应,不是函数. 对于D ,当x =4时,y =±2两个值与之对应,不满足函数定义. 对于C ,A 中每一个元素在B 中都有唯一元素与之对应,符合函数的概念. 【答案】 C求下列函数的定义域:(1)f (x )=2x +3;(2)f (x )=x -1·4-x +2; (3)y =1-x 21+x.【思路探究】 对于用解析式表示的函数,如果没有给出定义域,那么就认为函数的定义域是使函数表达式有意义的自变量取值的集合.【自主解答】 (1)函数f (x )=2x +3的定义域为R.(2)要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,4-x ≥0,解得1≤x ≤4.所以函数f (x )=x -1·4-x +2的定义域为{x |1≤x ≤4}. (3)要使函数有意义,需满足1+x ≠0,解得x ≠-1. 所以函数y =1-x21+x 的定义域为(-∞,-1)∪(-1,+∞).1.求函数的定义域,其实质就是以使函数的解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.其准则一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对于y =x 0要求x ≠0;(4)由实际问题确定的函数,其定义域要受实际问题的约束.2.如果已知函数是由两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.求下列函数的定义域 (1)f (x )=1x -2; (2)f (x )=3x +2; (3)f (x )=x +1+12-x.【解】 (1)当x -2≠0,即x ≠2时,1x -2有意义, ∴这个函数的定义域是{x |x ≠2}.(2)当3x +2≥0,即x ≥-23时,3x +2有意义,∴函数f (x )=3x +2的定义域是[-23,+∞).(3)由题意⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠2.∴这个函数的定义域是{x |x ≥-1}∩{x |x ≠2}=[-1,2)∪(2,+∞).求定义域时盲目化简函数解析式致误求函数f (x )= x +12x +1-1-x 的定义域.【错解】 f (x )= x +12x +1-1-x =x +1-1-x .要使函数有意义,需满足. 1-x ≥0,即x ≤1.故f (x )的定义域为(-∞,1].【错因分析】 本题错误的原因是化简了函数的解析式而使定义域发生变化. 【防范措施】 讨论函数问题时要保持定义域优先考虑的原则,求函数的定义域之前,不要化简解析式.【正解】 要使函数f (x )有意义,需满足:⎩⎪⎨⎪⎧1-x ≥0,x +1≠0,解得x ≤1且x ≠-1.所以函数的定义域为:(-∞,-1)∪(-1,1].1.函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图像.2.函数的三要素包括:定义域、对应法则和值域.因为值域由定义域和对应法则完全确定,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.1.设M ={x |0≤x ≤2},N ={ y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到N 的函数关系的有( )A .1个B .2个C .3个D .4个【解析】 由函数的定义,M 中任意一个x ,N 中都有唯一y 对应,故(1)(2)(4)正确. 【答案】 C2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3.【解析】 A 、C 、D 的定义域均不同. 【答案】 B3.(2012·四川高考)函数f (x )=11-2x 的定义域是________.(用区间表示) 【解析】 由题意,需1-2x >0,解得x <12.故f (x )的定义域为(-∞,12).【答案】 (-∞,12)4.已知函数f (x )=6x -1-x +4, (1)求函数f (x )的定义域;(用区间表示) (2)求f (-1),f (12)的值.【解】 (1)根据题意知x -1≠0且x +4≥0, ∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞). (2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.一、选择题 1.已知f (x )=x -1x +1,则f (2)=( ) A .1 B.12 C.13 D.14【解析】 f (2)=2-12+1=13.【答案】 C2.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1 C .y =x 2和y =(x +1)2D .f (x )= x 2x 和g (x )=xx2【解析】 A 中y =x -1定义域为R ,而y =x 2-1x +1定义域为{x |x ≠1};B 中函数y =x 0定义域{x |x ≠0},而y =1定义域为R ; C 中两函数的解析式不同;D 中f (x )与g (x )定义域都为(0,+∞),化简后f (x )=1,g (x )=1,所以是同一个函数. 