3.3 函数的单调性
- 格式:ppt
- 大小:378.50 KB
- 文档页数:20
《函数的单调性》作业设计方案(第一课时)一、作业目标1. 理解和掌握函数的单调性概念及其数学表达;2. 能够根据函数图像识别函数的单调性;3. 学会应用单调性解决简单的数学问题。
二、作业内容1. 理论作业(1)请列举至少三个不同类型的函数,并画出它们的图像。
根据图像,说明这些函数在各自定义域内的单调性。
(2)阅读教材,理解单调性的定义,并尝试用自己的语言进行总结和归纳。
(3)通过练习题,掌握单调性的判断方法,并尝试解决一些简单的数学问题。
2. 实践作业(1)根据教材中的实例,选择一个具体的函数(例如,正比例函数、二次函数、指数函数等),绘制该函数的图像,并观察图像判断其单调性。
(2)自己设计一个函数,绘制图像并判断单调性。
通过这个过程,体会函数的单调性与函数性质的关系。
(3)尝试利用函数的单调性解决一些实际问题,例如:根据气温随时间变化的曲线图,判断气温的变化趋势等。
三、作业要求1. 认真阅读教材和相关资料,理解并掌握函数的单调性概念和判断方法;2. 认真绘制图像,确保图像的准确性和完整性;3. 独立思考,独立完成作业;4. 实践作业需要结合实际生活,注重理论联系实际。
四、作业评价1. 理论作业评价:主要考察学生对单调性概念、判断方法以及相关例题的掌握情况;2. 实践作业评价:主要考察学生能否将所学知识应用于实际问题解决中,以及图像绘制和观察的准确性。
评价标准包括:图像是否完整、准确,判断是否符合实际,应用是否得当等。
五、作业反馈1. 学生提交作业后,教师将对作业进行批改,并将批改结果反馈给学生;2. 学生应根据教师的批改意见进行修改和完善,并在规定时间内提交改进后的作业;3. 教师将对改进后的作业进行再次评价,并给出最终成绩。
通过本次作业,学生将能够更好地理解和掌握函数的单调性,并将其应用于解决实际问题中。
同时,实践作业也将有助于提高学生的观察能力和解决问题的能力,为今后的学习和工作打下坚实的基础。
第四节函数单调性的判定法要求⑴会用导数求函数的单调区间。
⑵会利用单调性证明不等式。
1.用导数求函数的单调区间前面已经介绍了函数在区间上单调的概念,下面利用导数来对函数的单调性进行研究。
如果函数)(x f y =在[a,b ]上单调增加(单调减少),那末它的图形是一条沿x 轴正向上升(下降)的曲线。
这时,曲线上各点处的切线斜率是非负的(是非正的),即)0)((0)(≤'='≥'='x f y x f y 。
由此可见,函数的单调性与导数的符号有着密切的联系。
反过来,能否用导数的符号来判定函数的单调性呢?下面我们利用拉格朗日中值定理来进行讨论。
设函数)(x f 在[a,b ]上连续,在(a,b )内可导,在[a,b ]上任取两点1x 、2x (1x <2x ),应用拉格朗日中值定理,得到)( ))(()()(211212x x x x f x f x f <<-'=-ξξ由于在上式中,012>-x x ,因此,如果在(a,b )内导数)(x f '保持正号,即0)(>'x f ,那末也有0)(>'ξf ,于是))(()()(1212>-'=-x x f x f x f ξ即)()(21x f x f <表明函数)(x f y =在[a,b ]上单调增加。
同理,如果在(a,b )内导数)(x f '保持负号,即0)(<'x f ,那末0)(<'ξf ,于是0)()(12<-x f x f ,即)()(21x f x f >,表明函数)(x f y =在[a,b ]上单调减少。
归纳以上讨论,即得函数单调性的判定法设函数)(x f y =在[a,b ]上连续,在(a,b )内可导。
(1)如果在(a,b )内0)(>'x f ,那末函数)(x f y =在[a,b ]上单调增加;(2)如果在(a,b )内0)(<'x f ,那末函数)(x f y =在[a,b ]上单调减少。
专题3.3函数的单调性知识点一增函数与减函数的定义前提条件设函数f (x )的定义域为I ,区间D ⊆I 条件∀x 1,x 2∈D ,x 1<x 2都有f (x 1)<f (x 2)都有f (x 1)>f (x 2)图示结论f (x )在区间D 上单调递增f (x )在区间D 上单调递减特殊情况当函数f (x )在它的定义域上单调递增时,我们就称它是增函数当函数f (x )在它的定义域上单调递减时,我们就称它是减函数知识点二函数的单调区间如果函数y =f (x )在区间D 上单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.知识点三函数的最大值与最小值最大值最小值条件一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:∀x ∈I ,都有f (x )≤Mf (x )≥M∃x 0∈I ,使得f (x 0)=M结论称M 是函数y =f (x )的最大值称M 是函数y =f (x )的最小值几何意义f (x )图象上最高点的纵坐标f (x )图象上最低点的纵坐标知识点四求函数最值的常用方法1.图象法:作出y =f (x )的图象,观察最高点与最低点,最高(低)点的纵坐标即为函数的最大(小)值.2.运用已学函数的值域.3.运用函数的单调性:(1)若y =f (x )在区间[a ,b ]上单调递增,则y max =f (b ),y min =f (a ).(2)若y =f (x )在区间[a ,b ]上单调递减,则y max =f (a ),y min =f(b ).4.分段函数的最大(小)值是指各段上的最大(小)值中最大(小)的那个.函数单调性的判断与证明(1)取值并规定大小:设x 1,x 2是该区间内的任意两个值,且x 1<x 2;(2)作差变形:作差f (x 1)-f (x 2)或f (x 2)-f (x 1),并通过因式分解、通分、配方、有理化等方法,转化为易判断正负的关系式;(3)定号:确定f (x 1)-f (x 2)或f (x 2)-f (x 1)的符号,当符号不确定时,进行分类讨论.(4)结论:根据定义确定单调性.【例1】用单调性定义判断函数21()2x f x x +=-在区间(2,)+∞上的单调性,并求()f x 在区间[3,6]上的最值.