LVDS信号PCB布线技巧
- 格式:doc
- 大小:26.00 KB
- 文档页数:7
LVDS原理及设计指南LVDS全称为低压差分信号(Low Voltage Differential Signaling),是一种高速串行接口技术,广泛应用于电子设备中进行高速数据传输。
LVDS主要通过两对差分信号进行数据传输,其中一对信号传输高电平信号,另一对信号传输低电平信号,通过差分运算来提高抗干扰能力和抗噪声能力,以实现高质量的数据传输。
LVDS的工作原理如下:1.发送端:将输入信号通过电流驱动压缩成低压差分信号,并通过双绞线传输给接收端。
2.传输线路:使用双绞线进行数据传输,利用差分运算来抵消传输线上的共模噪声和反射噪声。
3.接收端:对接收到的低压差分信号进行解码,还原成原始的输入信号。
设计LVDS接口时需要注意以下几点:1.信号线路的设计:为了保证信号的完整性和稳定性,需要控制信号线的阻抗匹配,减小信号线的长度和延迟,并避免信号线与高频噪声信号线的交叉和平行布线。
2.布线和PCB设计:保持信号线的长度均匀,并尽量使用同一层或相邻层进行差分信号线布线,以减小信号线之间的不平衡和串扰。
3.电源和接地:为了提供噪声的抑制和信号的稳定性,需要使用低噪声电源和低阻抗接地。
4.EMI抑制:由于LVDS接口传输速率高,会引起较大的电磁辐射干扰,因此需要在设计中加入适当的EMI抑制措施,如电磁屏蔽、地线设计和滤波器等。
5.信号匹配:为了保证所发送信号的完整性和稳定性,需要将发送端与接收端之间的差分阻抗匹配,以最大限度地减小信号反射和串扰。
总之,LVDS是一种高速串行接口技术,通过差分运算进行数据传输,具有抗噪声和抗干扰能力强的特点。
在设计LVDS接口时需注意信号线路的设计、布线和PCB设计、电源和接地、EMI抑制以及信号匹配等方面,以保证高质量的数据传输。
LVDS布局&布线应该考虑的因素:1〃差分走线;2. 阻抗匹配;3. 串扰(crosstalk):4. 电磁干扰(EMI);一:差分走线:1. 使反射尽量最小,并使共模噪声反射尽可能存在;差分走线越近越好;避免差分走线阻抗不均匀(阻抗变化,直角线);整个走线工程应该保持差分线的宽度保持不变。
2. 为了减少倾斜(skew),两差分线的长度应该保持一致,否则导致终端相位有差异,降低系统的性能。
3. 尽量减少信号路径中的过孔(Via)的数量&阻抗的不均匀。
4. 任何寄生负载(比如:寄生电容)应该在同一差分对中保持一致。
5. 应用45°角走线代替90°脚走线。
二:阻抗匹配:阻抗不匹配将导致共模噪声的增加并且产生电磁干扰(EMI),所以应该选择一匹配电阻&差分线的阻抗相一致。
(100Ohm).1. 在原理发送端的地方放一匹配电阻(100Ohm);2. 应用0603或者0805尺寸的芯片电阻;3. 终端阻抗&终端的距离应小于7mm,尽可能那的靠近接收端;三:差分信号&单端信号的串扰:1. 为了避免单端信号&LVDS信号产生串扰,应尽量使二者分层。
如果单端信号&差分信号走的太近,将会产生共模噪声,从而造成接收端的假出发,降低信号的质量,减少信号的噪声冗余量。
2. 如果两者在同一层,应使两者至少相距12mm.VCC&GND也应该分开。
四:电磁干扰(EMI):走线的电磁辐射可以产生横向电磁波,这种波如果逃脱屏蔽就会导致电磁兼容(EMC)的失败。
单端传输(比如:CMOS,TTL)所有暴露的线都能产生辐射,横向波伴随在这些走线的周围,一旦逃脱系统就会产生电磁干扰的问题。
LVDS走线彼此能相互消弱电磁波,成对出现,只有在边缘区域才能产生逃逸的现象,因此LVDS走线作为传输系统对单端传输(COMS,TTL)电磁干扰较少。
电磁干扰方面微带线&带状线的优点:微带线差分对下面的地平面的能有效地降低EMI,带状线上下均是地平面,能获得叫好的电磁干扰性能,但是有如下缺点:1〃较长的传输时间(1.5倍于微带线);2〃需要较多的过孔;3〃要求较多的层;4〃需要的精确的100欧姆的匹配电阻较难实现;为了更好的耦合电磁波,微带线&带状线的尺寸应该满足如下:图2:差分对想要较好的耦合需要的条件:S<2W; S2S: 总的指导原则(电源&布局)1) 在低频(500-600MHz)时,选用FR-4材料制造;在更高速度的时候选用G-FEK或者Teflon来设计生产。
