spss 信度分析
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
SPSS信度分析和效度分析SPSS是一种常用的统计分析软件,被广泛用于统计学和社会科学领域的数据分析。
在进行数据分析之前,需要对数据进行信度分析和效度分析,以确保数据的可靠性和有效性。
1. 信度分析(Reliability Analysis)信度分析是指通过测量工具或问卷的内部一致性来评估测量工具或问卷的信度。
信度分析的目的是确定测量工具或问卷的测量结果的一致性和稳定性。
SPSS提供了多种方法来进行信度分析,包括Cronbach's alpha系数、Kuder-Richardson系数、Split-Half法等。
最常用的信度分析方法是Cronbach's alpha系数,该系数用于评估内部一致性。
Cronbach's alpha系数的取值范围为0到1,越接近1表示测量工具或问卷的信度越高。
通常认为,Cronbach's alpha系数大于0.7即表示测量工具或问卷具有较好的信度。
在SPSS中进行Cronbach'salpha系数的计算非常简单,只需要选择“Analyze”菜单下的“Scale”选项。
使用SPSS进行信度分析的步骤如下:1)打开SPSS软件并导入数据。
2)选择“Analyze”菜单下的“Scale”选项。
3)将要分析的变量添加到右侧的“Variables”列表中。
4)点击“Statistics”按钮,选择“Scale if item deleted”选项,以获得分别删除每个项目后的信度系数。
5)点击“Continue”按钮。
6)点击“OK”按钮,即可得到Cronbach's alpha系数的结果。
根据Cronbach's alpha系数的值,可以确定测量工具或问卷的内部一致性。
2. 效度分析(Validity Analysis)效度分析是指通过比较测量工具或问卷的的测量结果与其所要测量的概念之间的关系来评估测量工具或问卷的效度。
信度分析1、作用信度分析主要用来考察问卷中量表所测结果的稳定性以及一致性,即用于检验问卷中量表样本是否可靠可信。
量表题型就是问题的选项,是分陈述等级进行设置的。
比如我们对手机的喜爱从非常喜欢到不喜欢这个程度的变化。
在量表里面最出名的就是李克特 5 级量表,在这种量表的选项里面主要是分为'非常同意'、'同意'、'不一定'、'不同意'、'非常不同意'五种回答,分别记为 5、4、3、2、1。
2、输入输出描述输入:至少两项或以上的定量变量或有序的定类变量,一般要求数据为量表数据。
输出:收集问卷量表的信度是否可靠。
3、案例示例案例:测量收集到的现有的一个由 12 个量表题客户满意度量表,测量是否结果可靠。
4、案例数据5、案例操作Step1:新建项目;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;Step4:选择【信度分析】;Step5:查看对应的数据数据格式,【信度分析】要求输入数据为放入 [定量] 或有序的 [定类] 自变量 X (变量数≥2);Step6:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:Cronbach’s α系数表图表说明:上表展示了模型的 Cronbach's α系数的结果,包括 Cronbach α系数值、标准化 Cronbach α系数值、项数、样本数,用于测量数据的信度质量水平。
➢Cronbach's α系数值:评价收集的数据是否真实可靠,据此排查出题不合理或胡乱作答。
➢标准化Cronbach's α系数值:标准化是为了转化不同分值的量表进行统一度量,在量纲不一致的时候,例如5分制和10分值的量表在一起分析需要做标准化,可以使用。
➢项数:参与信度分析计算的变量数。
结果分析:模型的 Cronbach’s α系数值为 0.607,说明该问卷的信度还可以接受。