【答案】 D3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h 和时间t 之间的关系是( )图2-2-1【解析】 水面的高度h 随时间t 的增加而增加,而且增加的速度越来越快. 【答案】 B 4.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B.(1,+∞) C .[1,2] D .[1,+∞) 【解析】 要使函数有意义,需⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2,所以函数的定义域是{x |x ≥1且x ≠2}. 【答案】 A 5.函数f (x )=1x 2+1(x ∈R)的值域是( ) A .(0,1) B .(0,1] C .[0,1) D .[0,1] 【解析】 由于x ∈R ,所以x 2+1≥1,0<1x 2+1≤1, 即0<y ≤1. 【答案】 B 二、填空题6.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. 【解析】 结合区间的定义知, 用区间表示为[-1,0)∪(1,2]. 【答案】 [-1,0)∪(1,2]7.函数y =31-x -1的定义域为________.【解析】 要使函数有意义,自变量x 须满足⎩⎨⎧x -1≥01-x -1≠0解得:x ≥1且x ≠2.∴函数的定义域为[1,2)∪(2,+∞). 【答案】 [1,2)∪(2,+∞)8.设函数f (x )=41-x ,若f (a )=2,则实数a =________.【解析】 由f (a )=2,得41-a=2,解得a =-1. 【答案】 -1 三、解答题9.已知函数f (x )=x +1x,求:(1)函数f (x )的定义域; (2)f (4)的值.【解】 (1)由⎩⎪⎨⎪⎧x ≥0,x ≠0,得x >0,所以函数f (x )的定义域为(0,+∞).(2)f (4)=4+14=2+14=94.10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.【解】 (1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23,故所求函数的定义域为{x |x >23}.11.已知f (x )=x 21+x 2,x ∈R ,(1)计算f (a )+f (1a)的值;(2)计算f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)的值.【解】 (1)由于f (a )=a 21+a 2,f (1a )=11+a 2, 所以f (a )+f (1a)=1.(2)法一 因为f (1)=121+12=12,f (2)=221+22=45,f (12)= 12 21+ 122=15,f (3)=321+32=910,f (13)= 13 21+ 13 2=110,f (4)=421+42=1617,f (14)= 14 21+ 142=117, 所以f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)=12+45+15+910+110+1617+117=72.法二 由(1)知,f (a )+f (1a )=1,则f (2)+f (12)=f (3)+f (13)=f (4)+f (14)=1,即[f (2)+f (12)]+[f (3)+f (13)]+[f (4)+f (14)]=3,而f (1)=12,所以f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)=72.(教师用书独具)求下列函数的值域:(1)y =2x +1,x ∈{1,2,3,4}; (2)y =1-x 2; (3)y =1+1x +1(x >0). 【思路探究】 求函数的值域就是求函数值的取值集合.【自主解答】 (1)x =1时,y =3;x =2时,y =5;x =3时,y =7;x =4时,y =9. 所以函数y =2x +1,x ∈{1,2,3,4}的值域为{3,5,7,9}. (2)因为1-x 2≤1,所以y =1-x 2的值域为(-∞,1]. (3)∵x +1>1,∴0<1x +1<1, ∴1<1+1x +1<2,∴y =1+1x +1的值域为(1,2).求函数值域的常用方法1.观察法:对于一些比较简单的函数,其值域可通过观察法得到. 2.配方法:是求“二次函数”类值域的基本方法.3.分离常数法:分子、分母是一次函数的有理式函数,即形如y =ax +bcx +d(c ≠0)的函数可用分离常数法,即将有理分式转化为“反比例函数”类的形式,便于求值域.4.换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.