新同步课课精练 数学 高一年级(上)答案
- 格式:doc
- 大小:10.07 MB
- 文档页数:18
C. 5D. 9A级:“四基”巩固训练一、选择题1. 已知集合S= {a, b, c}中的三个元素是厶ABC的三边长,那么△ ABC —定不是()A .锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案D解析因为集合S= {a, b, c}中的元素是△ ABC的三边长,由集合元素的互异性可知a, b, c互不相等,所以△ ABC 一定不是等腰三角形.故选 D.2. 下列集合的表示方法正确的是()A. 第二、四象限内的点集可表示为{(x, y)|xy W0, x€ R, y€ R}B. 不等式x- 1v4的解集为{x v5}C. {全体整数}D. 实数集可表示为R答案D解析A中应是xy<0; B中的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x,应为{x|x<5} ; C中的“{ } ”与“全体”意思重复.故选D.3. 下列集合恰有两个元素的是()2 2A. {x2-x= 0}B. {x|y=x2-x}C. {y|y2—y= 0}D. {y|y=x2-x}答案C解析A为一个方程集,只有一个元素;B为方程y= x2—x的定义域,有无数个元素;C为方程y2—y= 0的解,有0,1两个元素;D为函数y=x2—x的值域,有无数个元素.故选C.4. 已知集合A= {0,1,2},则集合B = {x—y|x€ A,y€ A}中元素的个数是()A. 1B. 3答案C解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知B= {0 , - 1,—2, 1,2},因此集合B中共含有5个元素•故选C.5•若2?{xX—a>0},贝U实数a的取值范围是()A. a^2B. a>2C. a>2D. a= 2答案C解析因为2?{x|x—a>0},所以2不满足不等式x—a>0,即满足不等式x—a<0,所以 2 —a<0,即a>2,故选 C.二、填空题6. ____________________________________________________________若A= { —2,2,3,4}, B = {x|x= t, t € A},则用列举法表示B= __________ .答案{4,9,16}解析由题意,A= { —2,2,3,4}, B = {x|x = t2, t€ A},依次计算出B中元素,用列举法表示可得B = {4,9,16},故答案为{4,9,16}.7. 已知集合A= {x|ax2—3x—4二0, x€ R},若A中至多有一个元素,则实数a的取值范围是_________ .答案 a = 0或a< —164 2解析当a= 0时,A= {x|x= —3};当a^ 0时,关于x的方程ax —3x— 4 =0应有两个相等的实数根或无实数根,所以△= 9+ 16a< 0,即a< —箱.故所求9的a的取值范围是a = 0或a w—乔.8. __________________________________________ 已知集合A中的元素均为整数,对于k€ A,如果k—1?A且k+ 1?A,那么称k是A的一个“孤立元”.给定集合S= {123,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有____________________________________________ .答案6解析根据“孤立元”的定义,由S的3个元素构成的所有集合中,不含“孤立元”的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共有6 个.故答案为6.三、解答题9. 用适当的方法表示下列集合:(1) 绝对值不大于3的偶数的集合;(2) 被3除余1的正整数的集合;(3) 一次函数y= 2x—3图像上所有点的集合;x+y= 1,⑷方程组,' 的解集.y=—1解(1){—2,0,2}.(2) {m|m= 3n+ 1,n€ N}.(3) {(x, y)|y二2x—3}.⑷{(0,1)}.10. 已知集合A= {a+ 3,(a+ 1)2,a2+ 2a + 2},若1€ A,求实数a 的值.解①若a+ 3= 1,则a= —2,此时A= {1,1,2},不符合集合中元素的互异性,舍去.②若(a+ 1)2= 1,贝U a = 0 或a= —2.当a= 0时,A= {3,1,2},满足题意;当a= —2时,由①知不符合条件,故舍去.③若 a + 2a + 2 = 1,则a= —1,此时A= {2,0,1},满足题意.综上所述,实数a的值为—1或0.B级:“四能”提升训练1 .已知集合 A= {xX = 3n + 1, n € Z }, B = {xX = 3n + 2, n € Z } , M = {x|x = 6n + 3, n € Z }.⑴若m € M ,则是否存在a € A , b € B ,使m = a + b 成立?(2)对于任意a € A , b € B ,是否一定存在 m € M ,使a + b = m ?证明你的结 论. 解 ⑴设 m = 6k + 3= 3k + 1 + 3k + 2(k € Z ), 令 a = 3k + 1, b = 3k + 2,贝U m = a + b.故若m € M ,贝U 存在a € A , b € B , 使 m = a + b 成立. (2)不一定.证明如下:设 a = 3k + 1, b = 3l + 2, k , l € Z ,贝U a + b = 3(k +1)+ 3. 当 k +1 = 2p(p € Z )时,a + b = 6p + 3€ M , 此时存在m € M ,使a + b = m 成立;当 k +1 = 2p + 1(p € Z )时,a + b = 6p + 6?M ,此时不存在 m € M ,使 a + b = m 成立.故对于任意a € A , b € B ,不一定存在 m € M ,使a + b = m. 2.设实数集S 是满足下面两个条件的集合:1①1?S;②若a € S ,贝U € S.1- a1(1) 求证:若 a € S ,贝U 1--€ S;a(2) 若 2€ S ,则S 中必含有其他的两个数,试求出这两个数; (3) 求证:集合S 中至少有三个不同的元素. 解 ⑴证明:••• 1?S,.・. 0?S ,即a M 0. 1 1由a € S,贝U € S 可得1 — € S , 1-a “ 11-1-a1故若a € S,贝U 1-匚€ S.a11-1-a1-a 1-a -11⑵由2€ S,知口 =- 1€ S;1 1由一1€ S,知=沙S,1 —(—1)21 1当扌€ S时,十二2€ S,1 — 21因此当2€ S时,S中必含有一1和㊁1 1(3)证明:由(1), 知a€ S,厂€ S,1—-€ S.I —a a1 1下证:a,三,1-a三者两两互不相等.1 2①若*仁,则a—沙1二°,无实数解,1 2②若a= 1 —a,则a2—a+ 1 = °,无实数解, a1 a;1 1 2③若二=1-1则a- a+仁°,无实数解,丄工1—11—a a'综上所述,集合S中至少有三个不同的元素.。
5.4 三角函数的图象与性质(精练)【题组一 五点画图】1.(2021·全国高一课时练习)作出函数24y x π⎛⎫=- ⎪⎝⎭在9,88x ππ⎡⎤∈⎢⎥⎣⎦上的图象.【答案】答案见解析 【解析】令2X x π=-,列表如下:描点连线得图象如图所示.2.(2021·全国高一课时练习)用“五点法”作下列函数的简图. (1)[]()2sin 0,2y x x π=∈;(2)5sin ,222y x x πππ⎛⎫⎛⎫⎡⎤=-∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭.【答案】(1)图象见解析;(2)图象见解析. 【解析】(1)列表如下:描点连线如图:(2)列表如下:描点连线如图:3.(2021·全国)已知函数()2cos 1f x x =-.(1)完成下列表格,并用五点法在下面直角坐标系中画出()f x 在[]0,2π上的简图;(2)求不等式()1f x ≤的解集.【答案】(1)答案见解析;(2)572,266k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈). 【解析】(1)由函数()2cos 1f x x =-,可得完成表格如下:可得()f x 在[]0,2π的大致图象如下:(2)由()1f x ≤,可得2cos 11x -≤,即cos x ≤,当[]0,2x π∈时,由cos x ≤,得57,66x ππ⎡⎤∈⎢⎥⎣⎦.又由函数cos y x =的最小正周期为2π,所以原不等式的解集为572,266k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈). 【题组二 解三角不等式】1.(2021·全州县第二中学高一期中)使得sin cos x x >正确的一个区间是( ) A .2ππ⎛⎫⎪⎝⎭,B .342ππ⎛⎫ ⎪⎝⎭,C .04π⎛⎫ ⎪⎝⎭,D .64ππ⎛⎫ ⎪⎝⎭,【答案】A【解析】作出sin y x =与cos y x =的图象,如图:由图可知,若sin cos x x >,其中2ππ⎛⎫⎪⎝⎭,满足,故选:A2.(2021·上海市洋泾中学高一月考)满足2sin 13x π⎛⎫-= ⎪⎝⎭,[0,2)x π∈的角x 的集合___________.【答案】7,26ππ⎧⎫⎨⎬⎩⎭【解析】由2sin 13x π⎛⎫-= ⎪⎝⎭得,1sin 32x π⎛⎫-= ⎪⎝⎭,因为[0,2)x π∈,所以5333x πππ-≤-<.当5333x πππ-≤-<时, 若1sin 32x π⎛⎫-= ⎪⎝⎭,则3x π-可能的取值为6π,56π,相应的x 的取值为2π,76π.所以所求角x 的集合为7,26ππ⎧⎫⎨⎬⎩⎭.故答案为:7,26ππ⎧⎫⎨⎬⎩⎭.3.(2021·上海)函数sin 1cos xy x=+的定义域为______.【答案】{}2,x x k k ππ≠+∈Z【解析】要使函数有意义,则1cos 0x +≠, 即cos 1x ≠-,所以()2x k k ππ≠+∈Z . 故答案为:{}2,x x k k ππ≠+∈Z .4.(2021·陕西榆林十二中高一月考)若()0,x π∈,则满足2sin 2x 的x 的取值范围为______________; 【答案】30,,44πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【解析】当()0,x π∈时,令2sin 2x,解得4x π=或34π,结合正弦函数的图象与性质,可得当0,x时,2sin 2x的解集为30,,44πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭. 故答案为:30,,44πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭5.(2021·全国高一课时练习)求函数的定义域:(1)tan 4y x π⎛⎫=+ ⎪⎝⎭;(2)y【答案】(1),4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;(2),23x k x k k Z ππππ⎧⎫-<≤+∈⎨⎬⎩⎭.【解析】(1)由()42x k k Z πππ+≠+∈得:,4x k k Z ππ≠+∈,∴函数tan 4y x π⎛⎫=+ ⎪⎝⎭的定义域为,4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.(2)tan 0x ≥得:tan x ≤结合tan y x =的图象知:在,22ππ⎛⎫- ⎪⎝⎭上,满足tan x ≤x 应满足23x ππ≤-<,∴y =,23x k x k k Z ππππ⎧⎫-<≤+∈⎨⎬⎩⎭. 【题组三 周期】1.(2021·全国高一课时练习)下列函数是周期函数的有( ) ①sin y x = ②cos y x = ③2y xA .①③B .②③C .①②D .①②③【答案】C【解析】易得sin y x =和cos y x =是周期函数,2yx 不是周期函数.故选:C.2.(2021·镇远县文德民族中学校高一月考)函数()sin 26f x x π⎛⎫=- ⎪⎝⎭的最小正周期是( )A .2πB .πC .2πD .4π【答案】B【解析】由题意,函数()sin 26f x x π⎛⎫=- ⎪⎝⎭,根据正弦型函数的周期的计算方法,可得()f x 最小正周期为22T ππ==.故选:B. 3.(2021·全国高一课时练习)函数cos 3y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .4πB .2πC .πD .2π【答案】B【解析】因为cos 3y x π⎛⎫=+ ⎪⎝⎭,所以其最小正周期为221T ππ==,故选:B.4.(2021·北京丰台·高一期中)函数()cos 2f x x =的图象中,相邻两条对称轴之间的距离是( ) A .2π B .πC .π2D .π4【答案】C【解析】函数的最小正周期是22T ππ==,因此相邻两条对称轴之间的距离是22T π=. 故选:C .5.(2021·北京通州区·)已知函数:①tan y x =,②sin y x =,③sin y x =,则其中最小正周期为π的是( ) A .①② B .①③C .②③D .①②③【答案】B【解析】①tan y x =最小正周期为π②sin y x =的图象,在y 轴右侧部分与sin y x =一样,又因为其为偶函数,图象关于y 轴对称,由图象可知它不是周期函数.③sin y x =的图象,可由sin y x =的图象,保持x 轴上半部分不变,x 轴下半部分图象向上翻折得到. 由图象可知,其最小正周期为π故选:B.6.(2021·蚌埠田家炳中学高一月考)(多选)下列函数中,最小正周期为π的是( ) A .cos |2|y x =B .|cos |y x =C .cos 26y x π⎛⎫=+ ⎪⎝⎭D .tan 24y x π⎛⎫=- ⎪⎝⎭【答案】ABC【解析】对于A ,cos |2|cos 2,y x x ==最小正周期为22T ππ==;对于B ,|cos |y x ==22T ππ==; 对于C ,cos 26y x π⎛⎫=+ ⎪⎝⎭,最小正周期为22T ππ==; 对于D ,tan 24y x π⎛⎫=- ⎪⎝⎭,最小正周期为2T π=,故选 :ABC7.(2021·齐河县第一中学高一期中)(多选)下列函数周期为π的是( ) A .sin y x = B .cos y x =C .tan y x =D .2sin 24y x π⎛⎫=+ ⎪⎝⎭【答案】BCD【解析】sin y x =的最小正周期为2π;由cos y x =的图象是由y =cos x 的图象将x 轴上方的部分保持不变,下方的部分向上翻转而得到,由图象可知其周期为π;tan y x =的最小正周期为π;2sin 24y x π⎛⎫=+ ⎪⎝⎭的最小正周期为22ππ=.故选:BCD. 【题组四 奇偶性】1.(2021·池州市江南中学高一期末)下列函数中,最小正周期是π且是奇函数的是( ) A .sin 2y x = B .sin y x =C .tan2xy = D .cos 2y x =【答案】A【解析】A 选项,sin 2y x =的最小正周期是π,且是奇函数,A 正确. B 选项,sin y x =的最小正周期是2π,且是奇函数,B 错误.C 选项,tan2xy =的最小正周期为2π,且是奇函数,C 错误. D 选项,cos y x =的最小正周期是π,且是偶函数,D 错误. 故选:A2.(2021·陕西高一期末)下列函数为奇函数的是( ) A .2cos y x x =+ B .|sin |y x =C .2sin y x x =D .cos tan y x x =-【答案】C【解析】A.函数的定义域为R ,满足()()f x f x -=,所以函数是偶函数,故错误; B. 函数的定义域为R ,满足()()f x f x -=,所以函数是偶函数,故错误; C. 函数的定义域为R ,满足()()f x f x -=-,所以函数是奇函数,故正确;D. 函数的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,函数既不满足()()f x f x -=,也不满足()()f x f x -=-,所以函数既不是奇函数,也不是偶函数,故错误. 故选:C3.(2021·青海西宁·湟川中学高一开学考试)下列函数中,最小正周期为π,且为偶函数的是( )A .tan 3y x π⎛⎫=+ ⎪⎝⎭B .cos 22y x π⎛⎫=+ ⎪⎝⎭C .sin 2y x =D .sin y x =【答案】D【解析】A. tan 3y x π⎛⎫=+ ⎪⎝⎭的最小正周期为π,是非奇非偶函数,故错误;B. cos 2sin 22y x x π⎛⎫=+=- ⎪⎝⎭的最小正周期为π,是奇函数,故错误;C.如图所示:,sin 2y x =不周期函数,为偶函数,故错误;D. 如图所示:,sin y x =的最小正周期为π,是偶函数,故正确; 故选:D4.(2021·黑龙江绥化·)下列函数中,最小正周期为π,且为偶函数的有( ) A .πtan 3y x ⎛⎫=- ⎪⎝⎭B .πsin 22y x ⎛⎫=+ ⎪⎝⎭C .sin 2y x =D .sin y x =【答案】D【解析】πtan 3y x ⎛⎫=- ⎪⎝⎭的最小正周期为π,不是偶函数,A 不满足条件.cos 2πsin 22y x x ⎛⎫=+ ⎪=⎝⎭的最小正周期为2π,B 不满足条件.根据sin |2|y x =为偶函数,不是周期函数,C 不满足条件.根据()sin f x x ==π,且()()f x f x -=为偶函数,D 满足条件. 故选:D .5.(2021·北京市昌平区实验学校高一期中)下列函数是奇函数的是( ) A .()cos f x x x =+ B .()2cos f x x x =+C .()sin f x x x =+D .()2sin f x x x =+【答案】C【解析】选项A. ()()11cos111cos1f f =+-=-+, 显然()()11f f ≠--,所以()f x 不是奇函数. 选项B. ()()()()22cos cos f x x x x x f x -=-+-=+=显然()()f x f x -≠-,所以()f x 为偶函数,不是奇函数. 选项C. ()()()()()sin sin f x x x x x f x -=-+-=-+=- 所以()f x 是奇函数.选项D. ()()11sin111sin1f f =+-=-, 显然()()11f f ≠--,所以()f x 不是奇函数. 故选:C6.(2021·上海)若函数()ππ2sin sin 44f x x m x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭是偶函数,则m =___________.【答案】2-【解析】因为函数为偶函数,则44f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,所以ππππ2sin sin 2sin sin 44444444m m ππππ⎛⎫⎛⎫⎛⎫⎛⎫++-=-++-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,整理得200m +=-,解得2m =-,经检验,m 的值符合题意 故答案为: 2-. 【题组五 单调性】1.(2021·全国)函数()sin ,[,0]3f x x x ππ⎛⎫=-∈- ⎪⎝⎭的单调递增区间是( )A .5,6ππ⎡⎤-⎢⎥⎣⎦B .5,66ππ⎡⎤--⎢⎥⎣⎦ C .,03π⎡⎤-⎢⎥⎣⎦ D .,06π⎡⎤-⎢⎥⎣⎦【答案】D 【解析】由22,232k x k k Z πππππ-≤-≤+∈,解得522,66k x k k Z ππππ-≤≤+∈, 又0x π-≤≤,∴06x π-≤≤.所以函数()f x 的单调递增区间为,06π⎡⎤-⎢⎥⎣⎦.故选:D.2.(2021·全国)函数sin 24y x π⎛⎫=- ⎪⎝⎭的单调增区间是( )A .3,()88k k k Z ππππ⎡⎤---+∈⎢⎥⎣⎦B .32,2()88k k k Z ππππ⎡⎤---+∈⎢⎥⎣⎦C .37,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .372,2()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】C【解析】因为sin 24y x π⎛⎫=- ⎪⎝⎭,所以sin 24y x π⎛⎫=-- ⎪⎝⎭,令3222,242k x k k Z πππππ+≤-≤+∈,解得37,88k x k k Z ππππ+≤≤+∈,故函数的单调递增区间为37,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦故选:C3.(2021·全国)下列函数中,周期为π,且在,42ππ⎡⎤⎢⎥⎣⎦上为减函数的是( )A .y =sin (2)2x π+B .y =cos (2)2x π+C .y =sin ()2x π+D .y =cos ()2x π+【答案】A【解析】对于选项A ,y =sin (2)2x π+=cos 2x ,周期为π,当42ππx ≤≤时,22x ππ≤≤,所以cos 2y x =在[,]42ππ上是减函数,所以该选项正确;对于选项B ,y =cos 2sin 22x x π⎛⎫+=- ⎪⎝⎭,周期是π,在[,]42ππ上是增函数,所以该选项错误;对于选项C ,y =sin ()cos 2x x π+=,最小正周期是2π,所以该选项错误;对于选项D ,y =cos ()sin 2x x π+=-,最小正周期是2π,所以该选项错误.故选:A4.(2021·河南新乡县高中高一月考)函数()π2cos 3f x x ⎛⎫=- ⎪⎝⎭的单调递增区间是( )A .π4π2π,2π(Z)33k k k ⎡⎤++∈⎢⎥⎣⎦B .π2π2π,2π(Z)33k k k ⎡⎤++∈⎢⎥⎣⎦C .2ππ2π,2π(Z)33k k k ⎡⎤-+∈⎢⎥⎣⎦D .2π4π2π,2π(Z)33k k k ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】()ππ2cos 2cos 33f x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,令()ππ+2π2πZ 3x k k k -≤≤-∈, 解得:()+2π2πZ 2ππ+33x k k k ≤-≤∈, 所以函数()π2cos 3f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为2ππ2π,2π(Z)33k k k ⎡⎤-+∈⎢⎥⎣⎦即函数()π2cos 3f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为2ππ2π,2π(Z)33k k k ⎡⎤-+∈⎢⎥⎣⎦,故选:C.5.(2021·安徽池州·高一期中)已知函数()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围是( ) A .(]0,1 B .[]1,2 C .71,2⎡⎤⎢⎥⎣⎦D .72,2⎡⎤⎢⎥⎣⎦【答案】C【解析】72266226k k k x k x ππππππωππωω++-+⇒≤≤≤≤, 所以()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭的单调减区间为72266,k k ππππωω⎡⎤++⎢⎥⎢⎥⎢⎥⎣⎦,所以72266,,63k k ππππππωω⎡⎤++⎢⎥⎡⎤⊆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,所以2667263k k πππωπππω⎧+⎪≤⎪⎪⎨⎪+⎪≥⎪⎩,解得121762k k ωω≥+⎧⎪⎨≤+⎪⎩,且k Z ∈,则712ω≤≤,则ω的取值范围是71,2⎡⎤⎢⎥⎣⎦,故选:C.6.