【解答】解:设122x x <<,则122112*********()()()22(2)(2)x x x x f x f x x x x x ++--=-=----,122x x <<,210x x ∴->,120x ->,220x ->,2112125()()()0(2)(2)x x f x f x x x -∴-=>--,即12()()f x f x >∴函数()f x 在区间(2,)+∞上是减函数.∴函数()f x 在区间[3,6]上是减函数.()f x ∴的最大值为f (3)7=,()f x 的最小值为f (6)134=.【变式训练1】已知函数2()4xf x x =-,(2,2)x ∈-.用定义法证明:函数()f x 在(0,2)上单调递增;【解答】证明:任取1220x x >>>,则1212121222221212()(4)()()44(4)(4)x x x x x x f x f x x x x x -+-=-=----,因为1220x x >>>,所以2212121240,40,40,0x x x x x x ->->+>->,所以12()()0f x f x ->,所以()f x 在(0,2)上单调递增;【变式训练2】已知函数1()(0)xf x ax a ax-=+>(1)利用函数单调性的定义,判断函数()f x 在(0,)+∞上的单调性;【解答】解:函数111()(0)x f x ax ax a ax ax a-=+=+->,∴任取1x 、2(0,)x ∈+∞,且12x x <,2121212121212()(1)1111()()()()x x a x x f x f x ax ax ax a ax a ax x --∴-=+--+-=;又120x x <<,0a >;120x x ∴-<,当1210x x a<<<时,21210a x x -<,12()()f x f x ∴>,()f x 是减函数;当121x x a<<时,21210a x x ->,12()()f x f x ∴<,()f x 是增函数;∴函数()f x 在1(0,)a上是减函数,在1(a,)+∞上是增函数;【变式训练3】利用定义判断函数()f x x =+在区间(,)-∞+∞上的单调性.【解答】解:()f x x =+(,)-∞+∞上,可以设12x x <可得1212()()(f x f x x x -=+=12()x x -+-221212()()(1x x x x =-+-+12(x x =-,10x >20x +>又12x x <,120x x -<,12()(10x x ∴-+<,12()()f x f x ∴<,()f x ∴在区间(,)-∞+∞上为增函数,同故函数()f x x =+在区间(,)-∞+∞上为增函数求函数的单调区间求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解.(2)利用函数的图象提醒:若所求出函数的单调递增区间或单调递减区间不唯一,函数的单调区间之间要用“,”号【例2】函数1()f x x=的单调减区间是()A .(0,)+∞B .(,0)-∞C .(-∞,0)(0⋃,)+∞D .(,0)-∞和(0,)+∞【解答】解:根据题意,函数1()f x x =,其定义域为{|0}x x ≠其导数21()f x x'=-,分析可得:当0x >时,()0f x '<,即函数()f x 在(0,)+∞上为减函数,当0x <时,()0f x '<,即函数()f x 在(,0)-∞上为减函数;综合可得:函数1()f x x=的单调减区间是(,0)-∞和(0,)+∞;故选:D .【变式训练1】函数221x y x -=+的单调递增区间是(,1)-∞-和(1,)-+∞.【解答】解:函数224211x y x x -==-++,可得函数221x y x -=+的增区间为(,1)-∞-和(1,)-+∞.故答案为:(,1)-∞-和(1,)-+∞.【变式训练2】函数2|21|y x x =-++的单调递增区间为[1-,1]和[1+,)+∞.【解答】解:画出函数2|21|y x x =-++图象如图,2210x x -++=,可得11x =-,21x =+由图知函数的增区间为[11]和[1+)+∞,故答案为:[1,1]和[1)+∞.【变式训练3】下列函数中,在(2,)+∞上单调递增的是()A .()|3|f x x =-B .1()f x x x=+C .3()2f x x x=+D .3,3()23,3xx x f x x +<⎧=⎨-⎩ 【解答】解:根据题意,依次分析选项:对于A ,函数3,3()|3|3,3x x f x x x x -⎧=-=⎨-<⎩ ,在(2,3)上单调递减,在[3,)+∞上单调递增,故A 错误;对于B ,函数1()f x x x=+,是勾型函数,在(2,)+∞上单调递增,故B 正确;对于C ,3()2f x x x =+,是二次函数,在(2,)+∞上单调递增,故C 正确;对于D ,函数3,3()23,3x x x f x x +<⎧=⎨-⎩在(,3)-∞和[3,)+∞上单调递增,故D 错误;故选:BC .【变式训练4】已知函数()||2f x x x x =-的单调增区间为(,1)-∞-和(1,)+∞.【解答】解:0x 时,2()2f x x x =-,对称轴1x =,开口向上,在(1,)+∞递增,0x <时,2()2f x x x =--,对称轴1x =-,开口向下,在(,1)-∞-递增,∴函数的递增区间是:(,1)-∞-和(1,)+∞,故答案为:(,1)-∞-和(1,)+∞.函数单调性的应用【例3】已知函数()f x 在R 上单调递减,若(4)()f a f a +- ,则实数a 的取值范围是()A .[2-,)+∞B .(-∞,2]-C .(2,)-+∞D .(,2)-∞-【解答】解:函数()f x 在R 上单调递减,(4)()f a f a +- ,所以4a a +- ,解得2a - ,即实数a 的取值范围是(-∞,2]-.故选:B .【变式训练1】已知函数()y f x =在(0,)+∞上是减函数,若f (a )(32)f a <-,那么a 的取值范围是()A .0a >B .1a <C .01a <<D .213a <<【解答】解:函数()y f x =在(0,)+∞上是减函数且f (a )(32)f a <-,032a a ∴<-<,解得213a <<,故选:D .【变式训练2】已知()f x 是定义在[1-,1]上的减函数,且(23)(2)f a f a -<-,则实数a 的取值范围是()A .(1,2]B .(1,3]C .(1,4]D .