(1)函数y =x 2-4x +1,x ∈[2,5]的值域是( ) A .[1,6] B .[-3,1] C .[-3,6] D .[-3,+∞)【解析】 函数y =x 2-4x +1是二次函数形式,配方得y =(x -2)2-3,画出函数y =(x -2)2-3,x ∈[2,5]的图像(如图),由图像可知,函数的值域为{y |-3≤y ≤6},用区间可表示为[-3,6].【答案】 C (2)函数y =2xx +1的值域为________. 【解析】 ∵y =2x x +1=2 x +1 -2x +1=2-2x +1, 又∵2x +1≠0,∴y ≠2. ∴函数y =2xx +1的值域为{y |y ≠2}. 【答案】 {y |y ≠2}知识拓展 函数值域的求法函数的值域是函数值的集合,它是由函数的定义域与对应关系确定的.函数的最值是函数值域的端点值,求最值与求值域的思路是基本相同的.求函数值域的常用方法有:(1)观察法:通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出所求函数的值域;如求函数y =4-x 2的值域时,由x 2≥0及4-x 2≥0知4-x 2∈[0,2],故所求的函数值域为[0,2].(2)数形结合法:利用函数所表示的几何意义,借助于图像的直观性来求函数的值域,是一种常见的方法.如何将给定函数转化为我们熟悉的模型是解答此类问题的关键.如求函数y =1x 2+2的值域时,若令u =x 2+2,则y =1u(u ≥2),可借助反比例函数的图像,易得0<y ≤12,所以函数y =1x 2+2的值域为(0,12].(3)配方法:若函数是二次函数形式,即可化为y =ax 2+bx +c (a ≠0)型的函数,则可通过配方后再结合二次函数的性质求值域,这里要特别注意给定区间求二次函数的值域问题.如求函数y =x -2x +3的值域,因为y =x -2x +3=(x -1)2+2≥2,故所求的值域为[2,+∞).(4)换元法:对于形如y =ax +b ±cx +d (a ,b ,c ,d ∈R ,ac ≠0)的函数,往往通过换元,将其转化为二次函数的形式求值域.如求函数y =x -2x +3的值域,我们可以令x =t (t ≥0),得y =t 2-2t +3,即y =(t -1)2+2(t ≥0),结合二次函数的图像可知,所求函数的值域为[2,+∞).(5)判别式法:把函数转化成关于x 的二次方程F (x ,y )=0,通过方程有实数根,判别式Δ≥0,从而求得原函数的值域,形如y =a 1x 2+b 1x +c 1a 2x 2+b 2x +c 2(a 1,a 2不同时为零)的函数的值域,常用此方法求解.(6)分离常数法:对于形如y =cx +d ax +b 的函数,可将其变形为y =k +hax +b的形式,结合反比例函数的图像和图像平移的有关知识求出值域.例如:求函数y =1-x2x +5的值域.由于y =1-x 2x +5=-12 2x +5 +722x +5=-12+722x +5,因为722x +5≠0,所以y ≠-12.所以函数y =1-x 2x +5的值域为{y |y ∈R ,且y ≠-12}.2.2 函数的表示法(教师用书独具)●三维目标 1.知识与技能(1)明确函数的三种表示方法.(2)会根据不同实际情境选择合适的方法表示函数. (3)通过具体实例,了解简单的分段函数及应用. 2.过程与方法学习函数的表示形式,其目的不仅是为研究函数的性质和应用,而且是为加深理解函数概念的形成过程.3.情感、态度与价值观让学生感受到学习函数表示的必要性,渗透数形结合思想方法 ●重点难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图像.本节课重点的突破方法是充分利用信息技术,为学生创设丰富的数形结合环境,帮助学生更深刻地理解函数表示法.例如,可以补充部分函数,让学生用计算机或计算器画出它们的图像.对于难点,其突破方法是教学中不必要求学生一次完成认识,可以根据学生的具体情况,采取不同的要求,要遵循循序渐进的原则.(教师用书独具)●教学建议教材从引进函数概念开始就比较注重函数的不同表示方法:解析法、图像法、列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图像的直观作用.在研究图像时,又要注意代数刻画,以求思考和表述的精确性.●教学流程创设情景,揭示课题,通过已学过的函数的概念引出其表示方法⇒研究新知,明确三种表示方法的优缺点⇒完成例1及其变式训练,掌握函数图像的作法⇒通过例2及其变式训练,掌握待定系数法、换元法、配凑法等方法求函数的解析式⇒学习分段函数及其表示,明确分段函数也是一个函数,只是自变量范围不同表达式不一样⇒完成例3及变式训练,注意根据函数值求自变量时所求得的值是否在相应的自变量的取值范围内⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正某同学计划买x(x∈{1,2,3,4,5})支2B铅笔.