精密整流电路 分析
- 格式:doc
- 大小:110.00 KB
- 文档页数:5
8种类型精密全波整流电路及详细分析精密全波整流电路是将交流信号转换为直流信号的一种电路。
下面将介绍8种常见的精密全波整流电路及其详细分析:1.整流电阻式整流电路:这种电路通过一个电阻来限制电流,将输入信号的负半周去掉,输出为纯正半周波信号。
该电路简单且成本较低,但效果不稳定,受负载变化的影响较大。
2.桥式全波整流电路:桥式整流电路是将四个二极管按桥形连接,可以实现将输入信号的负半周反向成正半周输出。
该电路具有高效率、稳定性好且抗干扰能力强的优点,被广泛应用。
3.中点整流电路:中点整流电路是将输入信号通过一个变压器分成两路,然后进行整流,再通过滤波电容和稳压电路来获得稳定的直流输出。
该电路具有较好的稳定性和输出质量,但成本较高。
4.高压全波整流电路:高压全波整流电路是在桥式整流电路的基础上加入一个电压倍压电路,用于输出高压直流。
该电路被广泛应用于高压直流电源。
5.隔离型全波整流电路:隔离型全波整流电路是通过一个变压器将输入的交流信号与输出的直流信号进行电气隔离,以提高安全性和抗干扰能力。
6.双绕组全波整流电路:双绕组全波整流电路是通过两个平衡绕组来实现整流,可以提高转换效率和输出质量,适用于高精度和高要求的应用场景。
7.调谐式全波整流电路:调谐式全波整流电路通过一个调谐电路来实现对输入信号波波数的调谐,并通过滤波电路和稳压电路获得稳定的直流输出。
该电路适用于需要对输入信号进行调谐的场景。
8.双向全波整流电路:双向全波整流电路是将输入信号进行整流后得到一个正半周波信号,然后通过一个功率倍增电路产生一个负半周波信号,最后将两者相加得到完整的全波信号,可以提高输出质量和效率。
总之,不同的精密全波整流电路适用于不同的场景,根据具体要求选择合适的电路可以提高输出质量和效率,满足各种应用需求。
精密全波整流电路原理1. 前言全波整流电路是电子电路中比较基础的一种。
它的作用是将交流电转换为直流电,是我们日常生活和工作中经常使用到的电路。
其中较为常见的是精密全波整流电路。
2. 精密全波整流电路的结构精密全波整流电路由变压器、四个二极管和负载组成。
变压器是精密全波整流电路的核心,它将高压的交流电转换为较低的交流电,并且改变了交流电的相位,使接下来的整流更加容易实现。
四个二极管中的两个被称为前紧贴二极管,另外两个被称为后松贴二极管。
前紧贴二极管和后松贴二极管的功用是将交流电从两个方向整流成直流电,并将直流电输出至负载。
负载是整个电路输出的重要组成部分,它可以是灯泡、电流表等等。
3. 精密全波整流电路的工作原理在整个电路中,变压器是起到传递交流电到后面的二极管整流器的一个关键组件。
由于变压器中间部位存在磁流链的作用,使得接收到的交流电的大小得到了大幅度的控制。
从理论上讲,变压器绕组中心的两个点之间的电压是相等的。
第一步:在下半个周期中,输入变压器的交流电为正极极性,经变压器调整后,直接流动到后面的后松贴二极管和负载上。
可以理解成经过变压器调整后,我们得到了负载上的正极直流电流。
第二步:在上半个周期中,输入变压器的交流电为负极极性,经过变压器调整后,就可以直接流动到前紧贴二极管和负载上。
可以理解成经过变压器调整后,我们得到了负载上的负极直流电流。
如此反复进行下去,我们就可以得到在负载上来回流动的直流电。
而这也是精密全波整流电路的主要功用。
简单来说,该电路可以实现在任何情况下,保证负载上的电流是单向的直流电,并且电流稳定。
4. 总结作为一种常用的电子电路,精密全波整流电路有着十分重要的意义。
我们在身边到处都可以看到和用到,比如电灯的光源、计算机系统等等。
精密全波整流电路的实际应用对于节约能源,提升产品效率有着十分重要的作用。
当我们完全理解了电路的结构、原理和工作过程,也更能够灵活运用和改进这个电路。
精密半波、全波整流电路结构原理图解利用二极管(开关器件)的单向导电特性,和放大器的优良放大性能相结合,可做到对输入交变信号(尤其是小幅度的电压信号)进行精密的整流,由此构成精密半波整流电路。
若由此再添加简单电路,即可构成精密全波整流电路。
二极管的导通压降约为0.6V左右,此导通压降又称为二极管门坎电压,意谓着迈过0.6V这个坎,二极管才由断态进入到通态。
常规整流电路中,因整流电压的幅值远远高于二极管的导通压降,几乎可以无视此门坎电压的存在。