(2021·湖北武汉·)若函数()2cos 2(0)3f x x πωω⎛⎫=-> ⎪⎝⎭在区间,62ππ⎛⎫⎪⎝⎭内単调递减.则ω的最大值为( ) A .23B .34C .43D .32【答案】C【解析】()2cos 22cos 2(0)33f x x x ππωωω⎛⎫⎛⎫=-=-> ⎪ ⎪⎝⎭⎝⎭当,62x ππ⎛⎫∈ ⎪⎝⎭且0>ω时,23333x πωπππωπω-<-<-,因为余弦函数cos y x =的单调递减区间为[]()2,2k k k Z πππ+∈,所以,[](),2,2333k k k Z πωπππωπππ⎛⎫--⊆+∈⎪⎝⎭, 所以,23323k k πωππππωππ⎧-≥⎪⎪⎨⎪-≤+⎪⎩,解得()46123k k k Z ω+≤≤+∈,由42613k k +≥+,可得112k ≤,k Z ∈且0>ω,0k ∴=,413ω≤≤. 因此,ω的最大值为43.故选:C7.(2021·安徽蚌埠·高一期末)已知函数()sin (0)f x x ωω=>在3,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是( ) A .[)2,+∞ B .(]0,2C .2,3⎡⎫+∞⎪⎢⎣⎭D .20,3⎛⎤⎥⎝⎦【答案】D 【解析】当22()22k x k k Z πππωπ-≤≤+∈时,因为0>ω,所以有11(2)(2)()22k x k k Z ππππωω-⋅≤≤+⋅∈,因此函数()sin (0)f x x ωω=>的递增区间为:2222[,]()k k k Z ππππωω-+∈,因为函数()sin (0)f x x ωω=>在3,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以令0k =,且有32424ππωππω⎧⎪≤⎪⎪⎨⎪-⎪-≥⎪⎩,因为0>ω,所以解得:203ω<≤,故选:D8.(2021·北京市第六十六中学)函数()cos f x x =是( ) A .奇函数,且在区间0,2π⎛⎫⎪⎝⎭上单调递增B .奇函数,且在区间0,2π⎛⎫⎪⎝⎭上单调递减C .偶函数,且在区间0,2π⎛⎫⎪⎝⎭上单调递增D .偶函数,且在区间0,2π⎛⎫⎪⎝⎭上单调递减【答案】D【解析】由题意,函数()cos f x x =的定义域R ,且()()cos()cos f x x x f x -=-==, 所以函数()cos f x x =为偶函数,又由余弦函数的性质,可得()cos f x x =在区间0,2π⎛⎫⎪⎝⎭为递减函数.故选:D.9.(2021·全国)函数()2cos (0)4f x x πωω⎛⎫=+> ⎪⎝⎭在3,24ππ⎛⎫⎪⎝⎭上单调递减,则ω的最大值是( )A .1B .114C .113D .4【答案】C【解析】因为函数()2cos (0)4f x x πωω⎛⎫=+> ⎪⎝⎭在3,24ππ⎛⎫⎪⎝⎭上单调递减,所以314242T ππππω-=≤=,所以04ω<≤. 所以33,,,2424444x x πωππππππωω+∈⎛⎫⎛⎫∈++ ⎪ ⎪⎝⎭⎝⎭因为cos y x =的单调递减区间为[]2,2,k k k Z πππ+∈,所以2243244k k ππωπππωππ⎧+≥⎪⎪⎨⎪+≤+⎪⎩,解得1841,23k k k Z ω-+≤≤+∈,由于1841,23k k k Z -+≤+∈,故9,8k k Z ≤∈.所以当1k =时,得ω的最大区间:71123ω≤≤. 故ω的最大值是113. 故选:C.10(2021·兴仁市凤凰中学高一期末)函数tan(2)4y x π=-+的单调递减区间为_______________.【答案】3(,),2828k k k Z ππππ-+∈ 【解析】由题意可知tan(2)4y x π=--,则要求函数的单调递减区间只需求tan(2)4y x π=-的单调递增区间,由2,242k x k k Z πππππ-<-<+∈得3,2828k k x k Z ππππ-<<+∈,所以函数tan(2)4y x π=-+的单调递减区间为3(,),2828k k k Z ππππ-+∈. 故答案为:3(,),2828k k k Z ππππ-+∈. 【题组六 对称性】1.(2021·湖北十堰·)函数()43f x cos x ππ⎛⎫=- ⎪⎝⎭图象的一条对称轴可能是直线x =( )A .53-B .13- C .3πD .43π【答案】A 【解析】令(3)Z x k k πππ-=∈,解得()1Z 3k x k =+∈. 当2k =-时,53x =-.故选:A.2.(2021·北京市第六十六中学)如果函数()cos y x ϕ=+的一个零点是3π,那么ϕ可以是( ) A .6π B .6π-C .3π D .3π-【答案】A【解析】由题意,函数()cos y x ϕ=+的一个零点是3π,可得3cos()0πϕ+=,即,32k k Z ππϕπ+=+∈,解得,6k k Z πϕπ=+∈,当0k =时,可得6π=ϕ. 故选:A.3.(2021·河南(理))若函数()()sin f x x ϕ=+(()0,ϕπ∈)图象的一条对称轴为6x π=,则ϕ=( )A .6π B .3π C .23π D .56π 【答案】B 【解析】由题意知62k ππϕπ+=+(k ∈Z ),则3k πϕπ=+(k ∈Z ), 当0k =时,3πϕ=,符合题意,其它都不满足题意.故选:B.4.(2021·齐河县第一中学高一月考)tan(2)4y x π=+的对称中心为( )A .,0),28k k Z ππ+∈( B .(,0),28k k Z ππ-∈ C .(,0),48k k Z ππ+∈ D .(,0),48k k Z ππ-∈ 【答案】D【解析】由()tan f x x =的对称中心为(0),2k π, 令242k x ππ+=,可得48k x ππ=-()k ∈Z . 故选:D5.(2021·山西实验中学高一开学考试)(多选)下列关于函数n 3ta y x π+=⎛⎫ ⎪⎝⎭的说法错误的是( )A .在区间5,66ππ⎛⎫- ⎪⎝⎭上单调递增 B .最小正周期是πC .图象关于点,04π⎛⎫⎪⎝⎭成中心对称 D .图象关于直线6x π=成轴对称【答案】ACD【解析】A 项:令232k x k πππππ-<+<+,即()656k x k k Z ππππ<<+∈-,函数n 3ta y x π+=⎛⎫ ⎪⎝⎭的单调递增区间为()65,6k k k Z ππππ⎛⎫+ ⎪⎭-∈⎝,A 错误; B 项:最小正周期1T ππ==,B 正确;C 项:令32k x ππ+=,即()32k x k Z ππ=-+∈, 函数n 3ta y x π+=⎛⎫ ⎪⎝⎭关于点(),032k k Z ππ⎛⎫-+∈ ⎪⎝⎭成中心对称,C 错误; D 项:正切函数没有对称轴,则函数n 3ta y x π+=⎛⎫ ⎪⎝⎭也没有对称轴,D 错误,故选:ACD.6.(2021·浙江高一期末)(多选)下列关于函数tan 23y x π⎛⎫=-+ ⎪⎝⎭的说法正确的是( )A .在区间,312ππ⎛⎫-- ⎪⎝⎭上单调递增 B .最小正周期是2πC .图象关于点5,012π⎛⎫⎪⎝⎭成中心对称 D .图象关于直线12x π=-成轴对称【答案】BC【解析】tan 2tan(2)33y x x ππ⎛⎫=-+=-- ⎪⎝⎭,令2,232k x k k Z πππππ-+<-<+∈,得5,122122k k x k Z ππππ-+<<+∈,∴1k =-时,71212x ππ-<<-,所以tan 23y x π⎛⎫=-+ ⎪⎝⎭在,312ππ⎛⎫-- ⎪⎝⎭上单调递减,A 错误.由上知:最小正周期为2T π=,B 正确.当512x π=时有232x ππ-=,所以tan 23y x π⎛⎫=-+ ⎪⎝⎭关于点5,012π⎛⎫⎪⎝⎭成中心对称,C 正确.由正切函数的性质知:正切函数无对称轴,D 错误. 故选:BC7.(2021·陕西咸阳·高一期末)函数tan 26y x π⎛⎫=+ ⎪⎝⎭的对称中心为__________.【答案】,0,412k k Z ππ⎛⎫-∈ ⎪⎝⎭ 【解析】由正切函数性质,令262k x ππ+=,可得412k x ππ=-()k ∈Z . ∴函数tan 26y x π⎛⎫=+ ⎪⎝⎭的对称中心为,0,412k k Z ππ⎛⎫-∈⎪⎝⎭故答案为:,0,412k k Z ππ⎛⎫-∈ ⎪⎝⎭【题组七 值域】1.(2021·全国高一课时练习)若sin 23x m =+,且,66x ππ⎡⎤∈-⎢⎥⎣⎦,则m 的取值范围为( )A .11,22⎡⎤-⎢⎥⎣⎦B .51,42⎡⎤--⎢⎥⎣⎦C .75,44⎡⎤--⎢⎥⎣⎦D .71,42⎡⎤-⎢⎥⎣⎦【答案】C【解析】因为,66x ππ⎡⎤∈-⎢⎥⎣⎦,所以11sin 22x -≤≤,因为sin 23x m =+,所以112322m -≤+≤,解得7544m -≤≤-,故选:C2.(2021·陕西高一期末)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭在区间,34ππ⎛⎫- ⎪⎝⎭上的最小值小于零,则ω可取的最小正整数为( ) A .1 B .2C .3D .4【答案】D【解析】A :1ω=,所以5,6612x ⎛⎫+∈- ⎪⎝⎭πππ,则()2cos 6f x x π⎛⎫=+ ⎪⎝⎭不存在最小值,不合题意,故A 错误;B :2ω=,所以π22,623x ππ⎛⎫+∈- ⎪⎝⎭,则()2cos 26f x x π⎛⎫=+ ⎪⎝⎭不存在最小值,不合题意,故B 错误; C :3ω=,所以5113,6612x ⎛⎫+∈- ⎪⎝⎭πππ,则()2cos 36f x x ⎛⎫=+ ⎪⎝⎭π不存在最小值,不合题意,故C 错误; D :4ω=,所以774,666x ⎛⎫+∈- ⎪⎝⎭πππ,当46x +=ππ时, min ()20f x =-<,符合题意,故D 正确;故选:D.3.(2021·天水市第一中学高一期中)函数2tan 4tan 1y x x =+-的值域为____________ 【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+- 令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞故答案为:[)5,-+∞4.(2021·上海杨浦·复旦附中高一期中)函数2()cos sin 1f x x x =++在7,46ππ⎛⎤⎥⎝⎦上的值域是___________.【答案】59,44⎡⎤⎢⎥⎣⎦【解析】()222cos sin 11sin sin 1sin sin 2f x x x x x x x =++=-++=-++令7sin ,,46t x x ππ⎛⎤=∈ ⎥⎝⎦,则1,12t ⎡⎤∈-⎢⎥⎣⎦,因为2()2f t t t =-++的对称轴方程为12t =,所以22minmax 115119()2,()2224224f t f t ⎛⎫⎛⎫=---+==-++= ⎪ ⎪⎝⎭⎝⎭所以59(),44f t ⎡⎤∈⎢⎥⎣⎦,所以59(),44f x ⎡⎤∈⎢⎥⎣⎦,所以函数2()cos sin 1f x x x =++在7,46ππ⎛⎤ ⎥⎝⎦上的值域是59,44⎡⎤⎢⎥⎣⎦,故答案为:59,44⎡⎤⎢⎥⎣⎦5.(2021·建平县实验中学)已知函数()2cos (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,在[]0,π内的值域为⎡-⎣,则ω的取值范围为___________. 【答案】55,63⎡⎤⎢⎥⎣⎦【解析】函数()2cos (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,又()f x ⎡∈-⎣,1cos 6x πω⎛⎫∴-≤+ ⎪⎝⎭所以1166πππωπ+, 解得5563ω, ω∴的取值范围是55,63⎡⎤⎢⎥⎣⎦. 故答案为:55,63⎡⎤⎢⎥⎣⎦.。
(完整)新课程标准数学必修1第三章课后习题解答[唐金制]编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)新课程标准数学必修1第三章课后习题解答[唐金制])的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)新课程标准数学必修1第三章课后习题解答[唐金制]的全部内容。
新课程标准数学必修1第三章课后习题解答第三章函数的应用3.1函数与方程练习(P88)1。
(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3—1—2—7(1)),它与x轴有两个交点,所以方程—x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=—3可化为2x2-4x+3=0,令f(x)=2x2—4x+3,作出函数f(x)的图象(图3—1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x—4可化为x2-4x+4=0,令f(x)=x2—4x+4,作出函数f(x)的图象(图3-1—2—7(3)),它与x轴只有一个交点(相切),所以方程x2=4x—4有两个相等的实数根。
(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x—5,作出函数f(x)的图象(图3-1—2—7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根。
图3-1—2—72.(1)作出函数图象(图3-1—2—8(1)),因为f(1)=1〉0,f(1.5)=-2.875<0,所以f(x)=—x3-3x+5在区间(1,1.5)上有一个零点。
又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1。
2017-2018学年高一数学必修1 全册同步课时作业目录1.1.1-1集合与函数概念1.1.1-2集合的含义与表示1.1.1-3集合的含义与表示1.1.2集合间的包含关系1.1.3-1集合的基本运算(第1课时)1.1.3-2集合的基本运算(第2课时)1.1习题课1.2.1函数及其表示1.2.2-1函数的表示法(第1课时)1.2.2-2函数的表示法(第2课时)1.2.2-3函数的表示法(第3课时)1.2习题课1.3.1-1单调性与最大(小)值(第1课时)1.3.1-2单调性与最大(小)值(第2课时)1.3.1-3单调性与最大(小)值(第3课时)1.3.1-4单调性与最大(小)值(第4课时)1.3.2-1函数的奇偶性(第1课时)1.3.2-2函数的奇偶性(第2课时)函数的值域专题研究第一章单元检测试卷A第一章单元检测试卷B 2.1.1-1基本初等函数(Ⅰ)2.1.1-2指数与指数幂的运算(第2课时)2.1.2-1指数函数及其性质(第1课时)2.1.2-2指数函数及其性质(第2课时)2.1.2-3对数与对数运算(第3课时)2.2.1-1对数与对数运算(第1课时)2.2.1-2对数与对数运算(第2课时)2.2.1-3对数与对数运算(第3课时)2.2.2-1对数函数及其性质(第1课时)2.2.2-2对数函数的图像与性质(第2课时)2.2.2-3对数函数的图像与性质2.3 幂函数图像变换专题研究第二章单元检测试卷A第二章单元检测试卷B3.1.1函数的应用3.1.2用二分法求方程的近似解3.2.1函数模型及其应用3.2.2函数模型的应用实例第三章单元检测试卷A第三章单元检测试卷B全册综合检测试题模块A全册综合检测试题模块B1.1.1-1集合与函数概念课时作业1.下列说法中正确的是()A.联合国所有常任理事国组成一个集合B.衡水中学年龄较小的学生组成一个集合C.{1,2,3}与{2,1,3}是不同的集合D.由1,0,5,1,2,5组成的集合有六个元素答案 A解析根据集合中元素的性质判断.2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( ) A.3.14 B.-2 C.78 D.7答案 D解析 由题意知a 应为无理数,故a 可以为7. 3.设集合M ={(1,2)},则下列关系式成立的是( ) A.1∈M B.2∈M C.(1,2)∈M D.(2,1)∈M 答案 C4.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )A.1B.2C.3D.4 答案 C解析 M ={-1,2,3}.5.若2∈{1,x 2+x},则x 的值为( ) A.-2 B.1 C.1或-2 D.-1或2 答案 C解析 由题意知x 2+x =2,即x 2+x -2=0.解得x =-2或x =1.6.已知集合M ={a ,b ,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 答案 D解析 因集合中的元素全不相同,故三角形的三边各不相同.所以△ABC 不可能是等腰三角形.7.设a ,b ∈R ,集合{1,a}={0,a +b},则b -a =( ) A.1 B.-1 C.2 D.-2 答案 A解析 ∵{1,a}={0,a +b},∴⎩⎪⎨⎪⎧a =0,a +b =1,∴⎩⎪⎨⎪⎧a =0,b =1.∴b -a =1,故选A. 8.下列关系中①-43∈R ;②3∉Q ;③|-20|∉N *;④|-2|∈Q ;⑤-5∉Z ;⑥0∈N .其正确的是________. 答案 ①②⑥ 9.下列说法中①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素. 其中正确的个数是________. 答案 2解析 由数集性质知①③错误,②④正确.10.集合{1,2}与集合{2,1}是否表示同一集合?________;集合{(1,2)}与集合{(2,1)}是否表示同一集合?______.(填“是”或“不是”) 答案 是,不是11.若{a ,0,1}={c ,1b ,-1},则a =______,b =______,c =________.答案 -1 1 0解析 ∵-1∈{a ,0,1},∴a =-1. 又0∈{c ,1b ,-1}且1b ≠0,∴c =0,从而可知1b=1,∴b =1.12.已知集合A 中含有两个元素1和a 2,则a 的取值范围是________. 答案 a ∈R 且a ≠±1解析 由集合元素的互异性,可知a 2≠1,∴a ≠±1,即a ∈R 且a ≠±1. 13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________. 答案 2或414.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∉B ,求实数a 的值. 答案 -4解析 ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,a +3≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2.∴a =-4. ►重点班·选做题15.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.解析 (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a ,即a=±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.下面有五个命题:①集合N (自然数集)中最小的数是1;②{1,2,3}是不大于3的自然数组成的集合;③a ∈N ,b ∈N ,则a +b ≥2;④a ∈N ,b ∈N ,则a·b ∈N ;⑤集合{0}中没有元素. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3答案 B解析 因为0是自然数,所以0∈N .由此可知①②③是错误的,⑤亦错,只有④正确.故选B.1.1.1-2集合的含义与表示含解析课时作业1.用列举法表示集合{x|x 2-2x +1=0}为( ) A.{1,1} B.{1}C.{x =1}D.{x 2-2x +1=0}答案 B2.集合{1,3,5,7,9}用描述法表示应是( ) A.{x|x 是不大于9的非负奇数} B.{x|x ≤9,x ∈N } C.{x|1≤x ≤9,x ∈N } D.{x|0≤x ≤9,x ∈Z }答案 A3.由大于-3且小于11的偶数组成的集合是( ) A.{x|-3<x<11,x ∈Q } B.{x|-3<x<11}C.{x|-3<x<11,x =2k ,x ∈Q }D.{x|-3<x<11,x =2k ,x ∈Z }答案 D4.集合{x ∈N *|x<5}的另一种表示法是( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案 B5.设集合M ={x|x ∈R 且x ≤23},a =26,则( ) A.a ∉M B.a ∈MC.a =MD.{a|a =26}=M答案 A解析 首先元素与集合关系只能用符号“∈”与“∉”表示.集合中元素意义不同的不能用“=”连接,再有a =24>23,a 不是集合M 的元素,故a ∉M.另外{a|a =26}中只有一个元素26与集合M 中元素不相同.故D 错误.6.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1表示成列举法,正确的是( ) A.{2,3} B.{(2,3)} C.{x =2,y =3} D.(2,3)答案 B7.下列集合中,不同于另外三个集合的是( ) A.{x|x =1} B.{x =1} C.{1}D.{y|(y -1)2=0}答案 B解析A,C,D都是数集.8.下列集合表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}答案 C解析A中M是点集,N是点集,是两个不同的点;B中M是点集,N是数集;D中M是数集,N是点集,故选C.9.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6答案 B解析由集合中元素的互异性,可知集合M={5,6,7,8},所以集合M中共有4个元素.10.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0}答案 C解析坐标轴上的点的横、纵坐标至少有一个为0,故选C.11.将集合“奇数的全体”用描述法表示为①{x|x=2n-1,n∈N*}; ②{x|x=2n+1,n∈Z};③{x|x=2n-1,n∈Z};④{x|x=2n+1,n∈R};⑤{x|x=2n+5,n∈Z}.其中正确的是________.答案②③⑤12.已知命题:(1){偶数}={x|x=2k,k∈Z};(2){x||x|≤2,x∈Z}={-2,-1,0,1,2};(3){(x,y)|x+y=3且x-y=1}={1,2}.其中正确的是________.答案(1)(2)13.已知集合A={1,0,-1,3},B={y|y=|x|,x∈A},则B=________.答案{0,1,3}解析 ∵y =|x|,x ∈A ,∴y =1,0,3,∴B ={0,1,3}. 14.用∈或∉填空:(1)若A ={x|x 2=x},则-1________A ; (2)若B ={x|x 2+x -6=0},则3________B ; (3)若C ={x ∈N |1≤x ≤10},则8________C ; (4)若D ={x ∈Z |-2<x<3},则1.5________D. 答案 (1)∉ (2)∉ (3)∈ (4)∉ ►重点班·选做题15.用另一种方法表示下列集合. (1){x||x|≤2,x ∈Z };(2){能被3整除,且小于10的正数}; (3)坐标平面内在第四象限的点组成的集合. (4){(x ,y)|x +y =6,x ,y 均为正整数}; (5){-3,-1,1,3,5}. (6)被3除余2的正整数集合.答案 (1){-2,-1,0,1,2} (2){3,6,9}(3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x>0,y<0 (4){(1,5),(2,4),(3,3),(4,2),(5,1)} (5){x|x =2k -1,-1≤k ≤3,k ∈Z } (6){x|x =3n +2,n ∈N }16.已知集合{x|x 2+ax +b =0}={2,3},求a ,b 的值. 答案 -5 6解析 ∵{x|x 2+ax +b =0}={2,3}, ∴方程x 2+ax +b =0有两实根x 1=2,x 2=3. 