每支铅笔的价格为0.5元,共需y元.于是y与x间建立起了一个函数关系.1.函数的定义域是什么?【提示】{1,2,3,4,5}.2.y与x的关系是什么?【提示】y=0.5x,x∈{1,2,3,4,5}.3.试用表格表示铅笔数x与钱数y之间的关系.【提示】4.【提示】如果笔记本数不超过5本时,每本按5元,如果笔记本数超过5本时,超出的部分按每本4.5元(买的笔记本数不超过10本).1.该函数能用解析法表示吗?怎样表示? 【提示】 能.y =⎩⎪⎨⎪⎧5x ,x ∈{1,2,3,4,5},25+ x -5 ×4.5,x ∈{6,7,8,9,10}.2.上面解析法表示的两段函数能说成是两个函数吗? 【提示】 不能.在函数的定义域内,如果对于自变量x 的不同取值范围有着不同的对应关系,那么这样的函数通常叫做分段函数.作出下列函数的图像.(1)y =1+x (x ∈Z); (2)y =x 2-2x (x ∈[0,3)); (3)y =2x,x ∈[2,+∞).【思路探究】 用描点法作图,但要注意定义域对图像的影响.【自主解答】 (1)这个函数的图像由一些点组成,这些点都在直线y =1+x 上,如图(1)所示.(1) (2) (3)(2)因为0≤x<3,所以这个函数的图像是抛物线y=x2-x介于0≤x<3之间的一部分,如图(2)所示.(3)当x=2时,y=1,其图像如图(3)所示.1.描点法作函数图像的“三步曲”:一列二描三连线用平滑的曲线将描出的点连接起来,得到函数图像在平面直角坐标系中描出表中相应的点取自变量的若干个值,求出相应函数值,列表2.作函数图像的注意事项:(1)应先确定函数的定义域,在定义域内作图;(2)图像是实线或实点,定义域外的部分有时可用虚线来衬托整个图像;(3)要标出某些关键点.例如,图像的顶点、端点、与坐标轴的交点等,注意分清这些关键的点是实心点还是空心点.求作y=|x2+3x-4|的图像.【解】作出二次函数y=x2+3x-4的图像如图(1),将x轴下方的部分翻折到x轴上方即得所求函数图像如图(2).(1) (2)(1)已知f (x )是一次函数,且f [f (x )]=4x -1,求函数f (x )的解析式.(2)若f (x +1)=x +2x ,求f (x ).【思路探究】 (1)由于f (x )是一次函数,所以可设f (x )=kx +b (k ≠0),然后用待定系数法恒等求解;(2)可用换元法(或配凑法)求解.【自主解答】 (1)由于f (x )是一次函数,可设f (x )=kx +b (k ≠0),依题意知,f [f (x )]=4x -1,所以k (kx +b )+b =4x -1, 即k 2x +kb +b =4x -1,所以⎩⎪⎨⎪⎧k 2=4,k +1 b =-1,解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎪⎨⎪⎧k =-2,b =1.所以f (x )=2x -13或f (x )=-2x +1.(2)法一 (换元法)设x +1=t ,则x =(t -1)2(t ≥1), 则f (t )=(t -1)2+2(t -1)=t 2-1.故f (x )=x 2-1(x ≥1). 法二 (配凑法)f (x +1)=(x +1)2-1,又x +1≥1,所以f (x )=x 2-1,x ≥1.1.已知函数模型(如一次函数、二次函数、反比例函数等)求函数的解析式,常用待定系数法,其步骤为:(1)根据函数模型设出函数解析式; (2)根据题设求待定系数.2.已知f [g (x )]的解析式,求f (x )的解析式,常用方法如下:(1)换元法:令t =g (x ),然后求出f (t )的解析式,最后用x 代替t 即可.(2)配凑法:可通过配凑把f [g (x )]的解析式用g (x )来表示,再将解析式两边的g (x )用x 代替即可.(1)已知f (x +1)=3x +2,则f (x )的解析式为________. (2)已知2f (x )+f (1x)=x ,求f (x ).【解】 (1)令x +1=t ,则x =t -1,由题意得f (t )=3(t -1)+2=3t -1, ∴f (x )=3x -1. (2)∵2f (x )+f (1x)=x ,以1x 代替x 得2f (1x )+f (x )=1x,于是可得⎩⎪⎨⎪⎧2f x +f 1x=x ,2f 1x +f x =1x ,解得f (x )=23x -13x ,∴f (x )=23x -13x.【答案】 (1)f (x )=3x -1 (2)f (x )=23x -13x已知f (x )=⎩⎪⎨⎪⎧x +1,x >0,π,x =0,0,x <0求f (-1),f (f (-1)),f (f (f (-1))).【思路探究】 由f (x )的解析式令x =-1求出f (-1)及f (f (-1))的值,进而求出f (f (f (-1)))的值.【自主解答】 x =-1<0,∴f (-1)=0,f (f -1))=f (0)=π, f (f (f (-1)))=f (π)=π+1.1.给定自变量求函数值时,应根据自变量所在的范围,利用相应的解析式直接求值; 2.