但在对小幅度交变信号的处理中,若信号幅度竟然小于0.6V,此时二极管纵然有一身整流的本事,也全然派不上用场了。
在二极管茫然四顾之际,它的帮手——有优良放大性能的运算放大器的适时出现,改变了这种结局,二者一拍即合,小信号精密半波整流电路即将高调登场。
请看图1。
图1 半波精密整流电路及等效电路上图电路,对输入信号的正半波不予理睬,仅对输入信号的负半波进行整流,并倒相后输出。
(1)在输入信号正半周(0~t1时刻),D1导通,D2关断,电路等效为电压跟随器(图中b电路):在D1、D2导通之前,电路处于电压放大倍数极大的开环状态,此时(输入信号的正半波输入期间),微小的输入信号即使放大器输入端变负,二极管D1正偏导通(相当于短接),D2反偏截止(相当于断路),形成电压跟随器模式,因同相端接地,电路变身为跟随地电平的电压跟随器,输出端仍能保持零电位。
(2)在输入信号负半周(t1~t2时刻),D1关断,D2导通,电路等效反相器(图中c电路):在输入信号的负半波期间,(D1、D2导通之前)微小的输入信号即使输出端变正,二极管D1反偏截止,D2正偏导通,形成反相(放大)器的电路模式,对负半波信号进行了倒相输出。
在工作过程中,两只二极管默契配合,一开一关,将输入正半波信号关于门外,维持原输出状态不变;对输入负半波信号则放进门来,帮助其翻了一个跟头(反相)后再送出门去。
两只二极管的精诚协作,再加上运算放大器的优良放大性能,配料充足,做工地道,从而做成了精密半波整流这道“大餐”。
1.第一种得模拟电子书上(第三版442页)介绍得经典电路。
A1用得就是半波整流并且放大两倍,A2用得就是求与电路,达到精密整流得目得。
(R1=R3=R4=R5=2R2)2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2)3.第三种电路仿真效果如下:这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下:当Ui>0得时候电路等效就是这样得放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui当Ui<0得时候电路图等效如下:放大器A就是电压跟随器,放大器B就是加减运算电路式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示4.第四种电路就是要求所有电阻全部相等。
这个仿真相对简单。
电路与仿真效果如下计算方法如下:当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)放大器A构成反向比例电路,uo1=-ui,这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui)注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。
(不知道这么想就是不就是正确得)当Ui<0得时候,D1截止,D2导通,电路图等效如下:这时就需要列方程了Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2带入得到U0=-Ui这个电路在网上找到得,加在这里主要就就是感觉与上一个电路有点像,但就是现在分析了一下,这个就是最经典得电路变形,好处还不清楚。
图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益分析:当Ui>0时,分析各点电压正负关系可知D1截止,D2导通,R1,R2和A1构成了反向比例运算器,增益为-1,R4,R3,R5和A2构成了反向求和电路,通过R4的支路的增益为-1,通过R3支路的增益为-2,等效框图如下:当Ui>0时,最终放大倍数为1,输入阻抗为R1||R4。
当Ui<0时,分析各点电压的正负关系可知,D1导通,D2截止,A1的作用导致R2左端电压钳位在0V ,A2的反馈导致R3右端电压钳位在0V ,所以R2、R3支路两端电位相等,无电流通过,R4,R5和A2构成反向比例运算器,增益为-1,输入阻抗仍为R1||R4。
因此,此电路的输出等于输入的绝对值。
此电路的优点:输入阻抗恒等于R1||R4,输入阻抗低,调节R5可调节此电路的增益大小,在R5上并联电容可实现滤波功能。