由根与系数的关系得a =-(2+3)=-5,b =2×3=6.1.下列集合是有限集的是( ) A.{x|x 是被3整除的数}B.{x ∈R |0<x <2}C.{(x ,y)|2x +y =5,x ∈N ,y ∈N }D.{x|x 是面积为1的菱形}答案 C解析 C 中集合可化为:{(0,5),(1,3),(2,1)}.2.已知集合A ={x|x 2-2x +a>0},且1∉A ,则实数a 的取值范围是( ) A.{a|a ≤1}B.{a|a ≥1}C.{a|a≥0}D.{a|a≤-1}答案 A解析因为1∉A,所以当x=1时,1-2+a≤0,所以a≤1,即a的取值范围是{a|a≤1}.1.1.1-3集合的含义与表示课时作业(三)1.设x ∈N ,且1x ∈N ,则x 的值可能是( )A.0B.1C.-1D.0或1答案 B解析 首先x ≠0,排除A ,D ;又x ∈N ,排除C ,故选B.2.下面四个关系式:π∈{x|x 是正实数},0.3∈Q ,0∈{0},0∈N ,其中正确的个数是( ) A.4 B.3 C.2 D.1 答案 A解析 本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确. 3.集合{x ∈N |-1<x<112}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 答案 C解析 ∵x ∈N ,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C.4.已知集合A ={x ∈N *|-5≤x ≤5},则必有( ) A.-1∈A B.0∈A C.3∈A D.1∈A 答案 D解析 ∵x ∈N *,-5≤x ≤5,∴x =1,2,即A ={1,2},∴1∈A. 5.集合M ={(x ,y)|xy<0,x ∈R ,y ∈R }是( ) A.第一象限内的点集 B.第三象限内的点集 C.第四象限内的点集 D.第二、四象限内的点集 答案 D解析 根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.6.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A.矩形 B.平行四边形 C.菱形D.梯形答案 D解析 由于集合中的元素具有“互异性”,故a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等.7.集合A ={x|x ∈N ,且42-x ∈Z },用列举法可表示为A =________.答案 {0,1,3,4,6}解析 注意到42-x ∈Z ,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x ∈N ,∴x =0,1,3,4,6.8.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素. 答案 1解析 这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 9.点P(1,3)和集合A ={(x ,y)|y =x +2}之间的关系是________. 答案 P ∈A解析 在y =x +2中,当x =1时,y =3,因此点P 是集合A 的元素,故P ∈A. 10.用列举法表示集合A ={(x ,y)|x +y =3,x ∈N ,y ∈N *}为________. 答案 {(0,3),(1,2),(2,1)}解析 集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}.11.若A ={-2,2,3,4},B ={x|x =t 2,t ∈A},用列举法表示集合B =________. 答案 {4,9,16}解析 由题意可知集合B 是由集合A 中元素的平方构成,故B ={4,9,16}.12.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)|⎩⎪⎨⎪⎧x +y =3,x -y =1},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个. 答案 2解析 因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合.13.设A 是满足x<6的所有自然数组成的集合,若a ∈A ,且3a ∈A ,求a 的值. 解析 ∵a ∈A 且3a ∈A ,∴a<6且3a<6,∴a<2. 又∵a 是自然数,∴a =0或1.14.已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解析 本题中已知集合A 中有两个元素且1∈A ,据集合中元素的特点需分a =1和a 2=1两种情况,另外还要注意集合中元素的互异性.若1∈A ,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a ≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a =-1. ►重点班·选做题15.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a ∈A ,b ∈A 且a ≠b ,写出集合B.解析 当⎩⎪⎨⎪⎧a =0,b ≠0或⎩⎪⎨⎪⎧a ≠0,b =0时,x =0; 当⎩⎪⎨⎪⎧a =2,b =5或⎩⎪⎨⎪⎧a =5,b =2时,x =10; 当⎩⎪⎨⎪⎧a =2,b =10或⎩⎪⎨⎪⎧a =10,b =2时,x =20; 当⎩⎪⎨⎪⎧a =5,b =10或⎩⎪⎨⎪⎧a =10,b =5时,x =50. 所以B ={0,10,20,50}.1.已知A ={x|3-3x>0},则有( ) A.3∈A B.1∈A C.0∈A D.-1∉A答案 C解析 因为A ={x|3-3x>0}={x|x<1},所以0∈A.2.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.解析 三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}.3.数集M 满足条件:若a ∈M ,则1+a 1-a ∈M(a ≠±1且a ≠0),已知3∈M ,试把由此确定的集合M 的元素全部求出来.解析 ∵a =3∈M ,∴1+a 1-a =1+31-3=-2∈M ,∴1-21+2=-13∈M.∴1-131+13=12∈M ,∴1+121-12=3∈M.即M =⎩⎨⎧⎭⎬⎫3,-2,-13,12.4.设集合A ={x ,y},B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值. 解析 因为A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.5.集合A ={x|⎩⎪⎨⎪⎧y =x ,y =x 2}可化简为________. 以下是两位同学的答案,你认为哪一个正确?试说明理由.学生甲:由⎩⎪⎨⎪⎧y =x ,y =x 2,得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}. 解析 同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =1,y =1.故同学甲正确.1.1.2集合间的包含关系课时作业(四)1.数0与集合∅的关系是()A.0∈∅B.0=∅C.{0}=∅D.0∉∅答案 D2.集合{1,2,3}的子集的个数是()A.7B.4C.6D.8答案 D3.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}答案 D解析∵A,B,C中分别表示的集合为{0},{x|x>0},{0},∴不是空集;又∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.4.已知集合P={1,2,3,4},Q={y|y=x+1,x∈P},那么集合M={3,4,5}与Q的关系是()A.M QB.M QC.Q MD.Q=M答案 A5.下列六个关系式中正确的个数为()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.A.6B.5C.4D.3个及3个以下答案 C解析其中①②⑤⑥是正确的,对于③应为∅ {∅}或∅∈{∅};对于④应为{0} ∅.6.若集合A={-1,2},B={x|x2+ax+b=0},且A=B,则有()A.a=1,b=-2B.a=2,b=2C.a=-1,b=-2D.a=-1,b=2答案 C解析由A=B知-1与2是方程x2+ax+b=0的两根,∴⎩⎪⎨⎪⎧-1+2=-a ,(-1)×2=b ,∴⎩⎪⎨⎪⎧a =-1,b =-2. 7.集合P ={x|y =x 2},Q ={y|y =x 2},则下列关系中正确的是( ) A.P Q B.P =Q C.P ⊆Q D.P Q答案 D解析 P ,Q 均为数集,P ={x|y =x 2}=R ,Q ={y|y =x 2}={y|y ≥0},∴Q P ,故选D. 8.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 的个数为( ) A.6 B.5 C.4 D.3答案 B解析 A ={1},{3},{1,2},{1,3},{2,3}共5个.9.若A ={(x ,y)|y =x},B ={(x ,y)|yx =1},则A ,B 关系为( )A.A BB.B AC.A =BD.A B答案 B10.已知集合A ={-1,3,m},集合B ={3,4},若B ⊆A ,则实数m =________. 答案 4解析 ∵B ⊆A ,A ={-1,3,m},∴m =4.11.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A ,则5-x ∈A.符合上述要求的集合A 的个数是________. 答案 3解析 由“若x ∈A ,则5-x ∈A ”可知,1和4,2和3成对地出现在A 中,且A ≠∅.故集合A 的个数等于集合{1,2}的非空子集的个数,即3个.12.设集合A ={x ∈R |x 2+x -1=0},B ={x ∈R |x 2-x +1=0},则集合A ,B 之间的关系是________. 答案 B A解析 ∵A ={-1-52,-1+52},B =∅,∴B A.13.已知M ={y|y =x 2-2x -1,x ∈R },N ={x|-2≤x ≤4},则集合M 与N 之间的关系是________. 答案 N M14.设A ={x ∈R |-1<x<3},B ={x ∈R |x>a},若A B ,求a 的取值范围. 答案 a ≤-1解析 数形结合,端点处单独验证.15.设集合A ={1,3,a},B ={1,a 2-a +1},B ⊆A ,求a 的值.解析 因为B ⊆A ,所以B 中元素1,a 2-a +1都是A 中的元素,故分两种情况. (1)a 2-a +1=3,解得a =-1或2,经检验满足条件. (2)a 2-a +1=a ,解得a =1,此时A 中元素重复,舍去. 综上所述,a =-1或a =2. ►重点班·选做题16.a ,b 是实数,集合A ={a ,ba ,1},B ={a 2,a +b ,0},若A =B ,求a 2 015+b 2 016.答案 -1解析 ∵A =B ,∴b =0,A ={a ,0,1},B ={a 2,a ,0}.∴a 2=1,得a =±1.a =1时,A ={1,0,1}不满足互异性,舍去;a =-1时,满足题意.∴a 2015+b 2 016=-1.1.设a ,b ∈R ,集合{1,a +b ,a}={0,ba ,b},则b -a 等于( )A.1B.-1C.2D.-2答案 C解析 ∵a ≠0,∴a +b =0,∴ba =-1.∴b =1,a =-1,∴b -a =2,故选C.2.设集合A ={x|-3≤x ≤2},B ={x|2k -1≤x ≤k +1}且B ⊆A ,求实数k 的取值范围. 解析 ∵B ⊆A ,∴B =∅或B ≠∅.①B =∅时,有2k -1>k +1,解得k>2. ②B ≠∅时,有⎩⎪⎨⎪⎧2k -1≤k +1,2k -1≥-3,k +1≤2,解得-1≤k ≤1.综上,-1≤k ≤1或k>2.1.1.3-1集合的基本运算(第1课时)课时作业(五)1.(2014·广东)已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( ) A.{0,1} B.{-1,0,2} C.{-1,0,1,2} D.{-1,0,1}答案 C解析 M ∪N ={-1,0,1,2}.2.若集合A ={x|-2<x<1},B ={x|0<x<2},则集合A ∩B =( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 答案 D3.设A ={x|1≤x ≤3},B ={x|x<0或x ≥2},则A ∪B 等于( ) A.{x|x<0或x ≥1} B.{x|x<0或x ≥3} C.{x|x<0或x ≥2} D.{x|2≤x ≤3} 答案 A4.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ) A.1 B.3 C.4 D.8答案 C解析 ∵A ={1,2},A ∪B ={1,2,3},∴B ={3}或{1,3}或{2,3}或{1,2,3},故选C.5.设集合M ={m ∈Z |-3<m<2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 答案 B解析 集合M ={-2,-1,0,1},集合N ={-1,0,1,2,3},M ∩N ={-1,0,1}. 6.若A ={x|x2∈Z },B ={y|y +12∈Z },则A ∪B 等于( )A.BB.AC.∅D.Z答案 D解析 A ={x|x =2n ,n ∈Z }为偶数集,B ={y|y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 7.已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}答案 B解析集合B含有整数-1,0,故A∩B={-1,0}.8.如果A={x|x=2n+1,n∈Z},B={x|x=k+3,k∈Z},那么A∩B=()A.∅B.AC.BD.Z答案 B9.满足条件M∪{1}={1,2,3}的集合M的个数是________.答案 2解析M={1,2,3}或M={2,3}.10.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的为________.答案②③④解析①是错误的,a∈(A∪B)时可推出a∈A或a∈B,不一定能推出a∈A.11.已知集合P,Q与全集U,下列命题:①P∩Q=P,②P∪Q=Q,③P∪Q=U,其中与命题P⊆Q等价的命题有______个.答案 2解析①②都等价.12.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是________.答案a≤-113.若集合P满足P∩{4,6}={4},P∩{8,10}={10},且P⊆{4,6,8,10},求集合P. 解析由条件知4∈P,6∉P,10∈P,8∉P,∴P={4,10}.14.已知集合A={x|x+3≤0},B={x|x-a<0}.(1)若A∪B=B,求a的取值范围;(2)若A∩B=B,求a的取值范围.解析(1)∵A∪B=B,∴A⊆B,∴a>-3.(2)∵A∩B=B,∴B⊆A,∴a≤-3.►重点班·选做题15.已知A={x|2a<x≤a+8},B={x|x<-1或x>5},若A∪B=R,求a的取值范围.解析∵B={x|x<-1或x>5},A∪B=R,∴⎩⎪⎨⎪⎧2a<-1,a +8≥5,解得-3≤a<-12.1.若A ={x|x 2-5x +6=0},B ={x|x 2-6x +8=0},则A ∪B =________,A ∩B =________. 答案 A ={2,3},B ={2,4}, ∴A ∪B ={2,3,4},A ∩B ={2}.2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A.∅ B.{x|x<-12}C.{x|x>53}D.{x|-12<x<53}答案 D解析 S ={x|x>-12},T ={x|x<53},在数轴上表示出S 和T ,可知选D.3.设集合A ={x|-5≤x<1},B ={x|x ≤2},则A ∩B 等于( ) A.{x|-5≤x<1} B.{x|-5≤x ≤2} C.{x|x<1} D.{x|x ≤2} 答案 A4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 答案 15.已知A ={|a +1|,3,5},B ={2a +1,a 2+2a ,a 2+2a -1},若A ∩B ={2,3},则A ∪B =________.答案 {2,3,5,-5}解析 由|a +1|=2,得a =1或-3,代入求出B ,注意B 中不能有5.6.已知M ={x|x ≤-1},N ={x|x>a -2},若M ∩N ≠∅,则a 的范围是________. 答案 a<1课时作业(六)1.1.3-2集合的基本运算(第2课时)1.已知U={1,3},A={1,3},则∁U A=()A.{1,3}B.{1}C.{3}D.∅答案 D2.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}答案 C3.设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},则(∁U A)∪(∁U B)=()A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}答案 C解析∵∁U A={4,5},∁U B={1,2},故选C.4.若集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}答案 D5.设P={x︱x<4},Q={x︱x2<4},则()A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P答案 B6.已知全集U=Z,集合A={x|x=k3,k∈Z},B={x|x=k6,k∈Z},则()A.∁U A ∁U BB.A BC.A=BD.A与B中无公共元素答案 A解析∵A={x|x=26k,k∈Z},∴∁U A ∁U B,A B.7.设全集U={2,3,5},A={2,|a-5|},∁U A={5},则a的值为()A.2B.8C.2或8D.-2或8答案 C解析∁U A={5}包含两层意义,①5∉A;②U中除5以外的元素都在A中.∴|a-5|=3,解得a=2或8.8.设全集U=Z,A={x∈Z|x<5},B={x∈Z|x≤2},则∁U A与∁U B的关系是()A.∁U A ∁U BB.∁U A ∁U BC.∁U A=∁U BD.∁U A ∁U B答案 A解析∵∁U A={x∈Z|x≥5},∁U B={x∈Z|x>2}.故选A.9.设A={x||x|<2},B={x|x>a},全集U=R,若A⊆∁R B,则有()A.a=0B.a≤2C.a≥2D.a<2答案 C解析A={x|-2<x<2},∁R B={x|x≤a},在数轴上把A,B表示出来.10.已知全集U={1,2,3,4,5},S U,T U,若S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5},则有()A.3∈S∩TB.3∉S但3∈TC.3∈S∩(∁U T)D.3∈(∁U S)∩(∁U T)答案 C11.设全集U=Z,M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},则下列关系式中正确的有________.①M⊆P;②∁U M=∁U P;③∁U M=P;④∁U P=M.答案③④12.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________. 答案∁U A ∁U B解析∵∁U A={x|x<0},∁U B={y|y<1},∴∁U A ∁U B.13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解析 借助韦恩图,如右图所示, ∴U ={1,2,3,4,5,6,7,8,9}. ∵∁U B ={1,4,6,8,9}, ∴B ={2,3,5,7}.14.设集合U ={1,2,3,4},且A ={x ∈U|x 2-5x +m =0},若∁U A ={2,3},求m 的值. 解析 ∵∁U A ={2,3},U ={1,2,3,4}, ∴A ={1,4},即1,4是方程x 2-5x +m =0的两根. ∴m =1×4=4.15.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2}且∁U P ={-1},求实数a. 解析 ∵U ={2,0,3-a 2},P ={2,a 2-a -2},∁U P ={-1},∴⎩⎪⎨⎪⎧3-a 2=-1,a 2-a -2=0,解得a =2.1.如果S ={1,2,3,4,5},A ={1,3,4},B ={2,4,5},那么(∁S A)∩(∁S B)等于( ) A.∅ B.{1,3} C.{4} D.{2,5}答案 A解析 ∵∁S A ={2,5},∁S B ={1,3}, ∴(∁S A)∩(∁S B)=∅.2.设全集U ={1,2,3,4,5,6,7},P ={1,2,3,4,5},Q ={3,4,5,6,7},则P ∩(∁U Q)等于()A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案 A解析 ∵∁U Q ={1,2},∴P ∩(∁U Q)={1,2}.3.设全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,7},B ={3,5},则正确的是( ) A.U =A ∪B B.U =(∁U A)∪B C.U =A ∪(∁U B) D.U =(∁U A)∪(∁U B)答案 C解析 ∵∁U B ={1,2,4,6,7}, ∴A ∪(∁U B)={1,2,3,4,5,6,7}=U.4.已知A ={x|x<3},B ={x|x<a}.若A ⊆B ,问∁R B ⊆∁R A 是否成立? 答案 成立5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.答案126.如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(∁S A)∪(∁S B)=________.答案{0,1,3,4,5}解析∵S={x∈N|x<6}={0,1,2,3,4,5},∴∁S A={0,4,5},∁S B={0,1,3}.∴(∁S A)∪(∁S B)={0,1,3,4,5}.课时作业(七)1.1习题课含解析(第一次作业)1.(2015·广东,理)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=() A.{1,4} B.{-1,-4}C.{0}D.∅答案 D2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为()A.3B.4C.5D.6答案 A3.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是() A.M P B.P MC.M=PD.M P且P M答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1而M中无元素1,P比M多一个元素.4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}答案 B5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}答案 A6.