LVDS PCB板布线要点
(A)至少使用4层PCB板(从顶层到底层):LVDS信号层、地层、电源层、TTL信号层;
(B)使TTL信号和LVDS信号相互隔离,否则TTL可能会耦合到LVDS 线上,最好将TTL和LVDS信号放在由电源/地层隔离的不同层(C)使LVDS驱动器和接收器尽可能地靠近连接器的LVDS
(D)使用分布式的多个电容来旁路LVDS设备,表面贴电容靠近电源/地层管脚放置;
(E)电源层和地层应使用粗线,不要使用50Ω布线规则;
(F)保持PCB地线层返回路径宽而短;
(G)应该使用利用地层返回铜线(gu9ound?return?wire)的电缆连接两个系统的地层;
(H)?使用多过孔(至少两个)连接到电源层(线)和地层(线),表面贴电容可以直接焊接到过孔焊盘以减少线头。
PCB(印制电路板)中的电路走线技巧PCB(印制电路板)中的电路走线技巧布线(Layout)是PCB设计工程师最基本的工作技能之一。
走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout得以实现并验证,由此可见,布线在高速PCB设计中是至关重要的。
下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。
主要从直角走线,差分走线,蛇形线等三个方面来阐述。
1.直角走线直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。
其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。
直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。
传输线的直角带来的寄生电容可以由下面这个经验公式来计算:C=61W(Er)1/2Z0在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。
举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量:T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps通过计算可以看出,直角走线带来的电容效应是极其微小的。
由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。
PCB板布线技巧1.合理规划布局:在开始布线之前,应该先对PCB板进行合理规划布局。
要根据电路的功能和信号传输的需求,将元器件和功能块合理地部署在PCB板上。
在布置元器件时,应该注意使信号路径尽可能的短,并保持良好的信号完整性。
2.地线和电源线设计:地线和电源线是电路中非常重要的信号线。
在布线时,要保证地线和电源线的宽度足够大以承受电流负载,并且要尽量减小地线和电源线的阻抗。
此外,还需要注意地线和电源线之间的间距,以避免相互干扰。
3.运用差分信号线:对于高速传输信号线,可以采用差分信号线布线。
差分信号线可以提高信号的抗干扰能力,减小信号线对周围环境的敏感度。
在布线时,应保持差分信号线的长度相等,并保持一定的间距,以避免互相干扰。
4.控制信号和高频信号的布线:对于控制信号和高频信号,布线时需要格外注意。
控制信号线应尽量和地线分开,以减小相互干扰的可能性。
对于高频信号线,应尽量避免走直线,而是采用更曲折的布线方式,以减小信号的辐射和串扰。
5.设计适当的信号地方向:在布线时,需要合理地选择信号的走向。
对于高频信号和运放信号,应尽量避免穿越整个板子。
信号线的走向应避免和其他高频信号和电源线相交,以减小相互干扰的可能性。
6.控制阻抗匹配:在布线中,要注意保持信号线的阻抗匹配。
如果信号线的阻抗不匹配,会导致信号的反射和损耗,从而影响信号的传输和质量。
通过控制信号线的宽度和间距,可以实现阻抗的匹配。
7.确保信号完整性:在布线时,需要注意信号的完整性。
可以通过增加电容和电感等元器件来实现信号的滤波和隔离,以减小干扰和噪声对信号的影响。
此外,还可以采用差分对地布线来降低信号的串扰。
8.注意电流回路:在布线时,需要特别关注电流回路的设计。