若给函数值求自变量,则应根据每一段的解析式分别求解,但应注意要检验求得的值是否在相应的自变量取值范围内.(1)(2012·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )A.15 B .3 C.23 D.139(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1 x ≥0 ,-2x x <0 ,若f (x )=10,则x =________.【解析】 (1)f (3)=23,f (f (3))=f (23)=139.(2)当x ≥0时,f (x )=x 2+1=10,解得x =3或x =-3(舍去); 当x <0时,f (x )=-2x =10,解得x =-5.综上得x =-5或3.【答案】 (1) (2)-5或3忽略变量的实际意义而致误如图2-2-2所示,在矩形ABCD 中,BA =3,CB =4,点P 在AD 上移动,CQ ⊥BP ,Q 为垂足.设BP =x ,CQ =y ,试求y 关于x 的函数表达式,并画出函数的图像.图2-2-2【错解】 由题意得△CQB ∽△BAP ,所以CQ BA =CB BP ,即y 3=4x ,所以y =12x.故所求的函数表达式为y =12x,其图像如图所示.【错因分析】 没有考虑x 的实际意义,扩大了x 的取值范围导致出错.【防范措施】 从实际问题中得到的函数,求其定义域时,不仅要使函数有意义,而且还要使实际问题有意义.【正解】 由题意得△CQB ∽△BAP ,所以CQ BA =CB BP ,即y 3=4x .所以y =12x.因为BA ≤BP ≤BD ,而BA =3,BD =32+42=5,所以3≤x ≤5,故所求的函数表达式为y =12x(3≤x ≤5).如图所示,曲线MN 就是所求的图像.1.一般地,作函数图像主要有三步:列表、描点、连线.作图像时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图像,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.2.求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).3.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.1.某汽车司机看见前方约50米处有行人穿过马路,这时司机开始紧急刹车,在刹车过程中,汽车速度v 是关于刹车时间t 的函数,其图像可能是()【解析】 刹车过程中,汽车速度呈下降趋势,排除选项C ,D ;由于是紧急刹车,则汽车速度下降非常快,则图像较陡,排除选项B ,故选A.【答案】 A2.若f [g (x )]=6x +3,且g (x )=2x +1,则f (x )等于( ) A .3 B .3x C .3x +6 D .6x +3 【解析】 由已知,得f [g (x )]=6x +3 =3(2x +1)=3g (x ), 所以f (x )=3x . 【答案】 B3.已知f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥0,1x,x <0,则f [f (12)]=________.【解析】 f (12)=(12)2-1=-34,故f [f (12)]=f (-34)=1-34=-43.【答案】 -434.2013赛季中国足球超级联赛拉开了大幕.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的首场比赛的门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.【解】 (1)列表法:。
2014高中数学第二章《函数概念》说课教案北师大版必修1
教材分析
一、本课时在教材中的地位及作用
教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。
本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节课《函数概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和依据
二、教学目标
理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
三、重难点分析确定
根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
四、教学基本思路及过程
本节课《函数的概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。
⑴学情分析
一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为
学习函数的现代定义打下了基础。
函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。