spss信度分析SPSS信度分析在社会科学研究领域中,信度是指测量工具或问卷的稳定性和可靠性。
信度分析是通过统计方法来评估研究工具的测量精度,从而确定测量结果的可靠程度。
SPSS(统计包括计算机科学)是一款常用的统计分析软件,提供了多种方法来进行信度分析。
本文将介绍SPSS中常用的信度分析方法及其应用。
一、信度分析的概念信度是指测量工具或问卷在不同测量时间、不同测量者或不同评分方式下,得到相似结果的能力。
在社会科学研究中,一个测量工具如果具有较高的信度,意味着在重复使用时,可以得到稳定一致的结果。
因此,信度是保证研究结果可靠性的重要指标之一。
二、常用的信度分析方法在SPSS中,常用的信度分析方法有内部一致性信度分析和重测信度分析。
1. 内部一致性信度分析内部一致性信度分析是通过评估问卷或测量工具中各项指标之间的相关性来确定测量工具的一致性和稳定性。
常用的内部一致性信度分析方法包括Cronbach's α系数和因子分析。
Cronbach's α系数是评估测量工具内部一致性的常用指标,该系数介于0和1之间,数值越大代表测量工具的一致性越高。
在SPSS 中,可以通过计算Cronbach's α系数来评估测量工具的内部一致性。
因子分析是一种用于确定多个变量之间相关性的分析方法。
在信度分析中,也可以通过因子分析来评估测量工具的内部一致性。
通过因子分析,可以确定测量工具中的几个主要因素,从而评估测量工具的一致性。
2. 重测信度分析重测信度分析是通过对同一受试者在不同时间点进行重复测量,来评估测量工具的稳定性和可靠性。
常用的重测信度分析方法包括相关系数和可信度系数。
相关系数是一种用于测量两个变量之间相关性的指标。
在重测信度分析中,可以通过计算同一受试者在不同时间点的测量结果之间的相关系数,来评估测量工具的重测信度。
可信度系数是一种评估测量工具重复使用的一致性和稳定性的指标。
在SPSS中,可以通过计算可信度系数来评估测量工具的重测信度。
SPSS测量问卷信效度分析一、信度分析信度指的是测量结果的一致性、稳定性和可靠性。
换句话说,如果使用同一份问卷对同一批被试者在不同时间进行测量,或者由不同的研究者进行测量,得到的结果应该是相似的。
信度主要包括以下几种类型:1、重测信度重测信度是在不同时间对同一组被试者使用同一份问卷进行重复测量,然后计算两次测量结果之间的相关性。
如果相关性较高,说明问卷具有较好的重测信度。
然而,这种方法在实际操作中可能会受到一些因素的影响,比如被试者在两次测量之间的记忆、经历的变化等。
2、复本信度复本信度是使用两个内容、形式和难度等方面都相似的问卷(即复本)对同一组被试者进行测量,然后计算两个复本测量结果之间的相关性。
但编制高质量的复本问卷往往具有一定的难度。
3、内部一致性信度内部一致性信度是目前最常用的信度评估方法之一,其中最常见的是克朗巴哈α系数(Cronbach's Alpha)。
α系数的值介于 0 到 1 之间,一般认为α系数大于 07 表示问卷具有较好的内部一致性信度。
在 SPSS 中,计算克朗巴哈α系数的步骤如下:首先,将问卷数据录入 SPSS 软件。
然后,选择“分析” “度量” “可靠性分析”。
将需要分析的变量选入“项目”框中,点击“确定”即可得到克朗巴哈α系数的值。
二、效度分析效度指的是测量工具能够准确测量出所要测量的概念或特质的程度。
效度主要包括以下几种类型:1、内容效度内容效度是指问卷的内容是否能够涵盖研究主题的各个方面。
评估内容效度通常需要依靠专家的判断和经验。
2、效标关联效度效标关联效度是通过考察问卷得分与某个外在效标(如已经被证明有效的测量工具或实际行为表现)之间的相关性来评估效度。
如果相关性较高,则说明问卷具有较好的效标关联效度。
3、结构效度结构效度是通过检验问卷所测量的潜在结构与理论预期的结构是否一致来评估效度。
常见的方法有因子分析。
在 SPSS 中,可以使用因子分析来评估结构效度。