此电路适用低频电路,当频率大时,输出电压产生偏移,且输入电压接近0V 时,输出电压失真,二极管的选型也非常重要,需选导通压降大些的。
输入信号小时,也会影响最终输出。
-2-1-1图2优点是匹配电阻少,只要求R1=R2图2 四个二极管型分析:当Ui>0时,根据各点电压正负情况可知D1,D4导通,D2,D3截止,A1的作用导致R2左端电压钳位在0V,R3上无电流通过,所以无压降,Uo=Ui当Ui<0时,根据各点电压正负情况可知D1,D4截止,D2、D3导通,A1为反向比例运算器,增益为-R2/R1,A2为电压跟随器,所以输出电压为Uo=-Ui。
此电路采用两个运放分别处理正电压和负电压的情况,所以R1和R2需配对,否则输入为负电压时电路增益不为1,。
R3阻值不重要,但不能太小,否则输入为负电压时A1需向R3提供较大的电流,该电路的输入阻抗为R1。
当电压过零时,A1,A2的输出电压会发生突变,因此当频率较大时,会影响结果的输出,可选用高速型运放。
精密全波整流电(经典型)
下面的这种精密全波整流电路,由于性能比较优越,被称为经典型。
下面电路中,电阻要满足如下要求R1=R2,R4=R5=2*R3
图1 经典型精密全波整流电路
当输入电压为正时,D1截止,D2导通。
这时R1、R2和U1 共同构成一个放大倍数为-1的反向放大电路。
R3、R4、R5和U2 共同构成了个反向加法电路。
通过电阻R4的支路的放大倍数为-1,通过R3 的支路的放大倍数为-2。
因此,等效的框图可以表示如下。
图2 输入电压为正时的等效框图
可以看出,对于正电压输入,放大倍数为1。
这时输入阻抗为R1||R4。
当输入为负电压时,D1导通,D2截止。
这时U1的作用为将R2的左端电位钳位在0V。
而U2的反馈作用使得R3的右端电位为0。
因此,R2、R3这个支路两端电位相等、没有电流的,实际上是不起任何作用的。
因此,这时整个电路其实就是R4、R5和U2 组成的放大倍数为-1反向放大电路。
此时电路的输入阻抗仍为:R1||R4。
综合上面两种情况,该电路的功能就是将输入信号求绝对值,也就是精密整流功能。
这个电路虽然电阻比较多,但是匹配起来并不麻烦。
输入阻抗恒等于R1||R4,输入阻抗很低。
这些都是它的优点,除此之外,电阻R5上可以并联电容,这样就连带着滤波功能了。
另外,通过改变R5 的大小,就可以改变增益。
由于具有上述的优点,因此大家称之为经典型精密整流电路。
第22卷第3期 河北建筑工程学院学报 V ol.22N o.32004年9月 JOURNA L OF HE BEI I NSTIT UTE OF ARCHITECT URA L E NGI NEERI NG September 2004收稿日期:2004-03-02作者简介:男,1970年生,工程师,张家口市,075000精密整流电路的分析与应用景海云张家口煤矿机械有限公司摘 要 详细论述了精密整流电路的工作原理,并对其如何提高精度、克服非线性误差加以分析,最后具体介绍了它在矿用真空电磁起动器信号采样回路中的实际应用.关键词 精密整流电路;非线性;精度;采样回路中图号 T U9810 引 言近年来,随着大规模集成电路技术的日益成熟,单片机以其高可靠性,广泛应用于工业控制系统的各个领域.在工业控制过程中,计算机系统对被控对象的测试和对控制条件检测的准确与否,信号采样,它决定系统控制的成败.如何处理采样进来的交流输入信号,使其准确反映外部设备的运行情况,整流电路的精度起着至关重要的作用.1 精密整流电路的分析1.1 精密整流电路克服线性差的分析二极管具有单向导电性,它是最常用的整流元件.由它可以构成许多整流电路如,半波整流、全波整流、桥式整流等,这是大家所熟知的.但二极管的非线性将产生相当大的误差,特别是当信号幅度小于二极管的死区电压时,问题尤其严重,因此说由二极管构成的整流电路精度较低.为了提高精度,可以用运算放大器来组成整流电路,利用集成运放的放大作用和深度负反馈克服二极管非线性造成的误差.图1就是由运算放大器组成的半波精密整流电路.下面分析一下电路的工作情况:(1)当U I <0时,集成运放的输出电压U A >0,二极管V 1截止,V 2导通,集成运放工作在深度负反馈,此时这个电路相当于一个放大倍数为1的反比例电路,因此有:U o =-R f U I /R 1=-U I(2)当U I >0时,集成运放的输出电压U A <0,二极管D 1导通,D 2截止,U A ≈-0.7V ,其输出电压U o =0(因集成运放反相输入端为虚地).