(1,)+∞【解答】解:因为()f x 是定义在[1-,1]上的减函数,且(23)(2)f a f a -<-,所以1211231232a a a a ----⎧⎪⎨->-⎪⎩ ,解得12a < .故选:A .【变式训练3】已知函数()f x 是定义域为R 的递减函数,且(4)()0f x f x -+=,则不等式2(3)(1)0f x x f x ++-<的解集为()A .(4,0)-B .(-∞,4)(0-⋃,)+∞C .(5,1)-D .(-∞,5)(1-⋃,)+∞【解答】解:因为(4)()0f x f x -+=,所以(4)()f x f x -=-,(1)(5)f x f x -=--,因为2(3)(1)0f x x f x ++-<,即2(3)(1)f x x f x +<--,即2(3)(5)f x x f x +<-,因为函数()f x 是定义域为R 的递减函数,所以235x x x +>-,解得5x <-或1x >.故选:D .图象法求函数的最值(值域)图象法求函数最值的一般步骤【例4】设函数2()2||1(33)f x x x x =--- ,(1)画出这个函数的图象;(2)指出函数()f x 的单调区间,并说明在各个单调区间上()f x 是增函数还是减函数;(3)求函数的值域.【解答】解:(1)当0x 时,22()21(1)2f x x x x =--=--,当0x <时,22()21(1)2f x x x x =+-=+-,根据二次函数的作图方法,可得函数图象如图.(2)函数()f x 的单调区间为[3-,1)-,[1-,0),[0,1),[1,3].()f x 在区间[3-,1)-和[0,1)上为减函数,在[1-,0),[1,3]上为增函数.(3)当0x 时,函数2()(1)2f x x =--的最小值为2-,最大值为f (3)2=;当0x <时,函数2()(1)2f x x =+-的最小值为2-,最大值为(3)2f -=.故函数()f x 的值域为[2-,2].【变式训练1】已知定义在[5-,5]上的函数()f x 的图象如图所示.(1)写出()f x 的单调区间;(2)若()f x 在(1,2)a a -上单调递减,求a的取值范围.【解答】解:(1)由图象可知:()f x 的单调递增区间为[5-,2]-和[1,5],单调递减区间为[2-,1];(2)函数()f x 的单调递减区间为[2-,1],∴122112a a a a--⎧⎪⎨⎪-<⎩ ,解得112a -< ,a ∴的取值范围为(1-,12.利用函数的单调性求函数的最值(1)若函数y =f (x )在区间[a ,b ]上单调递增,则f (x )的最大值为f (b ),最小值为f (a ).(2)若函数y =f (x )在区间[a ,b ]上单调递减,则f (x )的最大值为f (a ),最小值为f (b ).(3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.(4)如果函数定义域为闭区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势.【例5】函数1()1f x x =-在区间[2,6]上的最大值和最小值分别是()A .15,1B .1,15C .17,1D .1,17【解答】解:根据题意,函数11y x =-在区间[2,6]上单调递减,所以当2x =时,()f x 取最大值f (2)1=,当6x =时,()f x 取最小值f (6)15=,故选:B .【变式训练1】对于任意的实数x ,已知函数2,1()2,1x x f x x x ⎧=⎨->⎩ ,则()f x 的最大值是()A .2-B .1-C .1D .2【解答】解:函数2,1()2,1x x f x x x ⎧=⎨->⎩的图象如下所示:由函数图象可知,当1x =时,函数取得最大值()max f x f =(1)1=.故选:C .【变式训练2】函数|||3|y x x =--的最大值为()A .2B .4C .3D .1【解答】解:①若0x <,)|||3|(3)3fx x x x x =--=---=-;②03x ,()|||3|(3)23f x x x x x x =--=--=-,3()3f x ∴- ;③3x >,()|||3|(3)3f x x x x x =--=--=,综上3()3f x - ,故选:C .【变式训练3】设函数2()2xf x x =-在区间[3,4]上的最大值和最小值分别为M ,m ,则(M m +=)A .4B .6C .10D .24【解答】解:因为2(2)44()222x f x x x -+==+--,所以()f x 在[3,4]上是减函数.所以m f =(4)4=,M f =(3)6=.所以6410M m +=+=.故选:C .【例6】已知函数21()1x f x x +=+.(1)用定义法证明()f x 在(1,)-+∞上是增函数;(2)求该函数在区间[2,6]上的最大值与最小值.【解答】解:(1)证明:函数211()211x f x x x +==-++.(1,)x ∈-+∞,设121x x -<<,则2121121211()?()11(1)(1)x x f x f x x x x x -=-=++++,121x x -<<,210x x ∴->,110x +>,210x +>,21()()0f x f x ∴->,即21()()f x f x >.故()f x 在(1,)-+∞上是增函数;(2)根据(1)可知()f x 在区间(1,)-+∞上是增函数;∴函数在区间[2,6]上是增函数;可得()f x 的最小值为f (2)53=,最大值为f (6)137=.【变式训练1】已知函数()1x f x x =+.(1)用定义法证明()f x 在区间(1,)-+∞上是增函数;(2)求函数()f x 在区间[2,5]上的最值,并说明取最值时的x 值.【解答】(1)证明:任取121x x -<<,则1212121212()()11(1)(1)x x x x f x f x x x x x --=-=++++,121x x -<<,110x ∴+>,210x +>,120x x -<,12()()0f x f x ∴-<,即12()()f x f x <,()f x ∴在区间(1,)-+∞上单调递增.(2)由(1)可知()f x 在区间[2,5]上单调递增,∴当2x =时,()f x 取得最小值为f (2)23=,当5x =时,()f x 取得最大值为f (5)56=.