SPSS信度效度分析讲述SPSS是一款广泛应用于社会科学研究的统计分析软件,它可以进行信度和效度分析,以确保研究工具的稳定性和有效性。
下面将详细介绍SPSS中的信度和效度分析。
一、信度分析:信度是指研究工具(问卷、测验、量表等)在不同场景下的一致性和稳定性。
信度分析用于评估研究工具的测量误差,即工具所测量的内容与实际内容的一致程度。
常用的信度分析方法有内部一致性信度分析、平行性信度分析和稳定性信度分析。
1.内部一致性信度分析:内部一致性信度是指同一个测量工具中各项之间的相关程度。
一般使用Cronbach's Alpha系数来进行内部一致性信度分析,该系数的取值范围为0到1,数值越大表示工具的内部一致性越好。
SPSS软件可以计算Cronbach's Alpha系数,使用“Analyze- Scale- Reliability Analysis”菜单进入信度分析界面。
2.平行性信度分析:平行性信度是指两个工具(或两组题目)测量相同或类似内容时的一致性。
主要通过确定两个工具的相关系数来评估平行性信度。
在SPSS中,可以使用Pearson相关系数或Spearman相关系数来分析工具之间的平行性。
3.稳定性信度分析:稳定性信度是指同一个测量工具在不同时间或条件下的一致性。
一般使用重测法或分半法来进行稳定性信度分析。
重测法是在不同时间对同一样本进行两次测量,然后计算测量结果之间的相关系数。
分半法是将同一份问卷随机分成两部分,计算两部分得分之间的相关性。
在SPSS中,可以使用相关系数来计算稳定性信度。
二、效度分析:效度是指所使用的测量工具是否能真实、准确地反映研究对象的特征、状态或情况。
效度分析用于评估工具的有效性和准确性,常用的效度分析方法有内容效度分析、构效效度分析、判别效度分析和相关效度分析。
1.内容效度分析:内容效度是指测量工具能否涵盖所要评估的特征或特性。
通过专家评估来确定测量工具的内容效度,专家根据其领域知识和经验,对测量工具的题目进行评价和修改。
SPSS测量问卷信效度分析在社会科学研究中,问卷调查是一种常用的数据收集方法。
为了确保测量工具的有效性和可靠性,我们需要进行信效度分析。
本文将介绍如何使用SPSS软件对问卷进行信效度分析的步骤和方法。
一、信度分析信度是指测量工具在不同时间点或者多个观察者之间的一致性和稳定性。
常用的信度检验方法有重测法、分半法和内部一致性法。
在SPSS中,我们可以使用Cronbach's Alpha系数来计算问卷的内部一致性。
1. 导入数据首先,将收集到的问卷数据导入SPSS软件中。
确保每个问题都用不同的变量来表示,并且每个被试者的数据都在一行中。
2. 创建变量在菜单栏中选择"变量视图",然后逐个输入每个问题的变量名和相关信息,比如问题的编号、内容和选项。
3. 计算Cronbach's Alpha系数在菜单栏中选择"分析" - "计算变量" - "反向",对需要反向计分的问题进行操作。
然后,在菜单栏中选择"数据" - "描述性统计" - "可信度分析",选择需要进行信度分析的变量,然后点击"统计值",选择"Cronbach's Alpha系数"并点击"确定"。
Cronbach's Alpha系数的取值范围为0到1,数值越大表示问卷的内部一致性越高。
通常,如果Cronbach's Alpha系数大于0.7,可以认为问卷具有较好的内部一致性。
二、效度分析效度是指问卷是否能够真实地反映出所要测量的概念或者特征。
常用的效度检验方法包括内容效度、构效度和准则效度。
在SPSS中,我们可以通过因子分析和相关系数来进行效度分析。
1. 因子分析因子分析可以用来确定问卷中的维度或者潜在变量。
在菜单栏中选择"分析" - "数据降维" - "因子",选择需要进行因子分析的变量,然后点击"提取",选择主成分分析或者最大似然法,并选择因子的数量。
spss信度分析标准SPSS信度分析标准。