已知方程x2-px+15=0与x2-5x+q=0的解集分别为S与M,且S∩M={3},则p+q 的值是()A.2B.7C.11D.14答案 D解析 由交集定义可知,3既是集合S 中的元素,也是集合M 中的元素.亦即是方程x 2-px +15=0与x 2-5x +q =0的公共解,把3代入两方程,可知p =8,q =6,则p +q 的值为14.7.已知全集R ,集合A ={x|(x -1)(x +2)(x -2)=0},B ={y|y ≥0},则A ∩(∁R B)为( ) A.{1,2,-2} B.{1,2} C.{-2} D.{-1,-2}答案 C解析 A ={1,2,-2},而B 的补集是{y|y<0},故两集合的交集是{-2},选C. 8.集合P ={1,4,9,16,…},若a ∈P ,b ∈P ,则a ⊕b ∈P ,则运算⊕可能是( ) A.除法 B.加法 C.乘法 D.减法答案 C解析 当⊕为除法时,14∉P ,∴排除A ;当⊕为加法时,1+4=5∉P ,∴排除B ;当⊕为乘法时,m 2·n 2=(mn)2∈P ,故选C ; 当⊕为减法时,1-4∉P ,∴排除D.9.设全集U =Z ,集合P ={x|x =2n ,n ∈Z },Q ={x|x =4m ,m ∈Z },则U 等于( ) A.P ∪Q B.(∁U P)∪Q C.P ∪(∁U Q) D.(∁U P)∪(∁U Q)答案 C10.设S ,P 为两个非空集合,且S P ,P S ,令M =S ∩P ,给出下列4个集合:①S ;②P ;③∅;④S ∪P.其中与S ∪M 能够相等的集合的序号是( ) A.① B.①② C.②③ D.④答案 A11.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是( ) A.1 B.2 C.3 D.4答案 D解析 A 的配集有{3},{1,3},{2,3},{1,2,3}共4个. 12.已知集合A ,B 与集合A@B 的对应关系如下表:________.答案 {2 012,2 013}13.已知A ={2,3},B ={-4,2},且A ∩M ≠∅,B ∩M =∅,则2________M ,3________M. 答案 ∉ ∈解析 ∵B ∩M =∅,∴-4∉M ,2∉M. 又A ∩M ≠∅且2∉M ,∴3∈M.14.若集合A ={1,3,x},B ={1,x 2},且A ∪B ={1,3,x},则x =________. 答案 ±3或0解析 由A ∪B ={1,3,x},B A , ∴x 2∈A.∴x 2=3或x 2=x. ∴x =±3或x =0,x =1(舍).15.已知S ={a ,b},A ⊆S ,则A 与∁S A 的所有有序组对共有________组. 答案 4解析 S 有4个子集,分别为∅,{a},{b},{a ,b}注意有序性.⎩⎪⎨⎪⎧A ={a},∁S A ={b}和⎩⎪⎨⎪⎧A ={b},∁S A ={a}是不同的.16.已知A ⊆M ={x|x 2-px +15=0,x ∈R },B ⊆N ={x|x 2-ax -b =0,x ∈R },又A ∪B ={2,3,5},A ∩B ={3},求p ,a 和b 的值.解析 由A ∩B ={3},知3∈M ,得p =8.由此得M ={3,5},从而N ={3,2},由此得a =5,b =-6.(第二次作业)1.(2014·北京,理)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}答案 C解析解x2-2x=0,得x=0或x=2,故A={0,2},所以A∩B={0,2},故选C.2.(高考真题·全国Ⅰ)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析由题意得P=M∩N={1,3},∴P的子集为∅,{1},{3},{1,3},共4个,故选B.3.设集合A={x∈Z|0≤x≤5},B={x|x=k2,k∈A},则集合A∩B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,3}D.B答案 A4.设M={1,2,m2-3m-1},P={1,3},且M∩P={1,3},则m的值为()A.4B.-1C.-4或1D.-1或4答案 D5.已知集合M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于()A.∅B.NC.MD.R答案 B解析∵M=R,N={y|y≥-1},∴M∩N=N.6.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅答案 C7.设集合A={x|x∈Z且-15≤x≤-2},B={x|x∈Z且|x|<5},则A∪B中的元素个数是() A.10 B.11C.20D.21答案 C解析 ∵A ∪B ={x|x ∈Z 且-15≤x<5}={-15,-14,-13,…,1,2,3,4},∴A ∪B 中共20个元素.8.已知全集U ={0,1,2}且∁U A ={2},则集合A 的真子集的个数为( ) A.3 B.4 C.5 D.6答案 A解析 ∵A ={0,1},∴真子集的个数为22-1=3.9.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},那么(∁U A)∩(∁U B)等于()A.{1,2}B.{3,4}C.{5,6}D.{7,8}答案 D解析 ∵∁U A ={5,6,7,8},∁U B ={1,2,7,8},∴(∁U A)∩(∁U B)={7,8}. 10.已知集合P ={x|-1≤x ≤1},M ={-a ,a},若P ∪M =P ,则a 的取值范围是( ) A.{a|-1≤a ≤1} B.{a|-1<a<1}C.{a|-1<a<1,且a ≠0}D.{a|-1≤a ≤1,且a ≠0}答案 D解析 由P ∪M =P ,得M ⊆P.所以⎩⎪⎨⎪⎧-1≤a ≤1,-1≤-a ≤1,即-1≤a ≤1.又由集合元素的互异性知-a ≠a ,即a ≠0, 所以a 的取值范围是{a|-1≤a ≤1,且a ≠0}.11.若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有( ) A.A ⊆C B.C ⊆A C.A ≠C D.A =∅答案 A12.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________. 答案 313.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 有________个元素. 答案 15解析 由A ∩B 含有3个元素知,仅有3个元素相同,根据集合元素的互异性,集合的元素个数为10+8-3=15,或直接利用韦恩图得出结果.14.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.思路首先根据题意判断出A与B的关系,再对m分类讨论化简集合B,根据A,B的关系求出m的范围.解析∵A∪B=B,∴A⊆B.①当m>0时,由mx+1>0,得x>-1m,此时B={x|x>-1m},由题意知-1m<-1,∴0<m<1.②当m=0时,B=R,此时A⊆B.③当m<0时,得B={x|x<-1m},由题意知-1m>2,∴-12<m<0.综上:-12<m<1.点评在解有关集合交、并集运算时,常会遇到A∩B=A,A∪B=B等这类问题.解答时应充分利用交集、并集的有关性质,准确转化条件,有时也借助数轴分析处理,另外还要注意“空集”这一隐含条件.已知全集U={a,1,3,b,x2-2=0},集合A={a,b},则∁U A=________.答案{1,3,x2-2=0}解析在全集U中除去A中的元素后所组成的集合即为∁U A,故∁U A={1,3,x2-2=0}.1.(2015·新课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案 D2.(2015·天津,理)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A3.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D解析∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1},故选D.5.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B ={1,2},则A∩(∁U B)=()A.{3}B.{4}C.{3,4}D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B ={3,4},故A∩(∁U B)={3}.6.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案 A7.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5D.9答案 C解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x -y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.8.(2013·天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2]C.[-2,2]D.[-2,1]答案 D解析解不等式|x|≤2,得-2≤x≤2,所以A=[-2,2],所以A∩B=[-2,1].9.(2012·福建)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}答案 D解析A项,M={1,2,3,4},N={-2,2},M与N显然无包含关系,故A错.B项同A项,故B项错.C项,M∩N={2},故C错,D对.10.(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4答案 D解析A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.11.(2012·山东)已知集合U={0,1,2,3,4},集合A={1,2,3,4},B={2,4},则(∁U A)∪B 为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析由题意知∁U A={0},又B={2,4},∴(∁U A)∪B={0,2,4},故选C.12.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,∁U A∩B=________.9},则()答案{7,9}解析由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁U A={4,6,7,9,10},(∁U A)∩B ={7,9}.1.(2014·大纲全国理改编)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩(∁R N)=() A.(0,4] B.[0,4)C.[-1,0)D.(-1,0)答案 D解析∵M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},∴∁R N={x|x<0或x>5}.∴M∩(∁R N)={x|-1<x<0}.2.(2014·江西,文)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=() A.(-3,0) B.(-3,-1)C.(-3,-1]D.(-3,3)答案 C解析由题意知,A={x|x2-9<0}={x|-3<x<3},∵B={x|-1<x≤5},∴∁R B={x|x≤-1或x>5}.∴A ∩(∁R B)={x|-3<x<3}∩{x|x ≤-1或x>5}={x|-3<x ≤-1}.3.(2010·北京)集合P ={x ∈Z |0≤x<3},M ={x ∈R |x 2≤9},则P ∩M =( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x ≤3}答案 B4.(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞) 答案 B解析 由于Q ={x|x ≤-2或x ≥2},∁R Q ={x|-2<x<2},故得P ∪(∁R Q)={x|-2<x ≤3}.选B.5.(2014·四川,文)已知集合A ={x|(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( ) A.{-1,0} B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2} 答案 D解析 由二次函数y =(x +1)(x -2)的图像可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.6.(2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A.(-∞,-1) B.(-1,-23)C.(-23,3)D.(3,+∞)答案 D解析 A ={x|x>-23},B ={x|x>3或x<-1},则A ∩B ={x|x>3},故选D.课时作业(八) 1.2.1函数及其表示含解析1.下列集合A 到集合B 的对应f 是函数的是( ) A.A ={-1,0,1},B ={0,1},f :A 中的数平方 B.A ={0,1},B ={-1,0,1},f :A 中的数开方 C.A =Z ,B =Q ,f :A 中的数取倒数D.A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},下图所示4个图形中能表示集合M 到集合N 的函数关系的个数是( )A.0B.1C.2D.3答案 B3.函数f(x)=1+x +x1-x的定义域( ) A.[-1,+∞) B.(-∞,-1] C.R D.[-1,1)∪(1,+∞)答案 D解析 由⎩⎪⎨⎪⎧1+x ≥0,1-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1.故定义域为[-1,1)∪(1,+∞),故选D. 4.设函数f(x)=3x 2-1,则f(a)-f(-a)的值是( ) A.0 B.3a 2-1 C.6a 2-2 D.6a 2答案 A解析 f(a)-f(-a)=3a 2-1-[3(-a)2-1]=0.5.四个函数:①y=x+1;②y=x3;③y=x2-1;④y=1x.其中定义域相同的函数有()A.①②和③B.①和②C.②和③D.②③和④答案 A6.函数f(x)=11+x2(x∈R)的值域是()A.[0,1]B.[0,1)C.(0,1]D.(0,1) 答案 C7.已知f(x)=π(x∈R),则f(π2)等于()A.π2B.πC.πD.不确定答案 B解析因为π2∈R,所以f(π2)=π.8.函数y=21-1-x的定义域为()A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.[1,+∞)答案 B9.将下列集合用区间表示出来.(1){x|x≥1}=________;(2){x|2≤x≤8}=________;(3){y|y=1x}=________.答案(1)[1,+∞)(2)[2,8] (3)(-∞,0)∪(0,+∞)10.若f(x)=5xx2+1,且f(a)=2,则a=________.答案12或211.已知f(x)=x2+x-1,x∈{0,1,2,3},则f(x)的值域为________.答案{-1,1,5,11}12.设函数f(n)=k(n∈N*),k是π的小数点后的第n位数字,π=3.141 592 653 5…,则f(3)=________.答案 113.若函数y =1x -2的定义域为A ,函数y =2x +6的值域是B ,则A ∩B =________. 答案 [0,2)∪(2,+∞)解析 由题意知A ={x|x ≠2},B ={y|y ≥0},则A ∩B =[0,2)∪(2,+∞). 14.已知函数f(x)=x +3+1x +2.(1)求函数的定义域; (2)求f(-3),f(23)的值;(3)当a>0时,求f(a),f(a -1)的值.解析 (1)使根式x +3有意义的实数x 的集合是{x|x ≥-3},使分式1x +2有意义的实数x 的集合是{x|x ≠-2},所以这个函数的定义域是{x|x ≥-3}∩{x|x ≠-2}={x|x ≥-3,且x ≠-2}. (2)f(-3)=-3+3+1-3+2=-1; f(23)=23+3+123+2=113+38=38+333. (3)因为a>0,故f(a),f(a -1)有意义. f(a)=a +3+1a +2;f(a -1)=a -1+3+1(a -1)+2=a +2+1a +1.15.已知f(x)=13-x 的定义域为A ,g(x)=1a -x的定义域是B. (1)若B A ,求a 的取值范围; (2)若A B ,求a 的取值范围. 解析 A ={x|x<3},B ={x|x<a}.(1)若B A ,则a<3,∴a 的取值范围是{a|a<3}; (2)若A B ,则a>3,∴a 的取值范围是{a|a>3}.1.下列函数f(x)和g(x)中,表示同一函数的是( ) A.y =f(x)与y =f(x +1) B.y =f(x),x ∈R 与y =f(t),t ∈R C.f(x)=x 2,g(x)=x 3xD.f(x)=2x +1与g(x)=4x 2+4x +1答案 B2.下列式子中不能表示函数y =f(x)的是( ) A.x =2yB.3x +2y =1C.x =2y 2+1D.x =y答案 C3.已知函数f(x)=2x -1,则f(x +1)等于( ) A.2x -1 B.x +1 C.2x +1 D.1答案 C4.若f(x)=x 2-1x ,则f(x)的定义域为________.答案 {x|x ≤-1或x ≥1}5.下列每对函数是否表示相同函数? (1)f(x)=(x -1)0,g(x)=1; (2)f(x)=x ,g(x)=x 2; (3)f(t)=t 2t ,g(x)=|x|x .答案 (1)不是 (2)不是 (3)是6.已知A =B =R ,x ∈A ,y ∈B 对任意x ∈A ,x →y =ax +b 是从A 到B 的函数,若输出值1和8分别对应的输入值为3和10,求输入值5对应的输出值.解析 由题意可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1,b =-2,所以对应关系f :x →y =x -2,故输入值5对应的输出值为3.7.已知f(x)=11+x ,求[f(2)+f(3)+…+f(2 016)]+[f(12)+f(13)+…+f(12 016)].答案 2 015解析 f(x)+f(1x )=11+x+11+1x=11+x +x1+x =1,则原式=⎣⎡⎦⎤f (2)+f (12)+⎣⎡⎦⎤f (3)+f (13)+…+⎣⎡⎦⎤f (2 016)+f (12 016)=2 015.8.已知函数g(x)=x +2x -6,(1)点(3,14)在函数的图像上吗? (2)当x =4时,求g(x)的值; (3)当g(x)=2时,求x 的值.答案(1)不在(2)-3(3)14课时作业(九)1.2.2-1函数的表示法(第1课时)1.下列结论正确的是( )A.任意一个函数都可以用解析式表示B.函数y =x ,x ∈{1,2,3,4}的图像是一条直线C.表格可以表示y 是x 的函数D.图像可表示函数y =f(x)的图像答案 C2.某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A.成绩y 不是考试次数x 的函数B.成绩y 是考试次数x 的函数C.考试次数x 是成绩y 的函数D.成绩y 不一定是考试次数x 的函数答案 B3.函数f(x)=x +|x|x的图像是下图中的( )答案 C4.从甲城市到乙城市t min 的电话费由函数g(t)=1.06×(0.75[t]+1)给出,其中t>0,[t]为t 的整数部分,则从甲城市到乙城市5.5 min 的电话费为( ) A.5.04元 B.5.56元 C.5.84元 D.5.38元答案 A解析 g(5.5)=1.06(0.75×5+1)=5.035≈5.04.。
(新课标)最新苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy ”组成的集合与由“0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a ∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 . 5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,BA ,求x a ,的值; (3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.⊂ ≠§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ð,U C ð.(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B =I .2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么A B =I .3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=I I I I4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。