分类讨论求二次函数的最值(1)二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素.(2)利用二次函数图象,进行分类讨论,提升直观想象的数学素养.【例7】已知函数2()2(1)3f x x a x =--++.①若函数()f x 在区间(-∞,3]上是增函数,则实数a 的取值范围是[2,)+∞;②若函数()f x 的单调递增区间是(-∞,3],则实数a 的值为.【解答】解:函数的对称轴为(1)x a =-+,①由题意可得(1)3a -+ ,则4a - ,所以实数a 的范围为(-∞,4]-;②由题意可得(1)3a -+=,则24a =-故答案为:(-∞,4]-;4-.【变式训练1】若函数2()2(1)3f x x a x =--++在区间(-∞,3]上是增函数,则实数a 的取值范围是(-∞,4]-.【解答】解:由于函数2()2(1)3f x x a x =--++的对称轴方程为1x a =--,又由函数在区间(-∞,3]上单调递增,故有13a -- ,求得4a - ,故答案为:(-∞,4]-.【变式训练2】已知函数2()23f x x ax =-+在区间[2,8]上单调递增,则实数a 的取值范围是(-∞,2].【解答】解:函数2()23f x x ax =-+在区间[2,8]上单调递增,可得2a .即(a ∈-∞,2].故答案为:(-∞,2].【变式训练3】已知2()2(2)5f x x a x =+-+在区间(4,)+∞上是增函数,则a 的取值范围是2a - .【解答】】解:函数22(2)5y x a x =+-+的对称轴为:2x a =-,函数22(2)5y x a x =+-+在区间(4,)+∞上是增函数,24a ∴- ,解得2a - ,故答案为:2a - .1.函数()|2|f x x =-的单调递增区间为()A .[2,)+∞B .[2-,)+∞C .[0,)+∞D .(,)-∞+∞【解答】解:当2x 时,()2f x x =-为增函数,此时函数单调递增区间为[2,)+∞,当2x <时,()2f x x =-+为减函数,此时函数单调递减区间为(,2)-∞,故选:A .二.多选题(共1小题)2.函数2()1x af x x -=+在区间(,)b +∞上单调递增,则下列说法正确的是()A .2a >-B .1b >-C .1b - D .2a <-【解答】解:根据题意,22(1)22()2111x a x a af x x x x -+--+===-+++,可以由函数2ay x+=-的图象向左平移一个单位,向上平移2个单位得到,若函数2()1x af x x -=+在区间(,)b +∞上单调递增,必有(2)0a -+<且1b - ,解可得:2a >-且1b - ,故选:AC .三.填空题(共5小题)3.函数(1)(5)y x x =-+在区间(0,)+∞上的单调性是单调递增.(填写“单调递增”或“单调递减”)【解答】解:根据题意,函数2(1)(5)45y x x x x =-+=+-,是开口向上的二次函数,其对称轴为2x =-,在区间(0,)+∞上,单调递增,故答案为:单调递增.4.若函数2()21f x ax x =+-在区间(,6)-∞上单调递增,则实数a 的取值范围是1[6-,0].【解答】解:根据题意,函数2()21f x ax x =+-在区间(,6)-∞上单调递增,当0a =时,()21f x x =-,符合题意,当0a ≠时,()f x 为二次函数,其对称轴为1x a =-,必有160a a ⎧-⎪⎨⎪<⎩ ,解可得106a -< ,即a 的取值范围为1[6-,0];故答案为:1[6-,0].5.()f x =的单调减区间为[1-,1].【解答】解:()f x =[3-,1],函数()f x =()f x =223u x x =--+复合而成的,2243(1)7u x x x =--+=-++在(,2)-∞-上递增,在(1,)-+∞上递减,且()f x =在[3-,1]递增,()f x ∴=(,1)-∞-上递增,在(1,)-+∞上递减,∴函数()f x =[1-,1],故答案为:[1-,1].6.已知函数()y f x =是开口向上的二次函数,且(1)(1)f x f x -=+、(0)3f =.若()f x 的最小值为2,则函数的解析式为2()23f x x x =-+.【解答】解:设2()(0)f x ax bx c a =++≠,由(0)3f =,可得3c =,(1)(1)f x f x +=-,∴二次函数()f x 的对称轴1x =,即12ba-=,由()f x 的最小值为2可得二次函数()f x 的图象经过点(1,2),可得2a b c ++=,解得1a =,2b =-,故得()f x 的解析式为:2()23f x x x =-+.故答案为:2()23f x x x =-+.7.若函数2()21f x x mx =+-在区间[1,2]上是单调函数,则实数m 的取值范围是(-∞,8)(4)--+∞.【解答】解:对称轴4m x =-,函数2()21f x x mx =+-在区间[1,2]上是单调函数,则对称轴不在区间内,则14m -或者24m- ;即8m - 或4m - ,实数m 的取值范围是(-∞,8)(4)--+∞.故答案为:(-∞,8)(4)--+∞.四.解答题(共7小题)8.已知函数2()(0)1x af x a x -=>+,若不等式()1f x - 的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.【解答】解:(1)由题意211x ax --+ ,变形2311011x a x a x x --++=++ ,这等价于(31)(1)0x a x -++ 且10x +≠,解得1x <-或13a x - ,所以103a -=,解得1a =.(2)由(1)得21()1x f x x -=+,任取1x ,2[0x ∈,)+∞,且12x x <,则210x x ->,那么212121*********()()()11(1)(1)x x x x f x f x x x x x ----=-=++++,210x x ->,12(1)(1)0x x ++>,21()()0f x f x ∴->,∴函数()f x 在[0,)+∞上是增函数.9.已知函数4()1f x x x =++.(1)求()y f x =在(1,)-+∞上的最小值,并求此时x 的值;(2)设()()2g x f x x =--,由定义证明:函数()y g x =在区间(,1)-∞-上是严格减函数.