信度分析是统计学中非常重要的一部分,它用来评估测量工具的稳定性和一致性。
在实际的研究工作中,我们经常会使用SPSS软件进行信度分析,以确保我们的研究结果是可靠和有效的。
本文将介绍SPSS中信度分析的标准,帮助大家更好地理解和运用信度分析。
首先,我们需要明确信度分析的概念。
信度是指测量工具在不同时间、不同情境下的一致性和稳定性程度。
在实际研究中,我们希望我们的测量工具能够产生一致的结果,而不会因为环境或者其他因素的变化而导致结果的不稳定。
因此,信度分析是非常重要的,它可以帮助我们评估我们的测量工具是否可靠。
在SPSS中进行信度分析时,我们通常会使用Cronbach's Alpha系数来评估内部一致性。
Cronbach's Alpha系数的取值范围在0到1之间,一般来说,取值越接近1,表示测量工具的信度越高。
通常来说,0.7以上的Cronbach's Alpha系数被认为是可接受的,而0.8以上则被认为是非常理想的。
除了Cronbach's Alpha系数,我们还可以使用Kuder-Richardson系数来评估测量工具的信度。
Kuder-Richardson系数适用于二分法测量工具,它的计算方式和Cronbach's Alpha系数有所不同,但是其含义和解释方式是类似的。
在SPSS中,我们可以很方便地计算出Kuder-Richardson系数,以帮助我们评估测量工具的信度。
除了内部一致性,信度分析还可以包括测试-重测信度和跨评者信度。
测试-重测信度用来评估同一测量工具在不同时间下的一致性,而跨评者信度用来评估不同评价者在同一测量工具下的一致性。
在SPSS中,我们可以使用Intraclass Correlation Coefficient(ICC)来进行测试-重测信度和跨评者信度的分析。
总的来说,SPSS提供了丰富的工具和方法来进行信度分析,帮助我们评估测量工具的可靠性和一致性。
如何使用spss进行问卷效度和信度分析如何使用 SPSS 进行问卷效度和信度分析在社会科学研究中,问卷是一种常用的数据收集工具。
为了确保问卷所收集的数据具有可靠性和有效性,我们需要对问卷进行效度和信度分析。
SPSS(Statistical Package for the Social Sciences)是一款功能强大的统计分析软件,能够帮助我们方便地进行问卷效度和信度分析。
接下来,我将详细介绍如何使用 SPSS 来完成这一重要任务。
一、问卷效度分析问卷效度是指问卷能够准确测量出所研究概念的程度。
效度分析主要包括内容效度、结构效度和效标效度等。
1、内容效度内容效度通常通过专家评估来确定。
专家根据研究目的和理论基础,对问卷的题目内容进行审查,判断其是否全面、准确地涵盖了研究主题的各个方面。
2、结构效度结构效度是指问卷的题目结构是否与理论假设或预期的结构相一致。
在 SPSS 中,我们可以通过因子分析来检验结构效度。
(1)数据录入与预处理首先,将问卷数据录入 SPSS 中。
确保数据的准确性和完整性。
然后,对数据进行必要的预处理,如检查缺失值、异常值等,并进行相应的处理。
(2)因子分析操作步骤选择“分析” “降维” “因子分析”。
将需要分析的变量选入“变量”框中。
在“描述”选项中,选择“KMO 和巴特利特球形检验”,以判断数据是否适合进行因子分析。
KMO 值越接近 1,表明数据越适合做因子分析;巴特利特球形检验的显著性水平小于 005 时,拒绝零假设,认为相关系数矩阵不是单位阵,适合做因子分析。
在“抽取”选项中,选择提取因子的方法,如主成分分析或主轴因子法。
在“旋转”选项中,选择合适的旋转方法,如正交旋转(如方差最大法)或斜交旋转,以使得因子结构更清晰。
在“选项”中,可以选择输出因子得分等。
(3)结果解读主要关注以下几个方面:公因子方差:表示每个变量被公因子解释的程度。
解释的总方差:显示各因子解释原始变量方差的情况。
测量最常用的是使用问卷调查。