在这个过程中集成运放也处于深反馈状态,其反馈电阻很小(为防止放大器负向饱和),这样当输入信号极性变化后,可使输出电压极性加速转换.那么精密整流电路是如何克服线性差问题的呢?在图1电路中,如果D 2是一个理想二极管(导通时电压降为零、截止时反向电流为零),无疑这个电路一定具有理想的整流特性,但是理想二极管是不存在的,D 2只是一个普通二极管,弱信号时(其幅值U im 与二极管的死区电压相差不大,甚至更小的电压),D 2阳极电压U A ,如与输入电压|U I |相等(假设放大器A uf =-1),则D 2的阴极电压一定低于这个值,这时放大器反馈减弱,即X f (反馈量)变小,在X i (输入量)不变的情况下,X O =A (X i -X f )增大(其中A 是放大器的开环放大倍数)。
精密半波整流电路一、概述精密半波整流电路是一种常用的电源电路,其主要作用是将交流电转换为直流电。
在精密测量、仪器仪表等领域中,精密半波整流电路被广泛应用。
本文将对精密半波整流电路进行详细的介绍和分析。
二、工作原理精密半波整流电路由变压器、二极管、滤波电容等组成。
当输入交流电通过变压器后,经过二极管的单向导通后,输出的直流信号经过滤波电容后可以获得稳定的直流输出。
三、设计要点1. 选择合适的变压器在设计精密半波整流电路时,需要选择合适的变压器。
变压器应具有良好的性能和稳定性,能够提供所需的输出功率,并且具有较高的转换效率。
2. 选择合适的二极管在选择二极管时,需要考虑其正向导通特性和反向击穿特性。
应该选择正向导通特性好、反向击穿特性强的二极管。
3. 设计合适的滤波电容滤波电容对于稳定输出电压至关重要。
应该选择容值适当、工作电压高、漏电流小的滤波电容。
4. 保证输出负载稳定为了保证输出负载的稳定性,可以采用稳压二极管、调节管等元件进行调节,以确保输出电压不会随着负载变化而发生明显的波动。
四、常见问题及解决方法1. 输出电压波动较大可能是因为滤波电容容值过小或者漏电流较大导致的。
可以通过增加滤波电容或更换更好的滤波电容来解决这个问题。
2. 输出功率不足可能是因为变压器选择不合适或者二极管承受不了高功率导致的。
可以通过更换合适的变压器或者使用承受更高功率的二极管来解决这个问题。
3. 温度过高可能是因为二极管工作时产生大量热量导致的。
可以通过改善散热条件或者使用承受高温的元件来解决这个问题。
五、总结精密半波整流电路是一种常用的电源电路,其设计需要考虑多方面因素,包括变压器、二极管、滤波电容等。
在实际应用中,可能会出现输出电压波动、输出功率不足、温度过高等问题,需要根据具体情况进行相应的解决方法。
精密半波整流电路精密半波整流电路是一种常见的电子电路,用于将交流电转化为直流电。
在这篇文章中,我将详细介绍精密半波整流电路的原理、特点和应用。
一、原理精密半波整流电路利用二极管的单向导电性质,将交流电信号的负半周部分切除,只保留正半周部分,从而实现直流电的输出。
它由一个二极管和一个负载电阻组成,二极管的正极接入交流电源,负极接入负载电阻,负载电阻的另一端接地。
当交流电为正半周时,二极管导通,电流经过负载电阻到达地;当交流电为负半周时,二极管截止,电流无法通过,负载电阻处于断开状态。
二、特点1. 精密半波整流电路具有简单的结构,只需要一个二极管和一个负载电阻即可实现整流功能。
2. 由于只有一个二极管的压降损耗,精密半波整流电路的效率较高,能够更好地转化电能。
3. 精密半波整流电路对输入电压的变化较为敏感,能够实时响应并输出相应的直流电压。
4. 由于只有一个二极管的导通损耗,精密半波整流电路的输出电压波动较小,能够提供稳定的直流电源。
5. 精密半波整流电路适用于对直流电压要求较高的场合,如精密仪器、电子设备等。
三、应用精密半波整流电路在实际应用中有着广泛的用途。
1. 在电子测量设备中,精密半波整流电路常用于电压测量、电流测量等功能模块,能够提供稳定的直流电源,保证测量结果的准确性。
2. 在通信设备中,精密半波整流电路常用于电源模块,为其他电路提供稳定的直流电源,保证通信设备的正常工作。
3. 在工业自动化控制系统中,精密半波整流电路常用于电流驱动模块,能够将交流电转化为直流电,为电动机、执行器等提供稳定的驱动电源。