2021-2022年人教B版(2019)高一数学上册课时同步练第8课第1章章末综合检测【含答案】一、基础巩固1.下列各组对象不能构成集合的是( )A.拥有手机的人B.2019年高考数学难题C.所有有理数D.小于π的正整数【答案】B【解析】B选项中“难题”的标准不明确,不符合确定性,所以选B.2.命题“每一个四边形的四个顶点共圆”的否定是( )A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆【答案】A【解析】根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形,它的四个顶点不共圆”,故选A.3.已知集合P={x|x<3},Q={x|-1≤x≤4},则P∪Q=( )A.{x|-1≤x<3} B.{x|-1≤x≤4}C.{x|x≤4} D.{x|x≥-1}【答案】C【解析】在数轴上表示两个集合,如图,易知P∪Q={x|x≤4}.4.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是( )A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)【答案】D【解析】∵A ∪B ={1,3,4,5,6},∴∁U (A ∪B)={2,7}.5.设A ,B ,C 是三个集合,则“A∩B=A∩C”是“B=C”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由A∩B=A∩C,不一定有B =C ,反之,由B =C ,一定可得A∩B=A∩C.所以“A∩B=A∩C”是“B=C”的必要不充分条件.故选B.6.设全集U ={0,1,2,3},集合A ={x ∈U|x 2+mx =0},若∁U A ={1,2},则实数m =________.【答案】-3【解析】由题意可知,A ={x ∈U|x 2+mx =0}={0,3},即0,3为方程x 2+mx =0的两根,所以m =-3.7.“a<14”是“一元二次方程x 2-x +a =0有实数解”的________条件.【答案】充分不必要【解析】当一元二次方程x 2-x +a =0有实数解,则Δ≥0,即1-4a≥0,即a≤14,又“a<14”能推出“a≤14”,但“a≤14”不能推出“a<14”,即“a<14”是“一元二次方程x 2-x +a =0有实数解”的充分不必要条件.8.银川一中开展小组合作学习模式,高二某班某组王小一同学给组内王小二同学出题如下:若命题“∃x ∈R ,x 2+2x +m≤0”是假命题,求m 的范围.王小二略加思索,反手给了王小一一道题:若命题“∀x ∈R ,x 2+2x +m>0”是真命题,求m 的范围.你认为,两位同学题中m 的范围是否一致?________(填“是”“否”中的一个)【答案】是【解析】因为命题“∃x∈R,x2+2x+m≤0”的否定是“∀x∈R,x2+2x+m>0”,而命题“∃x ∈R,x2+2x+m≤0”是假命题,则其否定“∀x∈R,x2+2x+m>0”为真命题,所以两位同学题中的m的范围是一致的.9.设计如图所示的四个电路图,条件A:“开关S1闭合”;条件B:“灯泡L亮”,则A 是B的充要条件的图为________.【答案】乙【解析】对于图甲,开关S1闭合灯亮,反过来灯泡L亮,也可能是开关S2闭合,∴A是B的充分不必要条件.对于图乙,只有一个开关,灯如果要亮,开关S1必须闭合,∴A是B的充要条件.对于图丙,∵灯亮必须S1和S2同时闭合,∴A是B的必要不充分条件.对于图丁,灯一直亮,跟开关没有关系,∴A是B的既不充分也不必要条件.10.已知A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B;(2)若B⊆∁R A,求实数m的取值范围.【答案】)(1)A∪B={x|-1<x<4};(2)m>3或m≤-1 2【解析】(1)当m=1时,B={x|1≤x<4},A∪B={x|-1<x<4}.(2)∁R A={x|x≤-1或x>3}.当B=∅,即m≥1+3m时,得m≤-12,满足B⊆∁R A;当B≠∅时,要使B⊆∁R A成立,则⎩⎨⎧m<1+3m ,1+3m≤-1或⎩⎨⎧m<1+3m ,m>3, 解得m>3.综上可知,实数m 的取值范围是m>3或m≤-12.二、拓展提升11.若非空集合A ,B ,C 满足A ∪B =C ,且B 不是A 的子集,则( ) A .“x∈C”是“x∈A”的充分条件但不是必要条件 B .“x∈C”是“x∈A”的必要条件但不是充分条件 C .“x∈C”是“x∈A”的充要条件D .“x∈C”既不是“x∈A”的充分条件也不是“x∈A”的必要条件 【答案】B【解析】由A ∪B =C 知,x ∈A ⇒x ∈C ,x ∈CD/⇒x ∈A.所以x ∈C 是x ∈A 的必要不充分条件.12.记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n },最小数为min{x 1,x 2,…,x n }.已知△ABC 的三边边长为a ,b ,c(a≤b≤c),定义它的倾斜度为L =max a b ,bc ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ,则“L=1”是“△ABC 为等边三角形”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】当△ABC 是等边三角形时,a =b =c , ∴L =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =1×1=1. ∴“L=1”是“△ABC 为等边三角形”的必要条件. ∵a≤b≤c,∴max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ca.又∵L =1,∴min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ac,即a b =a c 或b c =a c ,得b =c 或b =a ,可知△ABC 为等腰三角形,而不能推出△ABC 为等边三角形. ∴“L=1”不是“△ABC 为等边三角形”的充分条件.13.设m ∈N *,一元二次方程x 2-4x +m =0有整数根的充要条件是m =________. 【答案】3或4 【解析】x =4±16-4m2=2±4-m ,因为x 是整数,即2±4-m 为整数,所以4-m 为整数,且m≤4.又m ∈N *,取m =1,2,3,4.验证可得m =3,4符合题意,所以m =3,4时可以推出一元二次方程x 2-4x +m =0有整数根.14.设p :12≤x≤1;q :a≤x≤a+1,若p 是q 的充分条件,则实数a 的取值范围是________.【答案】⎣⎢⎡⎦⎥⎤0,12【解析】因为q :a≤x≤a+1,p 是q 的充分条件,所以⎩⎨⎧a ≤12,a +1≥1,解得0≤a≤12.15.(本小题满分12分)下列命题中,判断条件p 是条件q 的什么条件;并说明理由. (1)p :|x|=|y|,q :x =y ;(2)p :△ABC 是直角三角形,q :△ABC 是等腰三角形; (3)p :四边形的对角线互相平分,q :四边形是矩形.【答案】(1)必要不充分条件;(2)既不充分也不必要条件;(3)必要不充分条件 【解析】(1)因为|x|=|y|⇒/x =y ,但x =y ⇒|x|=|y|, 所以p 是q 的必要条件,但不是充分条件. (2)因为△ABC 是直角三角形⇒/△ABC 是等腰三角形, △ABC 是等腰三角形⇒/△ABC 是直角三角形, 所以p 既不是q 的充分条件,也不是q 的必要条件. (3)因为四边形的对角线互相平分⇒/四边形是矩形, 四边形是矩形⇒四边形的对角线互相平分,所以p是q的必要条件,但不是充分条件.16.已知a,b,c∈R,a≠0,判断“a-b+c=0”是“二次方程ax2+bx+c=0有一根为-1”的什么条件?并说明理由.【答案】充要条件【解析】“a-b+c=0”是“二次方程ax2+bx+c=0有一根为-1”的充要条件.理由如下:当a,b,c∈R,a≠0时,若“a-b+c=0”,则-1满足二次方程ax2+bx+c=0,即“二次方程ax2+bx+c=0有一根为-1”,故“a-b+c=0”是“二次方程ax2+bx+c=0有一根为-1”的充分条件,若“二次方程ax2+bx+c=0有一根为-1”,则“a-b+c=0”,故“a-b+c=0”是“二次方程ax2+bx+c=0有一根为-1”的必要条件,综上所述,“a-b+c=0”是“二次方程ax2+bx+c=0有一根为-1”的充要条件.。
2021-2022学年度人教版高一数学必修一各章节同步练习(含答案)1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合A中只含一个元素1,则下列格式正确的是A.1=AB.0∈AC.1∉AD.1∈A2.集合{x∈N∗|x−2<3}的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合{x∈N|x3=x},用列举法表示为{−1,0,l};②实数集可以表示为{x|x为所有实数}或{R};③方程组{x+y=3,x−y=−1的解集为{x=1,y=2}.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.{(x,y)|x=0,y≠0,或x≠0,y=0}B. {(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为0}5.若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a=____.6.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a为 .7.设方程ax2+2x+1=0(a∈R)的根组成的集合为A,若A只含有一个元素,求a 的值.8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程x=|x|的所有x的值构成的集合B.【能力提升】集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b∈M,设c= a+b,则c与集合M有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又x∈N∗,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.±√2【解析】由于P,Q相等,故a2=2,从而a=±√2.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组{y=2x+1,y=x+3,的解,解方程组,得{x=2,y=5,∴a为(2,5).7.A中只含有一个元素,即方程ax2+2x+1=0(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为x=-12;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为x1=x2=-1.∴a的值为0或1.【备注】误区警示:初学者易自然认为ax2+2x+1=0(a∈R)是一元二次方程,而漏掉对a的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是A.a≤2 B.a≤1 C.a≥1 D.a≥22.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则A.M =NB.M⊆NC.M⫌ND. M⫋N3.已知集合A={1,−2,x2−1},B={1,x2−3x,0},若A=B,求实数x的值. 4.满足条件{1,2,3}⫋M⫋{1,2,3,4,5,6}的集合M的个数是A.8B.7C.6D.55.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y>0},那么M与P的关系为 .6.含有三个实数的集合,既可表示成{a,ba,1},又可表示成{a2,a+b,0},则a2015+b2016= .7.设集合A={(x,y)|y=2x−1},B={(x,y)|y=x+3},求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N⫋M,求a的取值范围.【能力提升】已知A={x||x−a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B?若存在,求出对应的a的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵A⊆B,∴a≥22.D【解析】本题考查集合间的基本关系. M={x|x=2k+14,k∈Z}, N={x|x=k+24,k∈Z}={x|x=m4,m∈Z};而{x|x=2k+14,k∈Z}⫋{x|x=m4,m∈Z};即M⫋N.选D.3.由A=B,可得{x2-1=0x2-3x=-2,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C.5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得{a,ba,1}={a2,a+b,0},所以ba=0,即b=0;此时{a,0,1}={a2,a,0},所以a2=1,a=a,且a≠1,解得a=−1.所以a2015+ b2016=−1+0=−1.7.{y=2x−1y=x+3,解得{x=4y=7;所以A∩B={(4,7)}.【解析】本题考查集合的基本运算. 8.解:M={x | x2-2x-3=0}={3,-1};∵N ⫋M,当N=时,N ⫋M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠时,∵N ⫋M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -,N={3,},不满足N ⫋M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N ⫋M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有A ⊆B ,则1,2是A 中的元素,又∵A ={a -4,a +4},∴{a -4=1,a +4=2或{a +4=1,a -4=2.这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},则满足上述条件的集合A 的个数为 A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A ∪BB.A ∩BC.(∁U A )∩(∁U B )D.(∁U A )∪(∁U B )∅∅310313.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P ∩Q={0,2}. 4.B【解析】∁U M={x|-1≤x ≤1},结合数轴可得N ∩(∁U M )={x|0<x ≤1}. 5.12【解析】设两项运动都喜爱的人数为x ,依据题意画出Venn 图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A ∩B={(x ,y )|{x +y =0x −y =2}={(1,-1)}.7.因为A ={x |0<x -m <3},所以A ={x |m <x <m +3}. (1)当A ∩B =⌀时,需{m ≥0m +3≤3,故m =0.即满足A ∩B =⌀时,m 的值为0.(2)当A ∪B =B 时,A ⊆B ,需m ≥3,或m +3≤0,得m ≥3,或m ≤-3.即满足A ∪B =B 时,m 的取值范围为{m |m ≥3,或m ≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A ∪B={x|2≤x<10}. 因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}. (2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2. 【能力提升】A={1,2}.(1)因为A ∪B=A ,所以B ⊆A ,故集合B 中至多有两个元素1,2.而方程x 2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有 ①当a-1=2,即a=3时,B={1,2},满足题意; ②当a-1=1,即a=2时,B={1},满足题意. 综上可知,a=2或a=3. (2)因为A ∩C=C ,所以C ⊆A.①当C=⌀时,方程x 2-x+2m=0无实数解,因此其根的判别式Δ=1-8m <0,即 m >18.②当C={1}(或C={2})时,方程x 2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=18,代入方程x 2-x+2m=0,解得x=12,显然m=18不符合要求.③当C={1,2}时,方程x 2-x+2m=0有两个不相等的实数解x 1=1,x 2=2,因此x 1+x 2=1+2≠1,x 1x 2=2=2m ,显然不符合要求.综上,m >18.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=√xB.y=√xC.y=1xD.y=x 2+12.下列式子中不能表示函数y =f (x )的是 A.x =y 2+1B.y =2x 2+1C.x −2y =6D.x =√y3.函数y=√1−x2+√x2−1的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若f(x)满足f(a∙b)=f(a)+f(b),且f(2)=p,f(3)=q,则f(72)等于A.p+q B.3p+2q C.2p+3q D.p3+q25.若[a,3a−1]为一确定区间,则 a 的取值范围是 .6.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[f(3)]的值等于 .7.求下列函数的定义域.(1)y=√2x+1+√3−4x;(2)y=1|x+2|−1.8.已知f(x)=x1+x.(1)求f(2)+f(12),f(3)+f(13)的值;(2)求f(2)+f(3)+f(4)+⋯+f(2013)+f(12)+f(13)+f(14)+⋯+f(12013)的值.【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】 1.B【解析】y=√x 的值域为[0,+∞),y=1x的值域为(-∞,0)∪(0,+∞),y=x 2+1的值域为[1,+∞).故选B. 2.A【解析】一个x 对应的y 值不唯一. 3.D【解析】要使函数式有意义,需满足{1−x 2≥0x 2−1≥0,解得x=±1,故选D.4.B【解析】f (72)=f (8×9)=f (8)+f (9)=3f (2)+2f (3)=3p +2q . 5.(12,+∞)【解析】由题意3a -1>a ,则a >12.【备注】误区警示:本题易忽略区间概念而得出3a -1≥a ,则a ≥12的错误.6.2【解析】由图可知f (3)=1,∴f [f (3)]=f (1)=2.【备注】误区警示:本题在求解过程中会因不理解f [f (3)]的含义而出错. 7.(1)由已知得{2x +1≥0⇒x ≥-12,3-4x ≥0⇒x ≤34,∴函数的定义域为[−12,34].(2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1, 得x ≠-3,x ≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞). 8.(1)f (2)+f (12)=21+2+121+12=23+13=1,f (3)+f (13)=31+3+131+13=34+14=1.(2)∵f(x)+f (1x)=x 1+x+1x1+1x=x 1+x+1x +1=1,∴f (2)+f (3)+f (4)+⋯+f(2013)+f (12)+f (13)+f (14)+⋯+f (12013)=f (2)+f (12)+f (3)+f (13)+f (4)+f (14)+⋯+f (2013)+ f (12013)=1+1+1+⋯+1(共2012个1相加) =2012. 【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0; 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0. (2)方法一 令a=b=2,得f(4)=f(2)+f(2)=2p, 令a=b=3,得f(9)=f(3)+f(3)=2q, 令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二 因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q.【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知y =f (x )是反比例函数,当x =2 时,y =1,则y =f (x ) 的函数关系式为 A.f (x )=1xB.f (x )=−1xC.f (x )=2xD.f (x )=−2x2.已知函数f (x )={2,x ∈[−1,1],x,x ∉[−1,1],若f [f (x )]=2,则x 的取值范围是A.∅B.[−1,1]C.(−∞,−1)∪(1.+∞)D.{2}∪[−1,1]3.已知函数f(x)={x +1,x ∈[−1,0]x 2+1,x ∈(0,1],则函数f(x)的图象是( )A. B. C. D.4.已知f (x )={3x +1,x ≥0,|x |,x <0,则f[f(−√2)]=A.2B.-2C.3√2+1D.−3√2+15.已知函数f (2x +1)=3x +2,且f (a )=4,则a = . 6.已知函数f (x )对于任意实数x 满足条件f (x+2)=1f(x),若f (1)=-5,则f[f (5)]= .7.已知a ,b 为常数,且a ≠0,f (x )=ax 2+bx ,f (x )=0,方程f (x )=x 有两个相等的实数根.求函数f (x )的解析式.8.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0) 左侧的图形的面积为f (t ),试求函数f (t ) 的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设f(x)=kx(k≠0),∵当x=2时,y=1,∴1=k2,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵f(-√2)=|-√2|=√2>0,∴f[f(-√2)]=f(√2)=3√2+1.【备注】无5.7 3【解析】f(2x+1)=3x+2=32(2x+1)+12,∴f(x)=32x+12,∴f(a)=32a+12=4,解得a=73 .6.-15【解析】由已知条件f (x+2)=1f(x)可得f (x+4)=1f(x+2)=f (x ),所以f (5)=f (1)=-5,所以f[f (5)]=f (-5)=f (-1)=1f(−1+2)=1f(1)=-15.7.∵f(x)=ax 2+bx ,且方程f (x )=x 有两个相等的实数根,∴∆=(b -1)2=0,∴b =1,又∵f (2)=0,∴4a +2=0,∴a =-12,∴f(x)=-12x 2+x .8.OB 所在的直线方程为y =√3x .当t ∈(0,1]时,由x =t ,求得y =√3t ,所以f (t )=√32t 2; 当t ∈(1,2]时,f (t )=√3-√32(2−t)2;当t ∈(2,+∞)时,f (t )=√3,所以{√32t 2,t ∈(0,1], √3-√32(2−t)2,t ∈(1,2],√3,t ∈(2,+∞).【能力提升】(1)由题意知y={(x +2)2,x ≥1x 2+2,x <1.(2)f (-3)=(-3)2+2=11, f (1)=(1+2)2=9.(3)若x ≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x 2+2=16,解得x=√14(舍去)或x=-√14.综上可得,x=2或x=-√14.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数f(x)在区间(a,b)上是增函数,在区间(c,d)上也是增函数,则函数f(x)在区间(a,b)∪(c,d)上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A.y=1−2xB.y=−x2+2xC.y=5D.y=√x−13.函数f(x)={x+1,x≥0x−1,x<0,在R上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数f(x)=x2−2(1−a)x+1 在区间(−∞,2]上为减函数,则a 的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数f(x)=axx−1,若2f(2)=f(3)+5.(l)求a 的值.(2)利用单调性定义证明函数f(x)在区间(1,+∞)的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中y=√x-1的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得2×2a2−1=3×a3−1+5,解得a=2.(2)由(1)知f(x)=2xx−1.任取x 1,x 2∈(1,+∞)且x 1<x 2,f (x 1)<f (x 2)=2x 1x 1−1−2x 2x 2−1=2x 1(x 2−1)−2x 2(x 1−1)(x 1−1)(x 2−1)=2(x 2−x 1)(x1−1)(x 2−1),因为1<x 1<x 2,所以x 1-1>0,x 2-1>0,x 2-x 1>0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令t (x )=y x=12x +80 000x-200,可以证明t (x )在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x -y =100x -(12x 2-200x +80 000)=−12x 2+300x -80 000=−12(x -300)2-35 000.因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损. 