信度分析主要就是分析问卷测量结果的稳定性,如果多次重复测量的结果都很接近,就可以认为测量的信度是高的。
与信度相对应的概念是效度,效度是指测量值和真实值的接近程度。
二者的区别是:信度只是描述测量工具的准确性,而效度描述测量工具的有效性,效度高信度一定高(有效一定准确),而信度高,效度不一定高(准确不一定有效)
基于信度分析而产生的测量理论分为两种,一种是真分数测量理论,另一种是概化理论真分数理论认为信度可以用以下公式表达:X=T+E,X为实测分数,T为真分数,E为随机误差。
效度可以用X=V+I+E表达,V代表有效分数,I代表系统误差分数,显然信度将所有误差均归为随机误差,而效度则将随机误差进一步分解为系统误差,而将真分数也改称为有效分数。
信度可以用信度系数来表示,不同的分析目的具有不同的信度系数,根据关注的重点不同,可以分为内在信度和外在信度,常用的内在信度表示方法有克朗巴哈系数,折半信度;常用的外在信度表示方法有重测信度,评分者信度信度系数如果大于0.8是可以接受的,在0.7-0.8之间说明需要进行修改,小于0.7的话,则说明量表存在较大问题,需要重新设计了。
SPSS中的分析—度量—可靠性分析过程中包含了大部分的信度分析系数,但是由于某些信度分析可以使用相关系数来表示,因此相关分析过程也可以使用。
我们首先看一下最常用的过程
分析—度量—可靠性分析
这是一个有10道题的问卷,设计为9分量表,考察此问卷的信度
下面我们再来看一下评分者信度,我们模拟了5个评分者在10道问题上的评分,假设分值为有序分类变量。
SPSS统计分析信度分析信度分析是一种用于评估测量工具的一致性和稳定性的统计分析方法。
在社会科学研究中,信度分析是非常重要的,因为它可以帮助研究者确定测量工具在不同时间和不同样本上的一致性,从而提高研究结果的可靠性和有效性。
本文将介绍几种常用的信度分析方法,并通过SPSS软件进行实际操作。
首先,内部一致性信度是用来评估测量工具内部各项之间的相关性,常用的指标有Cronbach's α系数和分割一致性系数。
Cronbach's α系数在SPSS软件中的计算方法是通过计算各项之间的平均相关系数得出。
分割一致性系数则是通过将测量工具中的各项分成两部分,然后计算这两部分之间的相关系数得出。
这两种方法都是用来评估测量工具内部各项之间的相关性,一般来说,Cronbach's α系数在0.7以上被认为是具有较好的内部一致性。
其次,重测信度是用来评估测量工具的稳定性和一致性,即在相同的测量条件下,工具得出的结果是否一致。
常用的指标有Pearson相关系数和ICC(Interclass Correlation Coefficient)系数。
Pearson相关系数可以通过SPSS软件中的相关分析得到,它用来评估同一测量工具在两次测量之间的相关性。
ICC系数则用来评估同一测量工具在不同评价者评价下的一致性,一般来说,ICC系数在0.75以上被认为是具有良好的重测信度。
最后,平行形式信度是用来评估不同形式的测量工具在测量同一概念时的一致性。
常用的指标是Spearman-Brown(分段相关系数)和Kuder-Richardson(Reliability Coefficient)系数。
分段相关系数可以通过SPSS软件中的相关分析得到,它用来评估两个不同形式的测量工具在测量同一概念时的相关性。
Kuder-Richardson系数则用来评估二分形式测量工具的信度,一般来说,Kuder-Richardson系数在0.7以上被认为是具有较好的平行形式信度。
spss软件进行信度分析问卷的信度分析一、概念:信度是指根据测验工具所得到的结果的一致性或稳定性,反映被测特征真实程度的指标。
一般而言,两次或两个测验的结果愈是一致,则误差愈小,所得的信度愈高,它具有以下特性:1 、信度是指测验所得到结果的一致性或稳定性,而非测问卷的信度分析一、概念:信度是指根据测验工具所得到的结果的一致性或稳定性,反映被测特征真实程度的指标。