4. 在电子制造业中,精密半波整流电路常用于电源供应模块,能够为电路板、芯片等提供稳定的工作电压,保证产品的质量和可靠性。
总结:精密半波整流电路是一种常见的电子电路,通过利用二极管的单向导电性质,将交流电转化为直流电。
它具有简单的结构、高效率、稳定的输出电压等特点,适用于对直流电压要求较高的场合。
精密全波整流电路实验报告精密全波整流电路实验报告引言:在现代电子技术领域中,电源是各种电子设备的核心组成部分。
而精密全波整流电路作为一种常用的电源设计方案,具有高效、稳定和低噪声等优点,被广泛应用于各种电子设备中。
本实验旨在通过构建精密全波整流电路,并对其进行性能测试,以验证其在电源设计中的实际应用价值。
一、实验背景精密全波整流电路是一种将交流电转换为直流电的电路,其主要由变压器、整流桥、滤波电容和负载电阻等组成。
其工作原理是通过变压器将输入的交流电转换为相应的低电压交流信号,然后通过整流桥将交流信号转换为直流信号,最后通过滤波电容去除残留的交流成分,使得输出电压稳定在所需的直流电压值。
二、实验器材1. 变压器:用于将输入的高电压交流信号转换为低电压交流信号。
2. 整流桥:用于将交流信号转换为直流信号。
3. 滤波电容:用于去除直流信号中的残留交流成分。
4. 负载电阻:用于模拟实际电子设备的负载情况。
5. 示波器:用于测量电路中各个节点的电压波形。
三、实验步骤1. 按照电路图连接实验所需的电路元件,确保连接正确可靠。
2. 将示波器的探头连接到整流桥输出端,通过示波器观察输出电压波形。
3. 调节变压器的输入电压,观察输出电压波形的变化情况。
4. 测量并记录不同输入电压下的输出电压和负载电流数据。
5. 分析实验数据,评估精密全波整流电路的性能指标。
四、实验结果与分析通过实验测量,我们得到了不同输入电压下的输出电压和负载电流数据。
根据这些数据,我们可以计算出精密全波整流电路的效率、纹波系数和稳压系数等性能指标。
1. 效率:通过计算输出功率和输入功率的比值,可以得到精密全波整流电路的效率。
效率越高,说明电路的能量转换效率越好。
我们可以通过调节变压器的输入电压,观察输出功率和输入功率的变化情况,进而评估电路的效率。
2. 纹波系数:纹波系数是评估电路输出电压稳定性的重要指标。
通过观察输出电压波形的纹波情况,可以初步判断电路的纹波系数。
超经典的精密整流电路分析
在常用的电源电路中,我们经常用普通的二极管,比如:4001到4007等二极管整流,但是,在一些整流电压比较小的场合中,这样做是比较不妥的。
这是因为普通的二极管整流电路,失真比较大,传输的效率比较低。
而且要求输入信号的幅度大于二极管的阈电压(锗管为0.2V,而硅管竟然达到了0.7V!真是可怕)。
所以整流的灵敏度和精度都不是很高,电压损耗相当的大。
这里介绍一种网上常见的一种用集成运放和二极管构成的整流电路,可以克服二极管整流电路的缺点。
在输入信号小于0.2V的时候也能进行线性整流滤波,其精度和效率大大提高。
电路如下:
如图是反相精密整流检波电路,当Vi大于零时,我们知道,运放的输出V0小于0,二极管D1导通,D2截止。
输出电路V0为零;当V1小于0时,Voa大于零,D1截止,D2导通,V0=(-R1/R2)*V1,实现了半波整流。
经理分析可得:Vi小于零时,且幅度值很小的时候,输出电压为:
V0=(-(R2V1/(R2+R1)-Vd/Avd))/(1/Avd+Fv)
当反馈系统Fv远大于1/Avd时,则:
V0=-R1*V2/R1-Vd/(Avd*Fv)(Vi小于零)
上式右边的第一项为理想整流电路的输出电压;第二项为二极管D2的正向压降VD所引起的整流电路的死区电压。
当运放的开环增益Avd无穷大,开环增益很大时,第二项可以忽略不计。
可见,当输入信号电压很小的时候(甚至可以达到微伏级),电压仍然可以进行线性的整流,何乐而不为?当然,这个电路也有它的缺点,就是输入信号的工作频率受集成电路带宽和上升速率的限制。
精密整流电路实验报告精密整流电路实验报告引言:精密整流电路是一种常见的电子电路,用于将交流电转换为直流电。
本实验旨在通过搭建精密整流电路并进行实际测量,验证其性能和稳定性,并对其工作原理进行深入分析。
一、实验背景精密整流电路是电子设备中常用的电源电路之一。