电流回路的布线需要注意回路的完整性,避免出现回路断开或者电流集中在其中一小段线路上的情况,从而引起电压降低和电流过载的问题。
以上就是PCB板布线的一些技巧。
在实际设计过程中,还需要根据具体的电路设计要求和特性进行合理的布线设计,从而实现电路性能和可靠性的最优化。
LVDS布板指导LVDS布局&布线应该考虑的因素:1.差分走线; 2. 阻抗匹配;3. 串扰(crosstalk):4. 电磁干扰(EMI);一:差分走线:1.使反射尽量最小,并使共模噪声反射尽可能存在;差分走线越近越好;避免差分走线阻抗不均匀(阻抗变化,直角线);整个走线工程应该保持差分线的宽度保持不变。
2.为了减少倾斜(skew),两差分线的长度应该保持一致,否则导致终端相位有差异,降低系统的性能。
3.尽量减少信号路径中的过孔(Via)的数量&阻抗的不均匀。
4.任何寄生负载(比如:寄生电容)应该在同一差分对中保持一致。
5.应用45°角走线代替90°脚走线。
二:阻抗匹配:阻抗不匹配将导致共模噪声的增加并且产生电磁干扰(EMI),所以应该选择一匹配电阻&差分线的阻抗相一致。
(100Ohm).1.在原理发送端的地方放一匹配电阻(100Ohm);2.应用0603或者0805尺寸的芯片电阻;3.终端阻抗&终端的距离应小于7mm,尽可能那的靠近接收端;三:差分信号&单端信号的串扰:1.为了避免单端信号&LVDS信号产生串扰,应尽量使二者分层。
如果单端信号&差分信号走的太近,将会产生共模噪声,从而造成接收端的假出发,降低信号的质量,减少信号的噪声冗余量。
2.如果两者在同一层,应使两者至少相距12mm.VCC&GND也应该分开。
图1:四:电磁干扰(EMI):走线的电磁辐射可以产生横向电磁波,这种波如果逃脱屏蔽就会导致电磁兼容(EMC)的失败。
单端传输(比如:CMOS,TTL)所有暴露的线都能产生辐射,横向波伴随在这些走线的周围,一旦逃脱系统就会产生电磁干扰的问题。
LVDS走线彼此能相互消弱电磁波,成对出现,只有在边缘区域才能产生逃逸的现象,因此LVDS走线作为传输系统对单端传输(COMS,TTL)电磁干扰较少。
电磁干扰方面微带线&带状线的优点:微带线差分对下面的地平面的能有效地降低EMI,带状线上下均是地平面,能获得叫好的电磁干扰性能,但是有如下缺点:1.较长的传输时间(1.5倍于微带线);2.需要较多的过孔;3.要求较多的层;4.需要的精确的100欧姆的匹配电阻较难实现;为了更好的耦合电磁波,微带线&带状线的尺寸应该满足如下:图2:差分对想要较好的耦合需要的条件:S<2W; S<B; D=2S:W------差分对中单个线的宽度;S-------差分走线内部的间距;D-------两差分对之间的宽度;B-------板子的厚度;差分对收发两端想要较好的耦合需要满足的条件:S<2W; S<B; D>2S:。
PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。
将电路分成模拟、数字和电源部分,然后分别布线。
这样可以减少干扰和交叉耦合。
2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。
这可以减少干扰和噪声,提高信号完整性。
3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。
可以通过设立地板隔离和电源隔离来降低电磁干扰。
4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。
这样可以减少丢失信号和干扰。
5.简化布线:简化布线路径,尽量缩短导线长度。
短导线可以减少信号传输延迟,并提高电路稳定性。
6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。
差分线布线可以减少信号的传输损耗和干扰。
7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。
地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。
8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。