一般而言,两次或两个测验的结果愈是一致,则误差愈小,所得的信度愈高,它具有以下特性:1、信度是指测验所得到结果的一致性或稳定性,而非测验或量表本身;2、信度值是指在某一特定类型下的一致性,非泛指一般的一致性,信度系数会因不同时间、不同受试者或不同评分者而出现不同的结果;3、信度是效度的必要条件,非充分条件。
信度低效度一定低,但信度高未必表示效度也高;信度检验完全依赖于统计方法。
信度可分为:内在信度:对一组问题是否测量同一个概念,同时组成量表题项的内在一致性程度如何;常用的检测方法是Cronbach’s alpha系数。
外在信度:对相同的测试者在不同时间测得的结果是否一致,再测信度是外在信度最常用的检验法。
二、信度指标:1.用信度系数来表示信度的大小。
信度系数越大,表明测量的可信程度越大。
究竟信度系数要多少才算有高的信度。
学者DeVellis(1991)认为,0.60~0.65(最好不要);0.65~ 0.70(最小可接受值);0.70~0.80(相当好);0.80~0.90(非常好)。
由此,一份信度系数好的量表或问卷,最好在0.80以上,0.70至0.80之间还算是可以接受的范围;分量表最好在0.70以上,0.60至0.70之间可以接受。
若分量表的内部一致性系数在0.60以下或者总量表的信度系数在0.80以下,应考虑重新修订量表或增删题项。
2.信度指标多以相关系数来表示:大致可分为三类:稳定系数(跨时间的一致性)、等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。
spss信度分析2篇篇一:SPSS信度分析介绍SPSS(统计产品和服务解决方案)是一个强大的数据分析工具。
其中之一的重要模块就是信度分析。
信度分析是指通过统计方法评价测量工具的稳定性和一致性。
本文将介绍SPSS如何进行信度分析。
一、信度分析的基本概念在进行信度分析之前,我们首先需要了解一些基本概念:1.测量工具:主要是指调查问卷、数据采集表或者其他可进行量化的数据收集方式。
2.稳定性:测量工具所反映的结果在多次测评中是否基本一致。
3.一致性:测量工具能否反映相同的概念和特征。
4.信度系数:用来度量测量工具的信度大小,其值在0-1之间,一般越接近1,表示信度越高。
二、信度分析的方法SPSS提供了丰富的信度分析方法,并且支持多种类型的测量工具信度分析,例如多项选择题的复合信度、连续变量的重测信度等。
下面我们将介绍两种经典的信度分析方法:1. Cronbach’s alpha(克朗巴赫α)方法Cronbach’s alpha是最常用的测试内部一致性的指标。
该方法的基本思想是分析测量工具的内部结构。
在具体操作上,我们将测量工具中的不同题目之间互相对比,并计算它们之间的相关性。
Cronbach’s alpha方法通常用于测量工具中包含多项选择题或二元选择题。
2. Test-Retest(试测重测)方法Test-Retest方法常用于评价连续变量的信度。
其操作流程主要包括对同一测量对象进行两次测量。
在此基础上,使用Pearson相关系数计算测量结果之间的相关性以及信度系数。
这种方法对于测量工具稳定性的评价非常有用。
三、使用SPSS进行信度分析为了使用SPSS进行信度分析,我们需要进行以下设置:1.导入数据将数据输入到SPSS中,并确认变量类型和数据格式正确。
2.选择数据集合在SPSS中,通过“分析”菜单下的“可靠性分析”进行信度分析,首先我们需要指定需要进行信度分析的数据集合。
3.选择信度分析方法在选择数据集合之后,我们需要确定信度分析方法。
第九章第九章信度分信度分析析�6�1一再测信度·用同一个测验对同一组被试前后两次施测两次测验分数所得的相关系数为再测信度·因为它能反映两次测验结果有无变动也就是测验分数的稳定程度故又称稳定性系数·计算再测信度应满足一下几个假设①所测量的特质必须是稳定的②遗忘与练习的效果相同③两次施测期间被试的学习效果没有差别···。