在许多应用场景中,需要将交流电转换为直流电以供电子设备使用。
精密整流电路采用了特定的电子元件和电路设计,能够有效地将交流电转换为稳定的直流电,并提供给设备所需的电流和电压。
二、实验材料和装置1. 电源:交流电源2. 元件:二极管、电阻、电容等3. 仪器:示波器、万用表等三、实验步骤1. 搭建电路:根据实验要求,搭建精密整流电路,包括二极管桥整流电路、滤波电路和稳压电路等。
2. 连接电源:将交流电源连接到电路中,确保电路正常工作。
3. 实际测量:使用示波器和万用表等仪器,对电路的输入电压、输出电压、电流等进行实际测量。
4. 记录数据:将测量到的数据记录下来,并进行分析和比较。
四、实验结果与分析通过实际测量,我们得到了精密整流电路的输入电压、输出电压和电流等数据。
根据这些数据,我们可以对电路的性能进行分析和评估。
1. 整流效果:通过观察示波器上的波形,我们可以发现交流电经过整流电路后,波形变为了单向的直流信号。
这表明整流电路能够有效地将交流电转换为直流电。
2. 稳定性:通过比较输入电压和输出电压的稳定性,我们可以评估整流电路的稳定性。
如果输出电压能够在输入电压的变化范围内保持相对稳定,那么可以认为整流电路具有较好的稳定性。
3. 波纹系数:波纹系数是评估整流电路输出电压稳定性的重要指标。
通过计算输出电压的峰峰值和平均值之间的差异,可以得到波纹系数。
波纹系数越小,说明整流电路输出电压的稳定性越好。
五、实验总结通过本次实验,我们成功搭建了精密整流电路,并进行了实际测量和分析。
通过对实验结果的总结和分析,我们可以得出以下结论:1. 精密整流电路能够有效地将交流电转换为直流电,并提供给设备所需的电流和电压。
精密整流电路
把交流电变为单向脉动电,称为整流,若能把微弱的交流电转换成单向脉动电,则称为精密整流或精密检波,此电路必须由精密二极管(由运放和二极管组成)来实现。
一. 精密二极管电路
1. 普通二极管整流存在的问题:见图8.4.1
Δ有死区电压S i管为0.5V,小信号时呈指数关系,见图(a) U o=U i-U D,即0<U i<U D,二极管截止,U-o=0,故小信号整流(或称检波)误差答,甚至无法工作。
2. 精密整流二极管电路见图8.4.2
Δ二极管D接在电压跟随器反馈支路中
ΔD导通时,(开环增益)
与上面普通二极管导通时U o=U i-U D相比,U D的影响减小到
如果死区电压U D=0.5V,则,可见U i’只要大于5μV使D导通,就有输出。
Δ工作原理分析见图(b)传输特性。
当U i>0,U o’>0,D通i L>0,U o=U i
当U i<0,U o’<0,D止i L=0,U o=0
二. 精密半波正路电路见图8.4.3
U i>0,U A<0,D2通,D1止,R1为D2提供电路,R f中无电流流过,U o=0
U i<0,U A>0,D1通,D2止,
三. 精密全波整流(绝对值电路) 见图8.4.4
ΔA1为半波精密整流
U i>0,U A<0,D1通,D2止,U o1= -2U i
U i<0,U A>0,D1止,D2通,U o1=0
ΔA2为反相求和:U o= -(U i+U o1)。
精密整流电路原理精密整流电路是一种能够将交流电信号转换为直流电信号的电路。
它常用于需要高精度直流电源的应用中,如精密测量仪器、医疗设备、通信设备等。
本文将从整流电路的基本原理、构成要素、工作过程以及应用领域等方面进行介绍。
一、整流电路的基本原理整流电路的基本原理是利用非线性元件的导通特性,将交流电信号转换为直流电信号。
最常用的整流元件是二极管,其具有单向导通的特性。
当二极管的正向电压大于其截止电压时,电流可以通过;而当反向电压大于截止电压时,二极管处于截止状态,电流无法通过。
二、整流电路的构成要素一个简单的整流电路由电源、整流元件和负载组成。
电源可以是交流电源,也可以是直流电源;整流元件通常为二极管,其可以单独使用,也可以与其他元件组合使用,如滤波电容、电感等;负载就是整流电路输出的直流电信号所连接的设备或电路。
三、整流电路的工作过程当交流电信号通过整流电路时,根据二极管的导通特性,只有交流电信号的正半周能够通过二极管,而负半周则被截断。
这样,在负载上就可以得到一个由正半周构成的直流电信号。
然而,由于二极管的导通特性,整流电路输出的直流电信号并不是纯净的直流信号,其中可能会包含一定的交流成分。