【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,12];单调减区间为(-∞,0)和(12,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设f (x ) 在[-2,-1]上为减函数,最小值为3,且f (x ) 为偶函数,则f (x ) 在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数y =f (x ) 是偶函数,其图象与x 轴有四个交点,则方程f (x )=0 的所有实根之和是 A.4B.2C.1D.03.函数y =f(x)是奇函数,图象上有一点为(a ,f(a)),则图象必过点A. (a ,f(−a))B. (−a ,f(a))C. (−a ,−f(a))D. (a ,1f(a)))4.设f (x )=ax 3+bx −5,其中a ,b 为常数,若f (−3)=7,则f (3)的值为 A.-7B.7C.17D.-175.已知定义在R 上的奇函数f (x ),当x >0 时,f (x )=x 2+|x |−1,那么x <0 时,f (x )= . 6.若函数f (x )=x+abx+1为区间[-1,1]上的奇函数,则a = ;b = .7.作出函数y =|x −2|(x +1)的图象,并根据函数的图象找出函数的单调区间. 8.已知函数f (x )=ax 3+bx 2+cx +d 是定义在R 上的偶函数,且当x ∈[1,2]时,该函数的值域为[−2,1],求函数f (x )的解析式. 【能力提升】已知函数f (x )=-12x 2+x ,是否存在实数m ,n (m <n ),使得当x ∈[m ,n ]时,函数的值域恰为[2m ,2n ]?若存在,求出m ,n 的值;若不存在,说明理由.答案【基础过关】 1.D 2.D 3.C【解析】奇函数f (x )满足f (-x )=-f (x),故有f (-a )=-f (a ).因为函数f (x )是奇函数,故点(a ,f (a ))关于原点的对称点(-a ,-f (a ))也在y =f (x )上,故选C. 4.D【解析】∵f(-3)=a(-3)3−3b -5=7, ∴27a +3b =-12, ∴f (3)=27a +3b -5=-17. 5.-x 2-|x |+1 6.0 07.当x -2≥0,即x ≥2时,y =(x -2)(x +1)=x 2-x -2=(x −12)2−94;当x -2<0,即x <2时,y =-(x -2)(x +1)=-x 2+x +2=−(x −12)2+94.所以y ={(x −12)2−94,x ≥2.−(x −12)2+94,x <2.这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中(−∞,12],[2,+∞)是函数的单调增区间;(12,2)是函数的单调减区间.8.由f (x )为偶函数可知f (x )=f (-x ),即ax 3+bx 2+cx +d =-ax 3+bx 2-cx +d ,可得ax 3+cx =0恒成立,所以a =c =0,故f(x)=bx 2+d .当b =0时,由题意知不合题意;当b >0,x ∈[1,2]时f (x )单调递增,又f (x )值域为[-2,1],所以{f(1)=-2,f (2)=1⟹ {b +d =-2,4b +d =1⟹{b =1, d =−3;当b <0时,同理可得{f (1)=1, f (2)=−2⟹ {b +d =1, 4b +d =-2⟹{b =−1,d =2.所以f(x)=x 2-3或f (x )=−x 2+2. 【能力提升】假设存在实数m ,n ,使得当x ∈[m ,n ]时,y ∈[2m ,2n ],则在[m ,n ]上函数的最大值为2n .而f (x )=-12x 2+x =-12(x-1)2+12在x ∈R 上的最大值为12,∴2n ≤12,∴n ≤14.而f (x )在(-∞,1)上是增函数,∴f (x )在[m ,n ]上是增函数,∴{f(m)=2mf(n)=2n,即{−12m 2+m =2m −12n 2+n =2n.结合m <n ≤14,解得m =-2,n =0.∴存在实数m =-2,n =0,使得当x ∈[-2,0]时,f (x )的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简√−x 3x的结果为A.−√−xB.√xC.-√xD.√−x2.计算[(−√2)−2]−12的结果是A.√2B.−√2C.√22D.−√223.设13<(13)b <(13)a<1,则有A.a a <a b <b aB. a a <b a <a bC. a b <a a <b aD. a b <b a <a a4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)√a n n=a(a≥0);(3)(a b)5=a 5b15; (4)√(−3)26=(-3)13.A.1B.2C.3D.45.若10m =2,10n=4,则102m−n 2=.6.已知x=12(2 0131n -2 013−1n ),n ∈N *,则(x+√1+x 2)n 的值为 .7.化简下列各式: (1)(√a 23·√a )÷√a 6;(2)(a 23b 12)·(-3a 12b13)÷(13a 16b56).8.求下列各式的值:(1)2532;(2)(254)−32;(3)√259+(2764)−13-π0.【能力提升】已知x 12+x−12=3,求下列各式的值:(1)x+x -1;(2)x 32+x −32+2x 2+x −2+3.答案【基础过关】 1.A【解析】要使式子有意义,需-x 3>0,故x <0,所以原式=-√-x . 2.A【解析】本题考查指数运算.注意先算中括号内的部分。
2022高一数学同步练习册参考答案大全高中,是高级中学的简称,全中国的中学分为初级中学与高级中学(普遍简称初中和高中),两者同属于中等教育的范围。
下面是小编为大家整理的关于高一数学同步练习册参考答案大全,希望对您有所帮助!高一数学练习册答案1.1集合111集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.112集合间的基本关系1.D.2.A.3.D.4.,{-1},{1},{-1,1}.5..6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={,{1},{2},{1,2}},B∈A.11.a=b=1.113集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22113集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6綂UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2綂UB,与条件A∩綂UB={2}矛盾.1.2函数及其表示121函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.121函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).122函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.122函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(02.4(203.6(404.8(601.3函数的基本性质131单调性与(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.131单调性与(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(011.日均利润,则总利润就.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12132奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<32b-32b<00单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f1217.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有的实数解,即xax+b=x(_)只有实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2_+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(_)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1. 3+1×3.9+0.5×65=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(56.5x-28.6(622.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).高一数学练习参考答案2.1指数函数211指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.211指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.211指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.47288,00885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.212指数函数及其性质(一)1.D.2.C.3.B.4.AB.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0212指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.212指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数221对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-310.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.221对数与对数运算(二)1.C.2.A.3.A.4.03980.5.2lo_-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.221对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.25.10.a=log34+log37=log328∈(3,4).11.1.222对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.222对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log2047.logbab0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0222对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x 对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.23幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x 对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.258.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-117.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y 有值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当020.(1)F(x)=lg1-_+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)。
1.1集合的意义(第1课时)(作业)(夯实基础+能力提升)【夯实基础】一、单选题1.(2021·上海·格致中学高一期中)若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 【答案】D【分析】根据集合元素的互异性即可判断.【详解】由题可知,集合{},,M a b c =中的元素是ABC 的三边长,则a b c ≠≠,所以ABC 一定不是等腰三角形.故选:D .2.(2020·上海市奉贤区曙光中学高一阶段练习)下列语言叙述中,能表示集合的是( ) A .数轴上离原点距离很近的所有点;B .太阳系内的所有行星C .某高一年级全体视力差的学生;D .与ABC 大小相仿的所有三角形【答案】B【分析】根据集合的确定性逐个判断即可【详解】对A ,数轴上离原点距离很近的所有点不满足确定性,故A 错误;对B ,太阳系内的所有行星满足集合的性质,故B 正确;对C ,某高一年级全体视力差的学生不满足确定性,故C 错误;对D ,与ABC 大小相仿的所有三角形不满足确定性,故D 错误故选:B【点睛】本题主要考查了集合的确定性,属于基础题二、填空题3.(2021·上海·上外附中高一期中)集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.【答案】2-【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.4.(2019·上海市亭林中学高一期中)若{}{},27,8x y y +=,则整数x =____________.【答案】3【分析】根据集合相等的条件,列出方程组,即可求解.【详解】因为{}{},27,8x y y +=,由集合相等的条件,可得728x y y +=⎧⎨=⎩或827x y y +=⎧⎨=⎩, 解得3x =或92x =(舍). 故答案为:35.(2019·上海市亭林中学高一期中)用符号“∈、∉、⊆、⊇”Q .【答案】∉【分析】根据元素与集合之间的关系得答案.Q故答案为:∉.6.(2021·上海市张堰中学高一期中)若{}242,a ∈,则实数=a ____________. 【答案】2±【分析】4是集合{}22,a 中的元素,所以只能是24a =,求出a 的值即可【详解】由题意得:24a =,解得:2a =±故答案为:2±7.(2021·上海市奉贤中学高一期中)若{}241,a ∈,则实数=a __________; 【答案】2±【分析】结合已知条件,利用元素与集合的关系即可求解.【详解】因为{}241,a ∈,所以24a =,解得2a =±. 故答案为:2±.8.(2021·上海·华东师范大学第三附属中学高一期中)已知集合{}2,0A a a =-,若a A ∈,则实数a 的值为___________.【答案】2【分析】根据集合元素的性质可求实数a 的值.【详解】因为a A ∈,故0a =或2a a a -=,若0a =,则20a a a -==,与元素的互异性矛盾,舍;若2a a a -=,则2a =或0a =(舍),而2a =时,符合元素的互异性,故实数a 的值为2,故答案为:2.9.(2021·上海市行知中学高一阶段练习)若{}242,,a a ∈,则实数=a _________.【答案】2-或4【分析】由{}242,,a a ∈,可得2a =±或4a =,分三种情况讨论即可求解.【详解】解:因为{}242,,a a ∈,所以24a =或4a =,即2a =±或4a =,当2a =时,{}{}22,,2,4,2a a =与集合中元素的互异性相矛盾,舍去; 当2a =-时,{}{}22,,2,4,2a a =-符合题意;当4a =时,{}{}22,,2,16,4a a =符合题意. 故答案为:2-或4.10.(2021·上海市桃浦中学高一阶段练习)下列对象能组成集合的是___________①桃浦中学一部分学生②倒数等于自身的实数③超过100页的书④世界知名艺术家⑤方程210x +=的全体解【答案】②③⑤.【分析】根据集合元素的三要素,确定性、互异性和无序性可判断.【详解】①桃浦中学一部分学生不符合确定性,不能构成集合;②倒数等于自身的实数有1-和1,可构成集合{}1,1-;③超过100页的书符合集合元素的特征,可以构成集合;④世界知名艺术家,“知名”没有确定性,不能构成集合;⑤方程210x +=无解,可构成空集.因此,能构成集合的为②③⑤.故答案为:②③⑤.11.(2021·上海市奉贤中学高一阶段练习)若a ∈R ,则构成集合{}1,1a -中的a 的取值范围是___________. 【答案】{}2a a ≠【分析】根据集合互异性,即可得答案.【详解】根据集合的互异性可得11a -≠,所以2a ≠,即a 的取值范围是{}2a a ≠ 故答案为:{}2a a ≠12.(2021·上海市新场中学高一阶段练习)下列各对象的全体,可以构成集合的是_________________(填序号)①高一数学课本中的难题;②高一年级中身高超过1.70米的同学.【答案】②【分析】根据集合中的元素满足确定性可得出结论.【详解】①中的对象不满足确定性,①中的对象不能构成集合;②中的对象满足确定性,②中的对象能构成集合.故答案为:②.13.(2021·上海大学附属南翔高级中学高一阶段练习)已知,a b ∈R ,若{}1,,0,,b a a b b a ⎧⎫+=⎨⎬⎩⎭,则b a -=____________;【答案】2【分析】由题意可得0a b +=,1b =,从而可求出a 的值,进而可得答案【详解】因为{}1,,0,,b a a b b a ⎧⎫+=⎨⎬⎩⎭,所以0,0a a b ≠+=,则1b a =-, 所以1,1b a ==-,所以1(1)2b a -=--=,故答案为:214.(2020·上海市第三女子中学高一期中)用适当的符号填空:0_____∅.【答案】∉【分析】结合空集、元素与集合的关系确定正确答案.【详解】空集没有任何元素,所以0∉∅.故答案为:∉15.(2021·上海·高一专题练习)下列各组中的两个集合相等的有____________(1)P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z }(2)P ={x |x =2n -1,n ∈N +},Q ={x |x =2n +1,n ∈N +};(3)P ={x |x 2-x =0},Q ={x |x =1(1)2n+-,n ∈Z }. (4)P ={x |y =x +1},Q ={(x ,y )|y =x +1}【答案】(1)(3)【分析】根据集合的元素逐一分析,由此判断出正确结论.【详解】(1)中集合P ,Q 都表示所有偶数组成的集合,有P =Q ;(2)中P 是由1,3,5,…所有正奇数组成的集合,Q 是由3,5,7,…所有大于1的正奇数组成的集合,1∉Q ,所以P ≠Q .(3)中P ={0,1},当n 为奇数时,x =1(1)2n +-=0,当n 为偶数时,x =1(1)2n+-=1,所以Q ={0,1},P =Q . (4)中集合,P Q 的研究对象不相同,所以P ≠Q .故答案为:(1)(3).【能力提升】一、单选题1.(2021·上海市奉贤中学高一阶段练习)设Q 所示有理数集,集合{},,0X x x a a b Q x ==+∈≠,在下列集合中:①{}2x x X ∈;②X ⎫∈⎬⎭;③1x X x ⎧⎫∈⎨⎬⎩⎭;④{}2x x X ∈;与X 相同的集合有( ) A .①② B .②③ C .①②④ D .①②③【答案】D【分析】根据集合相等的含义,逐一分析①②③④,即可得答案【详解】对于①:集合{}2x x X ∈,则2(a p +=+解得2,2p a q b ==,即,22p q a b ==,是一一对于,所以与X 集合相同.对于②:集合X ⎫∈⎬⎭b =X 集合相同.对于③:集合1x Xx ⎧⎫∈⎨⎬⎩⎭2222a b a b a b ⎛=+- --⎝X 集合相同.对于④:1X -,但方程21x -无解,则2{|y y x =,}x X ∈与X 不相同.故选:D二、填空题2.(2020·上海·华东师范大学附属周浦中学高一阶段练习)若集合{}2440A x kx x =++=中只有一个元素,则实数k 的值为___________.【答案】0或1【分析】分0k =、0k ≠两种情况讨论,结合集合A 只有一个元素可得出关于k 的等式,综合可求得实数k 的值.【详解】当0k =时,{}{}4401A x x =+==-,合乎题意;当0k ≠时,则关于x 的二次方程2440kx x ++=只有一解,则16160Δk =-=,解得1k =.综上所述,0k =或1.故答案为:0或1.3.(2020·上海市奉贤中学高一阶段练习)若{}21,x x ∈,则x =___________. 【答案】1-【分析】根据集合元素的互异性得1x ≠且0x ≠,再结合题意得21x =,解方程即可得答案.【详解】解:根据集合元素的互异性可知2x x ≠,即1x ≠且0x ≠,因为{}21,x x ∈,所以21x =,解得1x =±(负舍) 所以1x =-故答案为:1-4.(2020·上海·高一单元测试)已知集合A ={}22,2a a a ++,若3A ∈,则实数a 的值是____________.【答案】32- 【分析】根据题意,可得23a +=或223+=a a ,然后根据结果进行验证即可.【详解】由题可知:集合{}22,2A a a a =++,3A ∈所以23a +=或223+=a a ,则1a =或32a =- 当1a =时,222a a a +=+,不符合集合元素的互异性, 当32a =-时,1,32⎧⎫=⎨⎬⎩⎭A ,符合题意所以32a =- 故答案为:32- 5.(2020·上海·南洋中学高一期中)已知集合A ={1,2,3},B ={1,m },若3-m A ∈,则实数m =______________【答案】0或2【分析】由已知集合A 的元素,分类讨论求参数m 值,再根据集合的性质确定m 的值.【详解】当31m -=时,得2m =;当32m -=时,得1m =;当33m -=时,得0m =;∵3-m A ∈,B ={1,m },∴0m =或2m =.故答案为:0或26.(2021·上海市奉贤中学高一期中)用()C A 表示非空集合A 中元素的个数:定义()(),()()*()(),()()C A C B C A C B A B C B C A C B C A -≥⎧=⎨->⎩,若{1,2}A =,{}22()(2)0,B x x ax x ax x R =+++=∈,且*1A B =,设实数a 的所有可能取值构成集合S ,S =__________;【答案】{0,-【分析】根据新定义得出集合B 中元素个数,再由方程根的个数分析求解.【详解】由已知()2C A =,而*1A B =,则()1C B =或3,显然22()(2)0x ax x ax +++=的一个解是0x =,若()1C B =,则0a =,满足题意;若()3C B =,则0a ≠,方程已有两个根0x =和x a =-,220x ax ++=有两个相等的实根且不为0和a -,280a ∆=-=,a =±a =220x ax ++=的解为34x x ==a =-220x ax ++=的解为34x x =综上{0,S =-.故答案为:{0,-.7.(2021·上海市延安中学高一期中)设集合S 为实数集R 的非空子集,若对任意x S ∈,y S ∈,都有()x y S +∈,()x y S -∈,()xy S ∈,则称集合S 为“完美集合”.给出下列命题:①若S 为“完美集合”,则一定有0S ∈;②“完美集合”一定是无限集;③集合{},,A x x a a Z b Z ==∈∈为“完美集合”;④若S 为“完美集合”,则满足S T R ⊆⊆的任意集合T 也是“完美集合”.其中真命题是___________.(写出所有正确命题的序号)【答案】①③【分析】对于①③,可以利用完美集合的定义分析判断,对于②④可以举反例分析判断.【详解】因为x ,y 是集合中任意的元素,所以x 与y 可以是同一个元素,故0一定在完美集合中,故①正确;完美集合不一定是无限集,例如{0},故②错误;集合{},,A x x a a Z b Z ==∈∈,在集合A 中任意取两个元素,x a y c =+=+,其中a ,b ,c ,d 为整数,则(x y a c b d +=+++(x y a c b d -=-+-5(xy ac bd ad bc =+++数倍的形式,故③正确;{0}S =,{0T =,1},也满足④,但是集合T 不是一个完美集合,故④不正确.故答案为:①③8.(2021·上海·复旦附中青浦分校高一阶段练习)设集合{}0123,,,S A A A A =,在S 上定义运算⊕为:j i k A A A ⊕=,其中k 为i j +被4除的余数,i ,0j =,1,2,3,则满足关系式20()x x A A ⊕⊕=的x (x S ∈)的个数为________.【答案】2【解析】由已知中集合0{S A =,1A ,2A ,3}A ,在S 上定义运算⊕为:j i k A A A ⊕=,其中k 为i j +被4除的余数,i ,0j =,1,2,3,分别分析x 取0A ,1A ,2A ,3A 时,式子的值,并与0A 进行比照,即可得到答案.【详解】当0x A =时,20020220()()x x A A A A A A A A ⊕⊕=⊕⊕=⊕=≠当1x A =时,21122240()()x x A A A A A A A A ⊕⊕=⊕⊕=⊕==当2x A =时,22220220()()x x A A A A A A A A ⊕⊕=⊕⊕=⊕=≠当3x A =时,23322200()()x x A A A A A A A A ⊕⊕=⊕⊕=⊕==则满足关系式20()x x A A ⊕⊕=的()x x S ∈的个数为:2个.故答案为:2.【点睛】本题考查的知识点是集合中元素个数,其中利用穷举法对x 取值进行分类讨论是解答本题的关键.属于中档题.三、解答题9.(2021·上海·位育中学高一期中)已知集合A 为非空数集,定义:{}|,,S x x a b a b A ==+∈,{}|,,T x x a b a b A ==-∈.(1)若集合{}13A =,,求证:2S ∈,并直接写出集合T ;(2)若集合{}1234,,,A x x x x =,1234x x x x <<<,且T A =,求证:1423x x x x +=+;【答案】(1)证明见解析,{02}T =,;(2)证明见解析; 【分析】(1)根据题目的定义,直接计算集合S 、T 即可;(2)根据相等集合的概念即可得出结果;(1)根据题意,由集合}3{1A =,,计算集合{246}S =,,,{02}T =,,所以2S ∈; (2)由于1234{}A x x x x =,,,,1234x x x x <<<,且T A =,所以T 中也只包含4个元素,即213141{0}T x x x x x x =---,,,,剩下的元素满足2143x x x x -=-,即1423x x x x +=+;。