·根据一组被试在两个平行等值测验上的得分计算的相关数。
因为它反映的是两个测验之间的等值程度因此又叫等值性系数。
·采用此法一定要注意①两个测验必须在项目的内容、形式、数量、难易、时限、指导语等方面相同或相似②两次测验的时间间隔要适当·复本信度的局限①复本法只能减少而不能完全排除练习和记忆的影响②对于许多测验来说建立复本是相对困难的�6�1按正常的程序实施测验然后将全部项目分成相等的两半根据各人在这两半测验的分数计算其相关系数�6�1斯皮尔曼—布朗校正公式弗朗那根估计信度公式。
�6�1使用奇偶分半法一定要注意两个问题①如遇到有牵连的项目或一组解决同一问题的项目时这些项目应放在同一半否则将会高估信度的值②当试卷中存在任选题或试卷为速度测试时不宜采用分半法·同质性也称内部一致性指的是测验内部所有题目间的一致性。
1、测量同质性的基本公式2、库德—理查逊公式估计测验的信度估计同质性信度·适用于答对一题得分答错无分3、克伦巴赫系数·适
用于项目多重记分的测验·评分者之间的变异是产生误差的重要原因之一·考察评分者信度的方法是随机抽取部分试卷由两个或多个评分者独立按评分标准打分然后求其间的相关。
如果是两个评分者则采用积差相关或等级相关的方法一般认为结果训练的成对评分者之间的一致性达到0.90以上评分才是客观的。
如果是多个评分者则采用和谐系数来估计信度。
一评价测验·信度系数是衡量测验好坏的一个重要技术指标·一般能力与成就测验的信度系数常在0.90以上·性格、兴趣、态度等人格测验的信度系数通常在0.80-0.85之间二解释分数1、个人测验分数的误差·个人在两次测验中分数的差异就是测量误差据此可得出一个误差分数的分布这个分布
的标准差就是测量的标准差它是测量误差大小的指标。
2、两种测验分数的比较·来自不同测验的原始分数是无法直接比较的只有参照同一团体的平均分数将它们转换成相同尺
度的标准分数才能进行比较。
一被试的样本·团体的异质程度与分类的分布有关一个团体越是异质其分数分布的范围也
就越大信度系数就越高。
·信度系数不仅受样本团体的异质程度的影响也受样本团体平均水平的影响。
因为对于不同水平的团体项目具有不同的难度每个项目在难度上的变化累积
起来便会影响信度。
这种影响不能用统计公式来推估只能从经验中发现。
二测验的长度·一般来说测验越长信度值越高。
因为①测验加长可能改进项目取样的代表性从而能更好地
反映受测者的真实水平②测验的项目越多在每个项目上的随机误差就可以互相抵消三测验的难度·测验的难度与信度没有直接对应关系但当测验太难或太易时则分数的范围就会缩小从而降低信度。
显然只有当测验难度水平可以使测验分数的分布分为最大时测验的信度才会最高通常这个难度水平为0.50。
·当题目过难时被试可能凭猜测作答从而也会降低信度。
�6�1用信度系数来表示信度的大小。
信度系数越大表明测量的可信程度越大。
究竟信度系数要多少才算有高的信度。
学者DeVellis1991认为0.600.65最好不要0.650.70最小可接受值0.700.80相当好0.800.90非常好。
由此一份信度系数好的量表或问卷最好在0.80以上0.70至0.80之间还算是可以接受的范围分量表最好在0.70以上0.60至0.70之间可以接受。
若分量表的内部一致性系数在0.60以下或者总量表的信度系数在0.80以下应考虑重新修订量表或增删题项。
�6�1在SPSS中专门用来进行测验信度分析的模块为Scale下的Reliability Analysis。
�6�1Cronbach AlphaAnalyze--Scale--Reliability analysisstatistics选descriptives for下Scale if item deleted。
出结果中如果Cronbach Alpha0.8那么不用删掉任何题项结果足够好。
如果Cronbach Alpha0.8便不用再杀。
Alpha值的最低要求0.7。
若Alpha。