【解答】(1)解:因为1x >-,所以10x +>,所以44()111311f x x x x x =+=++--=++ ,当且仅当411x x +=+,即1x =时等号成立,所以()y f x =在(1,)-+∞上的最小值为3,此时1x =.(2)证明:44()2211g x x x x x =+--=-++,任取121x x <<-,211212124()44()()11(1)(1)x x g x g x x x x x --=-=++++,由121x x <<-,可得110x +<,210x +<,210x x ->,所以12()()0g x g x ->,即12()()g x g x >,所以函数()y g x =在区间(,1)-∞-上是严格减函数.10.已知函数2()2||21f x x a x a ax =---+,a R ∈.(Ⅰ)求当1a =时,函数()f x 的单调区间;(Ⅱ)若函数()f x 有2个零点,求a 的取值范围.【解答】解:(Ⅰ)当1a =时,22243,1()2|1|211,1x x x f x x x x x x ⎧-+=---+=⎨-<⎩,所以函数()f x 在(1,2),(,0)-∞上单调递减,函数()f x 在(0,1),(2,)+∞上单调递增.(Ⅱ)当x a 时,22()421f x x ax a =-++,当x a <时,22()21f x x a =-+,①当0a =时,2()1f x x =+没有零点,不符合题意;②当0a >时,()f x的草图如下:若函数()f x 有两个零点,则2(0)(2)120f f a a ==-=或f (a )210a =-<,解得22a =或1a >.③当0a <时,()f x 的草图如下:若函数()f x 有两个零点,则f (a )210a =-<,解得1a <-,综上所述,a 的取值范围为:(-∞,1)(1-⋃,2){}2+∞.11.已知()()xf x x a x a=≠-.(1)若0a >且()f x 在(2,)+∞内单调递减,求a 的取值范围.(2)在(1)的条件下,函数2()23g x x x m =-+++,[x a ∈,2]a +的图象都在直线5y =上方,求实数m 的取值范围.【解答】解:(1)任取1x ,2(2,)x ∈+∞,且12x x <,则1221121212()()()()()x x a x x f x f x x a x a x a x a --=-=----,()f x 在(2,)+∞内单调递减,12()()0f x f x ∴->,又0a >,210x x ->,12()()0x a x a ∴-->在(2,)+∞上恒成立,2a ∴ ,a ∴的取值范围为:(0,2];(2)函数2()23g x x x m =-+++,[x a ∈,2]a +的图象都在直线5y =上方,2235x x m ∴-+++>在[x a ∈,2]a +上恒成立,即222m x x >-+在[x a ∈,2]a +上恒成立,又(0a ∈,2],∴当2a =时,4x =时,函数222y x x =-+取最大值,最大值为10,10m ∴>,∴实数m 的取值范围为:(10,)+∞.12.已知函数23,[1,2]()3,(2,5].x x f x x x ⎧-∈-=⎨-∈⎩(1)在图1给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调区间,并指出单调性;(3)写出函数()f x的最大值和最小值.【解答】解:(1)图象如图所示:(2)由图象可知,函数()f x 在[1-,0])和(2,5]上单调递增,在[0,2)上单调递减,(3)由图象可知,函数的最大值为3,最小值为1-.13.已知函数2()3||f x x x x a =+-,其中0a >(Ⅰ)当2a =时,写出函数()f x 的减区间.(Ⅱ)若函数()f x 在区间(,)m n 上既有最大值又有最小值,求m ,n 的取值范围(用a 表示).【解答】解:(Ⅰ)当2a =时,2246,2()26,2x x x f x x x x ⎧-=⎨-+<⎩ ,即22394(,244()392(),222x x f x x x ⎧--⎪⎪=⎨⎪--+<⎪⎩ ,所以函数()f x 的递减区间是3(,2)2;(Ⅱ)2243,()23,x ax x af x x ax x a ⎧-=⎨-+<⎩,即2222394(),816()392(),48a a x x a f x a a x x a⎧--⎪⎪=⎨⎪--+<⎪⎩,(图象如下)要使函数()f x 在区间(,)m n 内既有最大值又有最小值,则最小值一定在x a =处取得,最大值在34x a =处取得;而f (a )2a =,在区间(,)a -∞内,函数值为2a 时12x a =,所以1324a m a < ;又239()48f a a =,而在区间(,)a +∞内函数值为298a时,38x a +=,所以38a n +<.(注:若答案写成3,4m a n a <>,至少扣5分)14.已知函数2()f x x=,([2,6])x ∈.(1)用定义法证明()f x 是减函数.(2)求函数()f x 的最大值和最小值.【解答】(1)证明:设任意实数1[2x ∈,6],2[2x ∈,6],且12x x <,210x x ∴->,120x x >,212112122()22()()0x x f x f x x x x x -∴-=-=>,即21()()f x f x >,故函数()f x 是定义域上的减函数.(2)解:由(1)知()f x 是定义域上的减函数,()max f x f ∴=(2)1=,()min f x f =(6)13=.。
函数的单调性函数的单调性: 一、定义:①()f x 在区间I 上是增函数(递增):121212221112()(,,()())I D x x I x x x x f x f f x f x x <<⎧⎪⎨⎪⇒⎩>⊆∈⇒>、、任意或中文理解:函数值随着自变量的增大而增大(因变量大小与自变量大小一致)。
图像理解:从左到右,由下至上。
②()f x 在区间I 上是减函数(递减):121121212212()(),,()()I D x x I x x f x x f x f x x f x ><<⎧⎪⎨⎪⇒⎩∈>⊆⇒任、、意或中文理解:函数值随着自变量的增大而减小(因变量大小与自变量大小相反)。