参考层对称布线可以减少干扰,并提高信号完整性。
注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。
2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。
3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。
4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。
通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。
6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。
7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。
可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。
总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。
PCB布线技巧分享
PCB布线是电子设计中非常重要的一环,良好的布线设计可以提高电路性能和稳定性。
下面将分享一些PCB布线的技巧,帮助大家在设计电路板时更加高效和有效地进行布线。
首先,一个良好的PCB布线设计应该遵循一些基本原则。
首先是尽量缩短信号路径,减少信号传输的时间和损耗。
其次是避免信号干扰,尽量减少信号线之间的交叉和交错,尤其是数模混合信号电路。
此外,要保持信号线的阻抗匹配,尽量避免信号线的阻抗不匹配导致信号失真。
最后,还要注意电源线和地线的布线,保持良好的电源和地连接,以减少电磁干扰。
在进行PCB布线时,还有一些实用的技巧可以帮助设计者快速有效地完成布线。
首先是使用层叠布线技术,将信号线和电源线分布在不同的板层上,避免干扰和串扰。
其次是采用直连式布线,尽量减少线路的弯曲和长度,以减小信号传输的延迟和损耗。
此外,还可以使用差分信号线,提高信号的抗干扰能力,尤其适用于高速传输的信号线。
另外,在PCB布线设计中,还可以考虑一些特殊的布线技巧,如使用跳线连接不在同一板层上的电路元件,减少信号线的长度和复杂度。
此外,可以使用特殊形状的线路,如扇出线、波浪形线路等,减少信号线之间的干扰和串扰。
另外,还可以考虑使用地线填充技术,将多余的地线填满整个板面,减少电磁干扰和噪声。
总之,PCB布线是电子设计中非常重要的一环,良好的布线设计可以提高电路性能和稳定性。
通过遵循基本原则和采用一些实用的技巧,可以帮助设计者更加高效和有效地完成布线设计,提高电路板的质量和性能。
希望以上分享的PCB布线技巧对大家有所帮助,祝大家设计愉快!。
LVDS信号PCB布线技巧
LVDS信号PCB布线技巧.txt23让我们挥起沉重的铁锤吧!每一下都砸在最稚嫩的部位,当青春逝去,那些部位将生出厚晒太阳的茧,最终成为坚实的石,支撑起我们不再年轻但一定美丽的生命。
LVDS信号PCB布线技巧
有LVDS信号的印制板一般都要布成多层板。
由于LVDS信号属于高速信号,与其相邻的层应为地层,对LVDS信号进行屏蔽防止干扰。
另外密度不是很大的板子,在物理空间条件允许的情况下,最好将LVDS信号与其它信号分别放在不同的层。
例如,对于四层板,通常可以按以下进行布层:LVDS信号层、地层、电源层、其它信号层。
2.LVDS信号阻抗计算与控制。
对于LVDS信号,必须进行阻抗控制(通常将差分阻抗控制在100欧姆)。
对于不能控制阻抗的PCB布线必须小于500MIL。
这样的情况主要表现在连接器上,所以在布局时要注意将LVDS器件放在靠近连接器处,让信号从器件出来后就经过连接器到达另一单板。
同样,让接收端也靠近连
接器,这样就可以保证板上的噪声不会或很少耦合到差分线上。
LVDS信号的电压摆幅只有350 mV,适于电流驱动的差分信号方式工作。
为了确保信号在传输线当中传播时不受反射信号的影响,LVDS信号要求传输线阻抗受控,通常差分阻抗为(100±10)Ω。
阻抗控制的好坏直接影响信号完整性及延迟。
如何对其进行阻抗控制呢?