⑵教法、学法
1、本节课采用的方法有:
直观教学法、启发教学法、课堂讨论法。
2、采用这些方法的理论依据:我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。
3、学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。
在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
⑶教学过程
(一)创设情景,引入新课
情景1:提供一张表格,把本班中考得分前10名的情况填入表格,
我报名次,学生提供分数。
名次 1 2 3 4 5 6 7 8 9 10
得分
情景2:西康高速汽车的行驶速度为80千米/小时,汽车行驶的距离
y与行驶时间x之间的关系式为:y=80x
情景3:安康市一天24小时内的气温随时间变化图:(图略)
提问(1):这三个例子中都涉及到了几个变化的量?(两个)
提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的
值也随之唯一确定)
提问(3):这样的关系在初中称之为什么?(函数)引出课题
[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。
第一个例子我改成提供给学生一张中考成绩统计单。
是为了创设和学生生活相近的情境,从而引起学
生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。
同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。
这样学生可以从熟悉的情景引入,提高学生的参与程度。
符合学生的认知特点。
(二)探索新知,形成概念
1、引导分析,探求特征
思考:如何用集合的语言来阐述上述三个问题的共同特征?
[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。
这里也是教师作为教学的引导者的体现,及时对学生进行指引。
提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)
[设计意图]引导学生观察,培养观察问题,分析问题的能力。
提问(5):两个集合的元素之间具有怎样的关系?(对应)
及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。
2、抽象归纳,引出概念
提问(6):现在你能从集合角度说说这三个问题的共同点吗?
[设计意图]学生相互讨论,并回答,引出函数的概念。
训练学生的归纳能力。
板书:函数的概念
上述一系列问题,始终倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。
3、探求定义,提出注意
提问(7):你觉得这个定义中应注意哪些问题(两个非空数集,唯一对应等)?
[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。
2、例题剖析,强化概念
例1、判断下列对应是否为函数:
(1);,0,3R x x x
x ∈≠→ (2).,,,2R y N x x y y x ∈∈=→这里
[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。
例2 、(1)1)(-=
x x f ;
(2) y=x-1;
(3)2)1()(-=x x f ; (4)2)1()(-=x x g
[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)
(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。
而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。
例3、试求下列函数的定义域与值域:
(1)}3,2,1,0,1{,1)2()(2-∈+-=x x x f
(2)1)2()(2
+-=x x f
[设计意图]让学体会理解函数的三要素:定义域、值域、对应法则。
4、巩固练习,运用概念
书本练习P25:练习1,2,3。
P28:练习1,2
布置作业:A 组:1、2. B 组1.
5、课堂小结,提升思想
引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。
6、板书设计:借助小黑板,时间的合理分配等(略)
五、教学评价及反思
我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破,教学时间分配合理,为使课堂形式更加丰富,也可将某些问题改成判断题。
在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理。
本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景(结合各学校的硬件条件)。