图像理解:从左到右,由上至下。
二、知识要点:1、单调区间I 与定义域D 的关系:I D ⊆练1:根据下列函数的图像,分别写出其定义域D 与单调区间增区间I ,单调减区间I 直线型 指、对数型:x y a =与log a y x =(0)y k x b k =+> (0)y k x b k =+< (0)y kx b k =+=二次曲线 幂函数:1:()0:1,0aa y xy x a Q a y x ==⎧=∈⎨==≠⎩2()(0)y a x b c a =-+> 2()(0)y a x b c a =-+< =2y x 3y x = 52y x =D D IIIID D IIIIy=x(1,0)a>1y=log a xy=a x oyx(0,1)0<a<1y=x(1,0)y=log a xy=a x(0,1)oyxboxy y xobb oxyx=boxy c cyx o x=b(0)y a x b c a =-+>(0)y a x b c a =-+<x=bx=bc oxyy xo c=12y x 25y x = 13y x =-=1y x 2y x -= 12y x -=三角函数反三角函数双曲线型函数 函数的对称变换 分段函数 小结:1、单调性是局部性质,是对D 内的某一个子集区间而言。
《函数的单调性》作业设计方案(第一课时)一、作业目标:1. 理解函数单调性的概念和基本性质;2. 能够识别并证明简单函数的单调性;3. 掌握函数单调性在解决问题中的应用。
二、作业内容:1. 独立完成课本P39例题1-4:请学生独立完成后,组织小组讨论,分享解题思路和过程,最后由教师进行点评和总结。
2. 自行设计题目:学生需根据所学知识,自行设计一道或几道考查函数单调性的题目。
题目设计应包括已知条件、自变量变化范围、函数解析式、单调性以及证明过程。
教师收集题目后,进行批改和评价。
3. 实践应用:学生思考函数单调性在解决实际问题中的应用,如最大值、最小值问题、工程进度问题等。
尝试用单调性知识设计解决方案,并撰写解题报告。
三、作业要求:1. 独立完成:学生需独立完成作业,不得抄袭或依赖他人。
2. 书写规范:解题过程应清晰、准确,书写规范,确保答案正确。
3. 总结反思:学生需在作业完成后,对自己的作业进行总结和反思,发现自己的不足之处,及时改进。
四、作业评价:1. 批改方式:教师对作业进行批改,给出分数和评语。
2. 评价标准:作业的完成质量、书写质量、总结反思情况等将成为评价的依据。
3. 评价结果:根据评价标准,对学生的作业进行评价,优秀作业将得到表扬并在课堂上展示。
五、作业反馈:1. 学生反馈:学生应就作业中的问题向教师提出,教师给予解答。
同时,学生也可分享自己的收获和体会。
2. 教师反馈:教师根据学生的作业情况,提供反馈和建议,包括对知识的掌握程度、解题方法的优化等。
3. 交流讨论:教师组织学生进行交流和讨论,分享学习心得和方法,促进共同进步。
通过本次作业,学生应能够深入理解函数单调性的概念和基本性质,能够独立证明简单函数的单调性,并能够将其应用于解决实际问题中。
同时,通过实践操作和反思总结,学生应能够提高自己的学习能力和解决问题的能力。
作业设计方案(第二课时)一、作业目标1. 巩固学生对函数单调性的理解,能够运用函数单调性的概念进行解题。
3.3.3三次函数的性质:单调区间和极值[读教材·填要点]设F(x)=ax3+bx2+cx+d(a≠0),则F′(x)=3ax2+2bx+c是二次函数,可能有以下三种情形:(1)函数F′(x)没有零点,F′(x)在(-∞,+∞)上不变号.①若a>0,则F′(x)恒正,F(x)在(-∞,+∞)上递增;②若a<0,则F′(x)恒负,F(x)在(-∞,+∞)上递减.(2)函数F′(x)有一个零点x=w.①若a>0,则F′(x)在(-∞,w)∪(w,+∞)上恒正,F(x)在(-∞,+∞)上递增;②若a<0,则F′(x)在(-∞,w)∪(w,+∞)上恒负,F(x)在(-∞,+∞)上递减.(3)函数F′(x)有两个零点x=u和x=v,设u<v.①若a>0,则F′(x)在(-∞,u)和(v,+∞)上为正,在(u,v)上为负;F(x)在(-∞,u)上递增,在(u,v)上递减,在(v,+∞)上递增.可见F(x)在x=u处取极大值,在x=v处取极小值.②若a<0,则F′(x)在(-∞,u)和(v,+∞)上为负,在(u,v)上为正;F(x)在(-∞,u)上递减,在(u,v)上递增,在(v,+∞)上递减.可见F(x)在x=u处取极小值,在x=v处取极大值.[小问题·大思维]1.在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,想一想,在[a,b]上一定存在最值和极值吗?在区间(a,b)上呢?提示:在区间[a,b]上一定有最值,但不一定有极值.如果函数f(x)在[a,b]上是单调的,此时f(x)在[a,b]上无极值;如果f(x)在[a,b]上不是单调函数,则f(x)在[a,b]上有极值;当f(x)在(a,b)上为单调函数时,它既没有最值也没有极值.2.若函数y=f(x)的图象是一条连续不断的曲线,且在区间[a,b]上有且只有一个极小值点,那么该极小值是否是函数的最小值?提示:借助图象可知,该极小值就是函数的最小值.求下列函数的单调区间和极值.(1)y=2x3+6x2-18x+3;(2)y=-x3+12x+6.[自主解答](1)函数的定义域为R.y′=6x2+12x-18=6(x+3)(x-1),令y′=0,得x=-3或x=1.当x变化时,y′,y的变化情况如下表:当x=-3时,函数有极大值,且y极大值=57;当x=1时,函数有极小值,且y极小值=-7.(2)y′=-3x2+12=-3(x+2)(x-2),令y′=0,则x1=-2,x2=2.当x变化时,y′,y的变化情况如下表:∴函数f(x)的单调减区间为(-∞,-2),(2,+∞);单调增区间为(-2,2).当x=-2时,y有极小值,且y极小值=f(-2)=-10;当x=2时,y有极大值,且y极大值=f(2)=22.(1)求多项式函数的单调区间,关键是求出f′(x)后,解不等式f′(x)>0和f′(x)<0.(2)单调区间可以是开区间,如果区间端点在定义域内,也可写成闭区间.1.求函数y=8x3-12x2+6x+1的极值.解:y′=24x2-24x+6=6(4x2-4x+1),令y′=6(4x2-4x+1)=0,解得x1=x2=1 2.