①确定走线模式、参数及阻抗计算。
LVDS分外层微带线差分模式和内层带状线差分模式两种,分别如图2、图3所示。
通过合理设置参数,阻抗可利用相关阻抗计算软件(如POLAR-SI6000、CADENCE的ALLEGRO)计算也可利用阻抗计算公式计算。
②走平行等距线。
确定走线线宽及间距,在走线时要严格按照计算出的线宽和间距,两线间距要一直保持不变,也就是要保持平行。
平行的方式有两种:一种为两条线走在同一线层(side-by-side),另一种为两条线走在上下相两层(over-under)。
一般尽量避免使用后者即层间差分信号,因为在PCB板的实际加工过程中,由于层叠之间的层压对准精度大大低于同层蚀刻
精度,以及层压过程中的介质流失,不能保证差分线的间距等于层间介质厚度,会造成层间差分对的差分阻抗变化。
困此建议尽量使用同层内的差分。
3.紧耦合原则。
在计算线宽和间距时最好遵守紧耦合的原则,也就是差分对线间距小于或等于线宽。
当两条差分信号线距离很近时,电流传输方向相反,其磁场相互抵消,电场相互耦合,电磁辐射也要小得多。
4.走短线、直线。
为确保信号的质量,LVDS差分对走线应该尽可能地短而直,减少布线中的过孔数,避免差分对布线太长,出现太多的拐弯,拐弯处尽量用45°或弧线,避免90°拐弯。
5.不同差分线对间处理。
LVDS对走线方式的选择没有限制,微带线和带状
线均可,但是必须注意要有良好的参考平面。
对不同差分线之间的间距要求间隔不能太小,至少应大于3~5倍差分线间距。
必要时在不同差分线对之间加地孔隔离以防止相互问的串扰。
6.LVDS信号远离其它信号。
对LVDS信号和其它信号比如TTL信号,最好使用不同的走线层,如果因为设计限制必须使用同一层走线,LVDS和TTL的距离应该足够远,至少应该大于3~5倍差分线间距。
7.LVDS差分信号不可以跨平面分割。
尽管两根差分信号互为回流路径,跨分割不会割断信号的回流,但是跨分割部分的传输线会因为缺少参考平面而导致阻抗的不连续(如图箭头处所示,其中GND1、GND2为LVDS相邻的地平面)。
8.匹配电阻的精度要求。
对于点到点的拓扑,走线的阻抗通常控制在100
Ω,但匹配电阻可以根据实际的情况进行调整。
电阻的精度最好是1%~2%。
因为根据经验,10%的阻抗不匹配就会产生5%的反射。
对接收端的匹配电阻到接收管脚的距离要尽量的靠近,一般应小于7mm,最大不能超过12mm。
9.电源地
对收发器的电源和地进行滤波处理,滤波电容的位置应该尽量靠近电源和地管脚,滤波电容的值可以参照器件手册。
对电源和地管脚与参考平面的连接应该使用短和粗的连线连接。
同时使用多点连接。
保证信号的回流路径最短,同时没有相互间的干扰。
在低频(500-600MHZ)时,选用FR-4材料制造,在更高速度的时候选用G-FEK或Teflon来设计生产;用旁路电容旁路所有的电源平面,旁路电容的大小由电源噪声的频谱决定,所选用的电容应该能滤去最大功率的部分(通常在100-300MHZ),典型利用10uF/3V的钽电容;所有电源的VCC-CKIN和VCC-CKOUT管脚应该用
0.1、0.01、0.001uF的云母、碰珠或者0805尺寸的贴片电容并行连接进行旁路,这些电容应该放在管脚的下面,另外还要加一个2 .7uF的电容; LVDS的电源和地分层。