因此,为了去除这些交流成分,常常需要在整流电路中添加滤波电容或电感来进行滤波处理。
四、整流电路的应用领域精密整流电路由于其高精度、稳定性好的特点,被广泛应用于各种需要高质量直流电源的场合。
例如,在精密测量仪器中,需要稳定的直流电源来提供精确的电信号;在医疗设备中,需要高精度的直流电源来保证设备的安全可靠性;在通信设备中,需要稳定的直流电源来提供可靠的通信信号等。
精密整流电路是一种能够将交流电信号转换为直流电信号的电路。
它利用非线性元件的导通特性,在整流元件的作用下,将交流电信号转换为直流电信号,并通过滤波电路去除交流成分。
精密整流电路具有高精度、稳定性好的特点,被广泛应用于精密测量仪器、医疗设备、通信设备等领域。
再说运放电路之三——精细整流器电路的原理与检测3、精细正、负半波整流器和全波整流器电路:(1)精细整流电路的几种电路形式和特点:精细正、负半波整流器和全波整流器电路,仍旧处于放大器的范畴以内,还是利用运算放大器的线性放大作用,来提高整流信号的精度(往往同时也具有信号放大作用)。
由电流互感器来的交流电压信号,要经后续半波或全波整流电路整流成直流电压后,再送入MCU,供电流显示和控制之用。
精细半波或全波整流电路用于交流电压信号的处理和放大。
由二极管组成的普通整流电路,存在整流输出非线性、有一定的“门坎电压”——整流死区电压等缺点,对小于0.6V的输入电压是无能为力的。
而采用运算放大器组成的半波或全波的精细整流电路,则克服了以上缺点,构成了近于理想的整流电路,对于μV级输入交流信号,都能开展不失真的整流输出。
利用运算放大器的放大作用和二极管的单向导电特性,将整流二极管置于负反应环路中,实现对输入正、负半波信号引入不同深度的负反应,可以对输入μV级信号开展整密整流。
下列图1中精细半波、全波整流电路(电压增益为1),是电压增益为1的电路,将输入交流电压信号开展精细整流后输出。
a电路为负半波精细整流电路。
在输入信号Vin>0期间:Vin幅度很小时,二极管D1、D2尚未导通,放大器处于开环放大状态,经反相放大后为负值,二极管D2反偏截止,D1正偏导通;D1的导通为放大器引入了深度负反应,由放大器的“虚地”特性可知,放大器反相输入端2脚电位为0V,放大器输出端1脚的电位约为-0.6V。
换个角度看,D1的导通,将1脚电位钳位于-0.6V 的D1正向导通压降上。
二极管D1一直截止状态,输出电压Vout=0V;在输入信号Vin<0期间:Vin幅度很小时,放大器也处于开环放大状态,且输出电压为正值,只要输出电压>0.6V,二极管D2就会正偏导通,而D1处于截止状态;D2导通后和反应电阻R2串联,为放大器引入了适度的负反应,放大器此时的工作状态同普通的反相放大器一样,起到对负半波输入信号的线性放大作用,其放大倍数取决于R2、R1的比值。
精密整流电路原理精密整流电路是一种常用的电子电路,用于将交流电转换为直流电。
它在电源供电、电子设备和通信系统中具有广泛的应用。
本文将介绍精密整流电路的原理和工作方式。
一、精密整流电路的原理精密整流电路基于半导体元件的特性,利用二极管的单向导电性来实现电流的整流。
在精密整流电路中,二极管起到关键作用,因为它能够让电流只能从正向流动,而阻止反向电流的通过。
二、精密整流电路的工作方式精密整流电路通常由二极管和滤波电容组成。
当交流电输入电路时,正半周的电流通过二极管,而负半周的电流则被阻止。
这样,输出电流就成了一个大致为正的直流电。
为了提高整流电路的效率和稳定性,还可以在精密整流电路中添加一些辅助元件,如电感、稳压二极管等。
电感能够平滑输出电流,减小纹波电压的幅度;稳压二极管则能够保持输出电压的稳定性。
三、精密整流电路的优点精密整流电路具有以下几个优点:1. 高效性:精密整流电路能够将交流电转换为直流电,提供稳定的电源供应,提高电路的效率。
2. 稳定性:通过添加辅助元件,如电感和稳压二极管,精密整流电路可以消除纹波电压,保持输出电压的稳定性。
3. 可靠性:精密整流电路采用半导体元件,具有较长的寿命和可靠性。
4. 简单性:精密整流电路结构简单,组成元件少,易于实现和维护。
四、精密整流电路的应用精密整流电路广泛应用于各种电子设备和通信系统中。
它可以用于电源供电,为电子设备提供稳定的直流电源。
同时,精密整流电路还可以用于电池充电、电动车充电桩等领域。