当x变化时,y′,y的变化情况如表所示:所以此函数无极值.求下列各函数的最值.(1)f (x )=-x 3+x 2+x +1,x ∈[-3,2]; (2)f (x )=x 3-3x 2+6x -2,x ∈[-1,1]. [自主解答] (1)f ′(x )=-3x 2+2x +1, 令f ′(x )=-(3x +1)(x -1)=0,得 x =-13或x =1.当x 变化时f ′(x )及f (x )的变化情况如下表:∴当x =2时,f (x )取最小值-1; 当x =-3时,f (x )取最大值34.(2)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3, ∵f ′(x )在[-1,1]内恒大于0, ∴f (x )在[-1,1]上为增函数. 故x =-1时,f (x )最小值=-12; x =1时,f (x )最大值=2.即f (x )的最小值为-12,最大值为2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤:(1)求函数的导数f ′(x );(2)求方程f ′(x )=0的全部实根x 0,且x 0∈[a ,b ];(3)求最值,有两种方式:①是将f (x 0)的值与f (a ),f (b )比较,确定f (x )的最大值与最小值;②是判断各分区间上的单调性,然后求出最值.2.求函数f (x )=4x 3+3x 2-36x +5在区间[-2,2]上的最大值和最小值. 解:f ′(x )=12x 2+6x -36=6(2x 2+x -6), 令f ′(x )=0,解得x 1=-2,x 2=32.又f (-2)=57,f ⎝⎛⎭⎫32=-1154,f (2)=-23, ∴函数f (x )的最大值为57,最小值为-1154.设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.[自主解答] (1)由f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a , 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a ;令29+2a >0,得a >-19. 所以,当a ∈⎝⎛⎭⎫-19,+∞时,f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间. (2)令f ′(x )=0,得两根x 1=1-1+8a2, x 2=1+1+8a2.所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增.当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2),又f (4)-f (1)=-272+6a <0, 即f (4)<f (1).所以f (x )在[1,4]上的最小值为f (4)=8a -403=-163. 得a =1,x 2=2,从而f (x )在[1,4]上的最大值为f (2)=103.(1)f (x )在区间I 上为增函数⇒f ′(x )≥0在区间I 上恒成立,f (x )在区间I 上为减函数⇒f ′(x )≤0在区间I 上恒成立.(2)由函数的最值来确定参数的问题是利用导数求函数最值的逆向运用,解题时一般采用待定系数法,列出含参数的方程或方程组,从而求出参数的值,这也是方程思想的应用.3.已知函数f (x )=x 3+ax 2+bx +5,曲线y =f (x )在点P (1,f (1))处的切线方程为y =3x +1.(1)求a ,b 的值;(2)求y =f (x )在[-3,1]上的最大值.解:(1)依题意可知点P (1,f (1))为切点,代入切线方程y =3x +1可得,f (1)=3×1+1=4,∴f (1)=1+a +b +5=4,即a +b =-2, 又由f (x )=x 3+ax 2+bx +5得, 又f ′(x )=3x 2+2ax +b ,而由切线y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0,由⎩⎪⎨⎪⎧ a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4=(3x -2)(x +2), 令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f ⎝⎛⎭⎫23=9527, 又f (-3)=8,f (1)=4,∴f (x )在[-3,1]上的最大值为13.已知f (x )=x 3+ax 2+bx +c 在x =1与x =-2时都取得极值. (1)求a ,b 的值;(2)若x ∈[-3,2]时都有f (x )>2c -12恒成立,求c 的取值范围.[巧思] 解决不等式恒成立问题,大多可用函数的观点来审视,用函数的有关性质来处理,而导数是研究函数性质的有力工具,因而常将不等式f (x )>g (x )(f (x )<g (x ))恒成立问题转化为F (x )=f (x )-g (x )>0(F (x )=f (x )-g (x )<0)恒成立问题,再用导数方法探讨F (x )的单调性及最值.[妙解] (1)f ′(x )=3x 2+2ax +b ,由题意,得⎩⎪⎨⎪⎧ f ′(1)=0,f ′(-2)=0,即⎩⎪⎨⎪⎧3+2a +b =0,12-4a +b =0,解得⎩⎪⎨⎪⎧a =32,b =-6.(2)由(1)知f ′(x )=3x 2+3x -6. 令f ′(x )=0得x =-2或x =1.当x 变化时,f ′(x ),f (x )的变化情况如表所示:∴f (x )在[-3,2]上的最小值为c -72.即2c -12<c -72,∴c <-3,∴c 的取值范围为(-∞,-3).1.下面四幅图都是在同一坐标系中某三次函数及其导函数的图象,其中一定不.正确的序号是( )A .①③B .③④C .②③④D .②④解析:根据函数的单调性与其导函数函数值之间的关系,易得③④一定不正确. 答案:B2.函数f (x )=2x 3-9x 2+12x +1的单调递减区间为( ) A .(1,2) B .(2,+∞)C .(-∞,1)D .(-1,+∞),(2,+∞)解析:f ′(x )=6x 2-18x +12, 令f ′(x )<0,得1<x <2. 答案:A3.