勢谓終杉推数学弊僧1第一秦谓后习懸解答第一章集合与函数概念1. 1集合练习(P5)1.(1)中国WA,美国gA,印度WA,英国0A.(2)TA={xl?=x}={0, 1}, ...-IgA. (3)VB={Mr2+.r-6=0}={-3, 2}, /.3^A.(4)VC={xeNll<x<10}={l, 2, 3, 4, 5, 6, 7, 8, 9, 10}, /.8ec, 9.1 EC.2.(1){X I?=9}或{_3, 3}; (2){2, 3, 5, 7};y = x + 3(3){(x, v)H }或{(1, 4)};(4){xWRI4x-5<3}或{xlr<2}.y = -2x + 6练习(P7)1.0, {a}, [b], {<?}, [a, b], {a, c}, {b, c}, {a, b, c}.2.(l)aW{a, b, c}.(2)\\r=0, x=0. Z. {A-L?=0}={0}.0e {0}.(3)V?+l=0, :.x2=-l.又TXWR, 方程x~=-l无解.A{xeRk2+l=O}=0.A 0 = 0.⑷筆. (5)•.•?=!■, ...x=0 或x=l..・.{xl?=x}={0, 1}..•.{()}筆{0, 1}.(6)TF-3x+2=0, :.X=1或x =2..:.{x\x--3x+2.=Q} = [l, 2}.Z.{2, 1}={1, 2}.3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8 的公约数是1, 2, 4, 8,即B={1, 2, 4, 8}.?.A^B.(2)显然BqA,又•.•3GA,且3gB, .'.B呈A.(3)4与10的最小公倍数是20, 4与10的公倍数应是20的倍数,显然A=B.练习(P11)1.ADB={5, 8}, AUB={3, 5, 6, 7, 8}.2.V.Y2-4A--5=0,:.X=-1或x=5..・.A={xl?-4x-5=0}={-l, 5},同理,B={-1, 1}..\AUB={-1, 5}U{-1, 1}={-1, 1, 5}, AHB={-1, 5}0{-1, 1}={-1}.3.AAB={A-I X是等腰直角三角形}, AUB={xk是等腰三角形或直角三角形}.4.vCuB={2, 4, 6}, CuA={l, 3, 6, 7], /.An(CuB)={2, 4, 5}A{2, 4, 6}={2, 4},(CuA)n(CuB)={l, 3, 6, 7}A{2, 4, 6}={6}.习题1.1 A组(Pll)1.d) e ⑵丘⑶纟⑷丘⑸丘(6)e2.(1) G⑵纟(3)G3.(1){2, 3, 4, 5}; (2){-2, l};(3){0, 1, 2}.(3)V-3<2r-l<3, :.-2<2x<4. :.-l<x<2.又TxeZ, ...x=0, 1, 2. .•.B={xGZI-3<2r-l<3}={0, 1, 2}.44.(l){yly>-4}; (2){x時0}; (3){A-|A->-}.5.(1) V A={x\2x-3<3x}={x\x>-3}, B={xk>2}, .\-4gB, -3gA, {2}筆B, B筆A.(2)VA={X L X2-1=0}={-1, 1}, A 1 eA, {-1 厚A, 0呈A, {1, -1}=A. ⑶呈;呈.6.VB={xl3x-7>8-2x}={xlx>3},/. A U B={.Y I2<Y<4} U {X L Y>3}={X L Y>2},ADB={xl2Sx:<4} Pl {.Y k>3}={A-I3<A_<4}.7.依题意,可知A={1, 2, 3, 4, 5, 6, 7, 8},由U=AUB={xGNKfetV10所以 AC!B={1, 2, 3, 4, 5, 6, 7, 8}C1{1, 2, 3}={1, 2, 3}=B,Anc={l, 2, 3, 4, 5, 6, 7, 8}A{3, 4, 5, 6}={3, 4, 5, 6}=C. 又•.•BUC={1, 2, 3}U{3, 4, 5, 6}={1, 2, 3, 4, 5, 6}..•.An (BUC)={l, 2, 3, 4, 5, 6, 7, 8}CI{1, 2, 3, 4, 5, 6}={1, 2, 3, 4, 5, XVBnC={l, 2, 3}A{3, 4, 5, 6}={3},.•.AU(BnC)={l, 2, 3, 4, 5, 6, 7, 8}U {3}={1, 2, 3, 4, 5, 6, 7, 8}=A. &(l)AUB={xlr 是参加一百米跑的同学或参加二百米跑的同学}.⑵AnC={.rk 是既参加一百米跑又参加四百米跑的同学}.9. BnC={.rk 是正方形}, C 、B={xlx 是邻边不相等的平行卩L|边形}, CsA={.rk 是梯形}. 10. V A U B={xl3<x<7} u {xl2<x<10}={xl2<x<10}, /. C R (A U B)={xlx<2 或 x>10}. 又ADB={xl3Sx<7}ri {x\2<s< 10}={jrl3<r<7}, .°.*R(AriB)={xLx<3 或.r>7}.(C R A)ClB={xLr<3 或 ©7} Cl{xl2<r<10}={xl2<r<3 或 7<Y <10},AU(C R B)={A -|3<A -<7} U {X \X <2 或.Y>10} = {A'k<2 或 3<x<l 或 A >10}.习题1.2 A 组(P24)1. VA={1, 2}, AUB={1, 2}, .'.BeA, .\B=0, {1}, {2}, {1, 2}.2. 集合 D={(x, y)l2.r-y=l}n{(.r, y)l.r+4y=5}表示直线 2x-y=l 与直线.r+4y=5 的交点坐标;2x _ v ]由于D={(x, v)H}={(1, 1)},所以点(1, 1)在直线y=x 上,即D 筆C.x + 4y = 53. B={1, 4},当 a=3 时,A={3},则 AUB={1, 3, 4}, AAB=0; 当 af3 时,A={3, a},若 a=l,则 AUB={1, 3, 4}, AC!B={1}; 若 a=4,则 AUB={1, 3, 4}, APB={4};若 afl 且 a 护,贝lj AUB={1, a, 3, 4}, AC!B= 0. 综上所得, 当 a=3 时,AUB={1, 3, 4}, AflB=0; 当 a=l,则 AUB={1, 3, 4}, AC!B={1}; 当 a=4,则 AUB={1, 3, 4}, AHB={4}; 当 a 托且且 <#4 时,AUB={1, a, 3, 4}, AD B=0.4. 作出韦恩图,女fl 图1 -1-3-16所示,可知 B={0, 2, 4, 6, 8, 9, 10}.4 —兀n o⑷要使函数有意义,只需% < 4< '即xS4,且xfl. 兀H 1,1. 2函数及其表示练习(P19)171.(1)要使分式 ---- 有意义,需4x+7#0,即洋-一.4x + 7 47 7所以这个函数的定义域是(-8,——)U(——,+00);4 4(2)要使根式有意义,需l-x>0,且x+3>0,即-3<x<l.所以这个函数的定义域是[-3, 1].2.(l)f(2)=28, f(-2)=-28, f(2)+f(-2)=0; (2)f(a)=3a'+2a, f(-a)=-3a3-2a, f(a)+f(-a)=0.3.(1)两个函数的对应法则相同,而表示导弹飞行高度与时间关系的函数y=500x-5x2是有实际背景的,这里©0;函数y=500x-5x2, xGR,这两个函数的定义域不同,故这两个函数不相等.⑵函数g(x)=x°= l(x#O)与函数f(x)= 1, x£R的对应法则相同,但定义域不同,所以不是相等的函数.已知函数解析式求函数值及不同变量的函数值的关系.练习(P23)1.设矩形一边长为xcm, 则另一边长为A/502 -x2 = A/2500-X2.由题意,得y=x『2500 —X? , xG(O, 50).2.图(A)与事件⑵.图(B)与事件(3).图(D)与事件(1)吻合得最好图(O可叙述为:我出发后.为了赶时间.加速行驶.走了一段后,发现时间还早,于是放慢了速度.3.解析:由绝对值的知识,有f(x)=< '-x + 2, x <2./? &4•与A中元素60。
高中数学必修一同步训练及解析1.下列所给关系正确的个数是( ) ①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *. A .1 B .2 C .3 D .4解析:选B.①②正确,③④错误.2.下列各组集合,表示相等集合的是( ) ①M ={(3,2)},N ={(2,3)}; ②M ={3,2},N ={2,3}; ③M ={(1,2)},N ={1,2}. A .① B .② C .③D .以上都不对解析:选B.①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2. 3.用描述法表示不等式x <-x -3的解集为________.答案:{x |x <-x -3}(或{x |x <-32})4.集合A ={x ∈N|2x 2-x -1=0}用列举法表示为__________.解析:解方程2x 2-x -1=0,得x =1或x =-12.又因为x ∈N ,则A ={1}.答案:{1}[A 级 基础达标]1.下面几个命题中正确命题的个数是( ) ①集合N *中最小的数是1; ②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2; ④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:选C.N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,但a ∉N *,故②错;若a ∈N *,则a 的最小值是1,又b ∈N *,b 的最小值也是1,当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确,故选C.2.设集合M ={x ∈R|x ≤33},a =26,则( ) A .a ∉M B .a ∈M C .{a }∈MD .{a |a =26}∈M解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.若集合M ={a ,b ,c },M 中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选D.根据元素的互异性可知,a ≠b ,a ≠c ,b ≠c .4.已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z.正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 答案:35.已知x 2∈{1,0,x },则实数x =________.解析:∵x 2∈{1,0,x },∴x 2=1或x 2=0或x 2=x . ∴x =±1或x =0.但当x =0或x =1时,不满足元素的互异性. ∴x =-1. 答案:-16.设集合B ={x ∈N|62+x∈N}.(1)试判断元素1和2与集合B 的关系; (2)用列举法表示集合B .解:(1)当x =1时,62+1=2∈N ;当x =2时,62+2=32∉N ,∴1∈B,2∉B .(2)令x =0,3,4代入62+x∈N 检验,可得B ={0,1,4}.[B 级 能力提升]7.设集合A ={2,3,4},B ={2,4,6},若x ∈A 且x ∉B ,则x 等于( ) A .2 B .3 C .4 D .6解析:选B.∵x ∈{2,3,4}且x ∉{2,4,6},∴x =3.8.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( ) A .0 B .2 C .3 D .6解析:选D.∵z =xy ,x ∈A ,y ∈B ,∴z 的取值有:1×0=0,1×2=2,2×0=0,2×2=4, 故A *B ={0,2,4},∴集合A *B 的所有元素之和为:0+2+4=6.9.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉A ,∴2+a ≤0,即a ≤-2. 答案:a ≤-2 10.用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B . 解:(1){x |x =3n ,n ∈Z};(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z}.11.已知集合A ={x |ax 2+2x +1=0}.(1)若A 中只有一个元素,求a 的取值范围; (2)若A 中至少有一个元素,求a 的取值范围. 解:(1)∵方程ax 2+2x +1=0只有一个解,若a =0,则x =-12;若a ≠0,则Δ=0,解得a =1,此时x =-1. ∴a =0或a =1时,A 中只有一个元素. (2)①A 中只有一个元素时,a =0或a =1.②A 中有两个元素时,⎩⎪⎨⎪⎧a ≠0,Δ>0,解得a <1且a ≠0.综上,a ≤1.高中数学必修一同步训练及解析1.下列集合中是空集的是( ) A .{x |x 2+3=3}B .{(x ,y )|y =-x 2,x ,y ∈R}C .{x |-x 2≥0}D .{x |x 2-x +1=0,x ∈R}解析:选D.∵方程x 2-x +1=0的判别式Δ<0,∴方程无实根,故D 选项为空集,A 选项中只有一个元素0,B 选项中有无数个元素,即抛物线y =-x 2上的点,C 选项中只有一个元素0.2.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( ) A .A >B B .A B C .B A D .A ⊆B解析:选C.利用数轴(图略)可看出x ∈B ⇒x ∈A ,但x ∈A ⇒x ∈B 不成立. 3.下列关系中正确的是________. ①∅∈{0};②∅;③{0,1}⊆{(0,1)};④{(a ,b )}={(b ,a )}. 解析:∅,∴①错误;空集是任何非空集合的真子集,②正确;{(0,1)}是含有一个元素的点集,③错误;{(a ,b )}与{(b ,a )}是两个不等的点集,④错误,故正确的是②. 答案:②4.图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,则A 、B 、C 、D 、E 分别代表的图形的集合为__________________________.解析:由以上概念之间的包含关系可知:集合A ={四边形},集合B ={梯形},集合C ={平行四边形},集合D ={菱形},集合E ={正方形}.答案:A ={四边形},B ={梯形},C ={平行四边形},D ={菱形},E ={正方形}[A 级 基础达标]1.如果A ={x |x >-1},那么( ) A .0⊆A B .{0}∈A C .∅∈A D .{0}⊆A解析:选D.A 、B 、C 的关系符号是错误的. 2.若{1,2}={x |x 2+bx +c =0},则( ) A .b =-3,c =2 B .b =3,c =-2 C .b =-2,c =3 D .b =2,c =-3解析:选A.由题意知1,2为方程x 2+bx +c =0的两个根,所以⎩⎪⎨⎪⎧1+2=-b ,1×2=c ,解得b =-3,c =2.3.符合条件{a P ⊆{a ,b ,c }的集合P 的个数是( ) A .2 B .3 C .4 D .5解析:选B.集合P 中一定含有元素a ,且不能只有a 一个元素,用列举法列出即可.4.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx=1},则A 、B 间的关系为________.解析:(0,0)∈A ,而(0,0)∉B ,故B A . 答案:B A5.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________. 解析:由于B ⊆A ,则应有m 2=2m -1,于是m =1. 答案:16.已知集合A ={(x ,y )|x +y =2,x ,y ∈N},试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2,x ,y ∈N}, ∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.[B 级 能力提升]7.集合M ={x |x 2+2x -a =0,x ∈R},且∅M ,则实数a 的取值范围是( ) A .a ≤-1B .a ≤1C .a ≥-1D .a ≥1解析:选C.∅M 等价于方程x 2+2x -a =0有实根.即Δ=4+4a ≥0.解得a ≥-1. 8.设A ={x |1<x <2},B ={x |x <a },若A B ,则a 的取值范围是( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2解析:选A.A ={x |1<x <2},B ={x |x <a },要使A B ,则应有a ≥2.9.设A ={x ∈R|x 2-5x +m =0},B ={x ∈R|x -3=0},且B ⊆A ,则实数m =________,集合A =________.解析:B ={3}.∵B ⊆A ,∴3∈A ,即9-15+m =0.∴m =6.解方程x 2-5x +6=0,得x 1=2,x 2=3, ∴A ={2,3}. 答案:6 {2,3}10.设M ={x |x 2-2x -3=0},N ={x |ax -1=0},若N ⊆M ,求所有满足条件的a 的集合. 解:由N ⊆M ,M ={x |x 2-2x -3=0}={-1,3}, 得N =∅或N ={-1}或N ={3}. 当N =∅时,ax -1=0无解,∴a =0.当N ={-1}时,由1a =-1,得a =-1.当N ={3}时,由1a =3,得a =13.∴满足条件的a 的集合为{-1,0,13}.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.高中数学必修一同步训练及解析1.已知集合A ={x |x >1},B ={x |-1<x <2},则A ∩B =( ) A .{x |-1<x <2} B .{x |x >-1}C .{x |-1<x <1}D .{x |1<x <2}解析:选D.如图所示.A ∩B ={x |x >1}∩{x |-1<x <2}={x |1<x <2}.2.已知集合M={1,2,3},N={2,3,4}则()A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}解析:选C.∵M={1,2,3},N={2,3,4}.∴选项A、B显然不对.M∪N={1,2,3,4},∴选项D错误.又M∩N={2,3},故选C.3.设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=________.解析:M∩N={1,4},M∩P={4,7},所以(M∩N)∪(M∩P)={1,4,7}.答案:{1,4,7}4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:A∪B=A,即B⊆A,∴m≥2.答案:m≥2[A级基础达标]1.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是() A.1B.2C.3D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析:选C.由P={x|x2≤1}得P={x|-1≤x≤1}.由P∪M=P得M⊆P.又M={a},∴-1≤a≤1.3.已知集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N+}的关系的韦恩(Venn)图,如图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个解析:选B.M={x|-1≤x≤3},集合N是全体正奇数组成的集合,则阴影部分所示的集合为M∩N={1,3},即阴影部分所示的集合共有2个元素.4.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.解析:∵A∩B={2,3},∴3∈B,∴m=3.答案:35.设集合A={x|-1<x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是________.解析:利用数轴分析可知,a>-1.答案:a>-16.已知集合A ={x |⎩⎪⎨⎪⎧3-x >03x +6>0},集合B ={m |3>2m -1},求:A ∩B ,A ∪B .解:∵A ={x |⎩⎪⎨⎪⎧3-x >03x +6>0}={x |-2<x <3},B ={m |3>2m -1}={m |m <2}.用数轴表示集合A ,B ,如图.∴A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.[B 级 能力提升]7.