在通信系统中,精密整流电路可以用于直流电源的供应,保证通信设备的正常运行。
此外,精密整流电路还可以用于电力系统中的变流器、逆变器等电气设备。
总结:精密整流电路是一种常用的电子电路,通过利用二极管的单向导电性,将交流电转换为直流电。
它具有高效性、稳定性、可靠性和简单性等优点,在电源供电、电子设备和通信系统中有着广泛的应用。
通过添加辅助元件,如电感和稳压二极管,可以进一步提高整流电路的性能。
1.第一种的模拟电子书上(第三版442页)介绍的经典电路。
A1用的是半波整流并且放大两倍,A2用的是求和电路,达到精密整流的目的。
(R1=R3=R4=R5=2R2)2.第二种方法看起来比较简单A1是半波整流电路,是负半轴有输出,A2的电压跟随器的变形,正半轴有输出,这样分别对正负半轴的交流电进行整流!(R1=R2)3.第三种电路仿真效果如下:这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下:当Ui>0的时候电路等效是这样的放大器A是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui放大器B是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui当Ui<0的时候电路图等效如下:放大器A是电压跟随器,放大器B是加减运算电路式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示4.第四种电路是要求所有电阻全部相等。
这个仿真相对简单。
电路和仿真效果如下计算方法如下:当Ui>0时,D1导通,D2截止(如果真是不清楚为什么是这样分析,可以参照模拟电子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)放大器A构成反向比例电路,uo1=-ui,这时在放大器B的部分构成加减运算电路,uo2=-uo1=-(-ui)注意:这里放大器B的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。
(不知道这么想是不是正确的)当Ui<0的时候,D1截止,D2导通,电路图等效如下:这时就需要列方程了Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2带入得到U0=-Ui这个电路在网上找到的,加在这里主要就是感觉和上一个电路有点像,但是现在分析了一下,这个是最经典的电路变形,好处还不清楚。
经典型精密整流电路的电路分析
对于A1 ,其电路可简化为:
当Ui为正时,Vo2 = Ad * (-Ui) ,则D1截止,D2导通,等效电路为:
上图仅仅比反相放大器多了一个D2二极管,这个二极管最多是使运放增加了数值等于VD 的输出失调电压,接成闭环后,可以忽略不计,故:
Vo1 = - R2/R1 *Ui
当R2=R1时,Vo1=-Ui。
当Ui为负时,Vo1==0;
看图可知,A2是反相加法器,将输入的信号和第1个运放输出的信号叠加并反相,从而可以得到波形全为正的半正弦波信号,既整流信号。
可以调节电阻使加法器的放大倍数为1
根据虚短,Vn2=0
根据虚断,Vo1/R3 + Ui/R4 = -Uo/R5
当Ui为正时,Vo1=-Ui,Uo= -Ui*R5(1/R4 – 1/R3) ,取R5=R4=2R3 U0=Ui
当Ui为负时,Vo1==0;Uo = R5/R4 |Ui|;取R5=R4=2R3 ,U0=|Ui|
后续电路上加大电容,就可以得到脉动直流。
四个二极管型精密整流电路分析
当Ui为正时,Vo1 = Ad1 * (-Ui) ,Vo2 = Ad * (Ui) ,则D1导通,D2截止,D3截止,D4导通,等效电路为:
由A2决定,U0=Ui
当Ui为负时,Vo1 = Ad1 * (-Ui) ,Vo2 = Ad * (Ui) ,则D1截止,D2导通,D3导通,D4截止,等效电路为:
由A1决定,二极管D2是使运放增加了数值等于VD的输出失调电压,接成闭环后,可以忽略不计,故:
Vo = - R2/R1 *Ui
当R2=R1时,Vo1=-Ui = | Ui |。
后续接上电容,就可得到脉动直流
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。