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值解析:f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值.答案:D4.若函数y =-x 3+6x 2+m 的极大值等于13,则实数m 等于________.解析:y ′=-3x 2+12x ,由y ′=0,得x =0或x =4,容易得出当x =4时函数取得极大值,所以-43+6×42+m =13,解得m =-19.答案:-195.若f (x )=ax 3+bx 2+cx +d (a >0)是R 上的增函数,则a ,b ,c 的关系式为________.解析:f ′(x )=3ax 2+2bx +c ≥0在R 上恒成立,则⎩⎪⎨⎪⎧a >0,Δ=4b 2-12ac ≤0,从而解得a >0,且b 2≤3ac .答案:a>0且b2≤3ac6.已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,求a的值及f(x)在[-2,2]上的最大值.解:f′(x)=6x2-12x=6x(x-2),由f′(x)=0得x=0,或x=2.当x变化时,f′(x),f(x)变化情况如下:∴当x=-2时,f(x)min=-40+a=-37,得a=3.故x=0时,f(x)最大值是3.一、选择题1.函数y=f(x)在[a,b]上()A.极大值一定比极小值大B.极大值一定是最大值C.最大值一定是极大值D.最大值一定大于极小值解析:由最值与极值的概念可知,D选项正确.答案:D2.函数y=x3-3x+3在区间[-3,3]上的最小值为()A.1B.5C.12 D.-15解析:y′=3x2-3,令y′=0,得3x2-3=0,∴x=1或x=-1.当-1<x<1时,y′<0;当x>1或x<-1时,y′>0,∴y极小值=1,y极大值=5.又当x=-3时,y=-15;当x=3时,y=21,∴y min=-15.答案:D3.若x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点,则有()A .a =-2,b =4B .a =-3,b =-24C .a =1,b =3D .a =2,b =-4解析:f ′(x )=3x 2+2ax +b ,依题意有-2和4是方程3x 2+2ax +b =0的两个根,所以有-2a 3=-2+4,b3=-2×4,解得a =-3,b =-24.答案:B4.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( ) A .-10 B .-71 C .-15D .-22解析:f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71. 答案:B 二、填空题5.函数f (x )=x 3-15x 2-33x +6的单调递减区间为________. 解析:f ′(x )=3x 2-30x -33=3(x -11)(x +1), 令f ′(x )<0,得-1<x <11. ∴f (x )的单调递减区间为(-1,11). 答案:(-1,11)6.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是________. 解析:f ′(x )=3x 2+2x +m ,∵f (x )在R 上是单调函数, ∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞7.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于________.解析:∵f ′(x )=12x 2-2ax -2b , ∴Δ=4a 2+96b >0,又x =1是极值点, ∴f ′(1)=12-2a -2b =0,即a +b =6.ab ≤(a +b )24=9,当且仅当a =b 时“=”成立,∴ab 的最大值为9.答案:98.函数f (x )=x 3-12x 2-2x +5,对任意x ∈[-1,2]都有f (x )>m ,则实数m 的取值范围是________.解析:由f ′(x )=3x 2-x -2=0,得x =-23或x =1,由题意知只要f (x )min >m 即可, 易知f (x )min =f (1)=72,所以m <72.答案:⎝⎛⎭⎫-∞,72 三、解答题9.求下列各函数的最值: (1)f (x )=-x 3+3x ,x ∈[-3,3]; (2)f (x )=x 2-54x (x <0).解:(1)f ′(x )=3-3x 2=3(1-x )(1+x ). 令f ′(x )=0,得x =1或x =-1,当x 变化时,f ′(x ),f (x )变化情况如下表:又因为f (x )在区间端点处的函数值为f (-3)=0, f (3)=-18,所以f (x )max =2,f (x )min =-18. (2)f ′(x )=2x +54x 2.令f ′(x )=0,得x =-3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以x 故f (x )的最小值为f (-3)=27,无最大值.10.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间.(2)若x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围. 解:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b ,因为f ′(1)=3+2a +b =0,f ′⎝⎛⎭⎫-23=43-43a +b =0,解得a =-12,b =-2, 所以f ′(x )=3x 2-x -2=(3x +2)(x -1),当x 变化时,f ′(x ),f (x )的变化情况如表: 单调递增 单调递减 单调递增所以函数f (x )的递增区间为⎝⎭⎫-∞,-23和(1,+∞); 递减区间为⎝⎛⎭⎫-23,1. (2)由(1)知,f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值,因为f (2)=2+c ,所以f (2)=2+c 为最大值.要使f (x )<c 2(x ∈[-1,2])恒成立,只需c 2>f (2)=2+c , 解得c <-1或c >2.故c 的取值范围为(-∞,-1)∪(2,+∞).。