设A ={(x ,y )|(x +2)2+(y +1)2=0},B ={-2,-1},则必有( ) A .A ⊇B B .A ⊆B C .A =B D .A ∩B =∅解析:选D.A ={(x ,y )|(x +2)2+(y +1)2=0}={(-2,-1)}是点集,B ={-2,-1}是数集,所以A ∩B =∅.8.若集合A ={参加2012年奥运会的运动员},集合B ={参加2012年奥运会的男运动员},集合C ={参加2012年奥运会的女运动员},则下列关系正确的是( ) A .A ⊆B B .B ⊆CC .A ∩B =CD .B ∪C =A解析:选D.参加2012年奥运会的运动员是参加2012年奥运会的男运动员和女运动员的总和,即A =B ∪C .9.满足条件{1,3}∪M ={1,3,5}的集合M 的个数是________. 解析:∵{1,3}∪M ={1,3,5},∴M 中必须含有5, ∴M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:410.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N ; (2)当M ∩N =M 时,求实数m 的值. 解:由题意得M ={2}.(1)当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}. (2)∵M ∩N =M ,∴M ⊆N . ∵M ={2},∴2∈N .∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m =0,解得m =2. 11.集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解:(1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)C ={x |x >-a2},B ∪C =C ⇒B ⊆C ,∴-a2<2,∴a >-4.高中数学必修一同步训练及解析1.若P={x|x<1},Q={x|x>-1},则()A.P⊆QB.Q⊆PC.∁R P⊆QD.Q⊆∁R P解析:选C.∵P={x|x<1},∴∁R P={x|x≥1},∴∁R P⊆Q.2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有() A.3个B.4个C.5个D.6个解析:选A.∵U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.故选A.3.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________. 解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}4.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或2[A级基础达标]1.设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}解析:选D.∵M={1,2,3},N={2,3,4},∴M∩N={2,3}.又∵U={1,2,3,4},∴∁U(M∩N)={1,4}.2.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=UD.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M ={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U.3.集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}解析:选D.∵B ={x |x <1},∴∁R B ={x |x ≥1}, ∴A ∩∁R B ={x |1≤x ≤2}.4.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________. 解析:∵A ∪∁U A =U ,∴A ={x |1≤x <2}.∴a =2. 答案:25.设集合A ={x |0≤x ≤4},B ={y |y =x -3,-1≤x ≤3},则∁R (A ∩B )=________. 解析:∵A ={x |0≤x ≤4}, B ={y |-4≤y ≤0}, ∴A ∩B ={0},∴∁R (A ∩B )={x |x ∈R ,且x ≠0}. 答案:{x |x ∈R ,且x ≠0}6.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.[B 级 能力提升]7.已知集合U =R ,集合A ={x |x <-2或x >4},B ={x |-3≤x ≤3},则(∁U A )∩B =( ) A .{x |-3≤x ≤4} B .{x |-2≤x ≤3}C .{x |-3≤x ≤-2或3≤x ≤4}D .{x |-2≤x ≤4}解析:选B.∁U A ={x |-2≤x ≤4}.由图可知:(∁U A )∩B ={x |-2≤x ≤3}. 8.已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A ={0,1},(∁U A )∩B 表示全集U 中不在集合A 中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.9.设全集U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m 的值为________.解析:如图,∵U ={0,1,2,3}, ∁U A ={1,2}, ∴A ={0,3},∴方程x 2+mx =0的两根为x 1=0,x 2=3, ∴0+3=-m ,即m =-3. 答案:-310.设全集U ={x |0<x <10,x ∈N *},且A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},求A ,B .解:如图所示,由图可得A ={1,3,5,7},B ={2,3,4,6,8}.11.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围.解:由已知A ={x |x ≥-m }, ∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅, ∴-m ≤-2,即m ≥2, ∴m 的取值范围是m ≥2.高中数学必修一同步训练及解析1.函数y =1x的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x的定义域为{x |x ∈R ,且x ≠0}.2.下列各组函数表示相等函数的是( )A .f (x )=⎩⎪⎨⎪⎧x , x >0-x , x <0与g (x )=|x |B .f (x )=2x +1与g (x )=2x 2+xxC .f (x )=|x 2-1|与g (t )=(t 2-1)2D .f (x )=x 2与g (x )=x解析:选C.A :f (x )的定义域是(-∞,0)∪(0,+∞),g (x )的定义域是R ,定义域不同. B :f (x )的定义域是R ,g (x )的定义域是{x |x ≠0},定义域不同.C :f (x )=|x 2-1|,g (t )=|t 2-1|,虽然表示自变量的字母不同,但定义域与对应法则都相同.D :f (x )=|x |,g (x )=x ,对应法则不相同.3.若[a,3a -1]为一确定区间,则a 的取值范围是________.解析:由题意3a -1>a ,则a >12.答案:(12,+∞)4.函数y =x 2-2x (-2≤x ≤4,x ∈Z)的值域为________.解析:∵-2≤x ≤4,x ∈Z ,∴x 取-2,-1,0,1,2,3,4.可知y 的取值为8,3,0,-1,0,3,8,∴值域为{-1,0,3,8}. 答案:{-1,0,3,8}[A 级 基础达标]1.下列对应关系中能构成实数集R 到集合{1,-1}的函数的有( ) ①②③A .①B .②C .③D .①③解析:选B.①中将自变量分为两类:一类是奇数,另一类是偶数.而实数集中除奇数、偶数之外,还有另外的数,如无理数,它们在集合{1,-1}中无对应元素;③中实数集除整数、分数之外,还有无理数,它们在集合{1,-1}中无对应元素;②符合题干要求.2.函数y =31-1-x的定义域是( )A .(-∞,1)B .(-∞,0)∪(0,1]C .(-∞,0)∪(0,1)D .[1,+∞)解析:选B.由⎩⎨⎧1-x ≥0,1-1-x ≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠0.即得x ≤1且x ≠0,故选B.3.区间[5,8)表示的集合是( )A .{x |x ≤5或x >8}B .{x |5<x ≤8}C .{x |5≤x <8}D .{x |5≤x ≤8} 答案:C4.函数y =x 2x 2+1(x ∈R)的值域是________.解析:y =x 2x 2+1=1-1x 2+1,∴y 的值域为[0,1). 答案:[0,1)5.设f (x )=11-x,则f [f (x )]=________.解析:f [f (x )]=11-11-x =11-x -11-x=x -1x .(x ≠0,且x ≠1)答案:x -1x(x ≠0,且x ≠1)6.求下列函数的定义域: (1)f (x )=2x -1-3-x +1;(2)f (x )=4-x 2x +1.解:(1)要使函数f (x )有意义,应有⎩⎪⎨⎪⎧2x -1≥0,3-x ≥0⇔⎩⎪⎨⎪⎧x ≥12,x ≤3⇔12≤x ≤3.∴f (x )的定义域是[12,3].(2)函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |⎩⎪⎨⎪⎧ 4-x 2≥0x +1≠0⇔⎩⎨⎧⎭⎬⎫x |⎩⎪⎨⎪⎧-2≤x ≤2x ≠-1 ⇔{x |-2≤x ≤2,且x ≠-1}.∴f (x )的定义域是[-2,-1)∪(-1,2].[B 级 能力提升]7.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1 B .0 C .-1 D .2解析:选A.f (-1)=a -1,f [f (-1)]=f (a -1) =a (a -1)2-1=-1,所以a =1. 8.下列说法中正确的为( )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应关系是否相同.9.已知函数f (x )对任意实数x 1,x 2,都有f (x 1x 2)=f (x 1)+f (x 2)成立,则f (0)=________,f (1)=________.解析:令x 1=x 2=0,有f (0×0)=f (0)+f (0),解得f (0)=0; 令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. 答案:0 010.求下列函数的值域. (1)y =x +1;(2)y =xx +1.解:(1)因为函数的定义域为{x |x ≥0}, ∴x ≥0,∴x +1≥1.所以函数y =x +1的值域为[1,+∞).(2)∵y =x x +1=1-1x +1,且定义域为{x |x ≠-1},∴1x +1≠0,即y ≠1. 所以函数y =xx +1的值域为{y |y ∈R ,且y ≠1}.11.已知函数f (x )=x 2+x -1, (1)求f (2),f (a );(2)若f (a )=11,求a 的值; (3)求f (x )的值域.解:(1)f (2)=22+2-1=5, f (a )=a 2+a -1.(2)∵f (a )=a 2+a -1,∴若f (a )=11,则a 2+a -1=11, 即(a +4)(a -3)=0. ∴a =-4或a =3.(3)∵f (x )=x 2+x -1=(x +12)2-54≥-54,∴f (x )的值域为[-54,+∞).高中数学必修一同步训练及解析1.下列点中不在函数y =2x +1的图象上的是( )A .(1,1)B .(-2,-2)C .(3,12)D .(-1,0) 答案:D2.已知一次函数的图象过点(1,0),和(0,1),则此一次函数的解析式为( ) A .f (x )=-x B .f (x )=x -1 C .f (x )=x +1 D .f (x )=-x +1解析:选D.设一次函数的解析式为f (x )=kx +b (k ≠0),由已知得⎩⎪⎨⎪⎧ k +b =0,b =1,∴⎩⎪⎨⎪⎧k =-1,b =1.∴f (x )=-x +1.3.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:324.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x 2-1[A 级 基础达标]1.已知f (x )是反比例函数,且f (-3)=-1,则f (x )的解析式为( )A .f (x )=-3xB .f (x )=3xC .f (x )=3xD .f (x )=-3x 答案:B2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4(t -1)2-1,∴f (12)=16-1=15.法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出火车在这段时间内的速度变化情况的是( )解析:选B.根据题意,知火车从静止开始匀加速行驶,所以只有选项B 、C 符合题意,然后匀速行驶一段时间后又停止了一段时间,所以可以确定选B. 4.已知函数f (x ),g (x )分别由下表给出,x 1 2 3 g (x )321则f [g (1)]的值为________;当g [f (x )]=2时,x =________. 解析:f [g (1)]=f (3)=1; g [f (x )]=2,∴f (x )=2, ∴x =1. 答案:1 15.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.解析:由题意,知长方体的宽为x cm ,长为(10+x ) cm ,则根据长方体的体积公式,得y =(10+x )x ×80=80x 2+800x .所以y 与x 之间的表达式是y =80x 2+800x (x >0). 答案:y =80x 2+800x (x >0)6.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ). 解:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴a =2,b =7,∴f (x )=2x +7.[B 级 能力提升]7.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∵2f (2)-3f (1)=5,2f (0)-f (-1)=1, ∴⎩⎪⎨⎪⎧ k -b =5k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2,∴f (x )=3x -2. 8.已知函数f (x )的图象如图所示,则此函数的定义域、值域分别是( ) A .(-3,3);(-2,2) B .[-3,3];[-2,2] C .[-2,2];[-3,3] D .(-2,2);(-3,3)解析:选B.结合f (x )的图象知,定义域为[-3,3],值域为[-2,2]. 9.已知f (x +1)=x +2x ,则f (x )的解析式为________. 解析:∵f (x +1)=x +2x =(x )2+2x +1-1 =(x +1)2-1,∴f (x )=x 2-1.由于x +1≥1,∴f (x )=x 2-1(x ≥1). 答案:f (x )=x 2-1(x ≥1)10.2012年,第三十届夏季奥林匹克运动会在英国伦敦举行,其门票价格从20英磅到2000英磅不等,但最高门票:7月27日开幕式的贵宾票,价格高达2012英磅,折合人民币21352元,是2008年北京奥运会门票的四倍.为鼓励伦敦青少年到现场观看比赛,伦敦奥组委为伦敦市的14000名学生提供了一次免费门票机会,16岁以下青少年儿童的门票价格比最低价门票还要优惠些,有些比赛项目则无需持票观看,如马拉松、三项全能和公路自行车比赛均向观众免费开放.某同学打算购买x 张价格为20英磅的门票(x ∈{1,2,3,4,5},需用y 英磅,试用函数的三种表示方法将y 表示成x 的函数. 解:解析法:y =20x ,x ∈{1,2,3,4,5}. 列表法:图象法:11.作出下列函数的图象: (1)y =x +2,|x |≤3;(2)y =x 2-2,x ∈Z 且|x |≤2.解:(1)因为|x |≤3,所以函数的图象为线段,而不是直线,如图(1). (2)因为x ∈Z 且|x |≤2,所以函数的图象是五个孤立的点,如图(2).高中数学必修一同步训练及解析1.已知集合A ={a ,b },集合B ={0,1},则下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f [1f (2)]的值为( )A.1516B .-2716C.89 D .18解析:选A.∵f (2)=22+2-2=4,∴f [1f (2)]=f (14)=1-(14)2=1516.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤00,x >0,则f (2)+f (-2)=________.答案:44.已知M ={正整数},N ={正奇数},映射f :a →b =2a -1,(a ∈M ,b ∈N ),则在映射f 下M 中的元素11对应N 中的元素是________. 答案:21[A 级 基础达标]1.下列给出的式子是分段函数的是( )①f (x )=⎩⎪⎨⎪⎧x 2+1,1≤x ≤5,2x ,x ≤1.②f (x )=⎩⎪⎨⎪⎧x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎪⎨⎪⎧2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎪⎨⎪⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④2.已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2(-1<x <2),2x (x ≥2),若f (x )=3,则x 的值是( )A .1B .1或32C .1,32或±3 D. 3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 (x >0)x -1 (x <0),再作函数图象.4.如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2)))=________.解析:f (2)=0,f (f (2))=f (0)=4,f (f (f (2)))=f (4)=2. 答案:25.已知f (x )=⎩⎪⎨⎪⎧2x ,x <0x 2,x ≥0,若f (x )=16,则x 的值为________.解析:当x <0时,2x =16,无解;当x ≥0时,x 2=16,解得x =4. 答案:46.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2.(1)求f (-74);(2)求f (14);(3)求f (4);(4)若f (a )=3,求a 的值.解:(1)f (-74)=-74+2=14;(2)f (14)=2×14=12;(3)f (4)=422=8;(4)因为当x ≤-1时,x +2≤1,当x ≥2时,x 22≥2,当-1<x <2时,-2<2x <4.所以⎩⎪⎨⎪⎧-1<a <22a =3⇒a =32,或⎩⎪⎨⎪⎧a ≥2a 22=3⇒a 2=6⇒a = 6.综上,若f (a )=3,则a 的值为32或 6.[B 级 能力提升]7.若函数f (x )=⎩⎪⎨⎪⎧2x +2 (-1<x <0)-12x (0≤x <2),3 (x ≥2)则f (x )的值域是( )A .(-1,2)B .(-1,3]C .(-1,2]D .(-1,2)∪{3}解析:选D.对f (x )来说,当-1<x <0时,f (x )=2x +2∈(0,2);当0≤x <2时,f (x )=-12x ∈(-1,0];当x ≥2时,f (x )=3.故函数y =f (x )的值域为(-1,2)∪{3}.故选D.8.映射f :A →B ,A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在集合B 中和它对应的元素是|a |,则集合B 中的元素个数至少是( ) A .4 B .5 C .6 D .7解析:选A.对于A 中的元素±1,B 中有1与之对应;A 中的元素±2,B 中有一个元素2与之对应;A 中的元素±3,B 中有一个元素3与之对应;A 中的元素4,B 中有一个元素4与之对应,所以B 中的元素个数至少是4.9.设f :A →B 是从集合A 到B 的映射,其中A =B ={(x ,y )|x ,y ∈R},f :(x ,y )→(x +y ,x -y ),那么A 中元素(1,3)所对应的B 中的元素为________,B 中元素(1,3)在A 中有________与之对应.解析:(1,3)→(1+3,1-3),即(4,-2). 设A 中与(1,3)对应的元素为(x ,y ), 则⎩⎪⎨⎪⎧ x +y =1x -y =3,解得⎩⎪⎨⎪⎧x =2,y =-1. 答案:(4,-2) (2,-1)10.根据函数f (x )的图象如图所示,写出它的解析式.解:当0≤x ≤1时,f (x )=2x ;当1<x <2时,f (x )=2;当x ≥2时,f (x )=3. 所以解析式为f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2.11.某市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里的部分按每公里1.6元计费,超过8公里以后按每公里2.4元计费.若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为多少元? 解:设乘出租车走x 公里,车费为y 元, 由题意得y =⎩⎪⎨⎪⎧5,0<x ≤25+1.6×(x -2),2<x ≤8,14.6+2.4×(x -8),x >8即y =⎩⎪⎨⎪⎧5,0<x ≤21.8+1.6x ,2<x ≤8,2.4x -4.6,x >8因为甲、乙两地相距10公里,即x =10>8,所以车费y =2.4×10-4.6=19.4(元). 所以乘出租车从甲地到乙地共需要支付乘车费为19.4元.高中数学必修一同步训练及解析1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞)解析:选A.根据y =-x 2的图象可得.2.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-xC .y =1xD .y =-x 2+4解析:选A.∵-1<0,所以一次函数y =-x +3在R 上递减;反比例函数y =1x在(0,+∞)上递减;二次函数y =-x 2+4在(0,+∞)上递减.故选A.3.如图所示为函数y =f (x ),x ∈[-4,7]的图象,则函数f (x )的单调递增区间是________.答案:[-1.5,3],[5,6]4.证明:函数y =xx +1在(-1,+∞)上是增函数.证明:设x 1>x 2>-1,则y 1-y 2=x 1x 1+1-x 2x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1>x 2>-1,∴x 1-x 2>0,x 1+1>0,x 2+1>0,∴x 1-x 2(x 1+1)(x 2+1)>0.即y 1-y 2>0,y 1>y 2, ∴y =xx +1在(-1,+∞)上是增函数.[A 级 基础达标]1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数;③函数y =-1x在定义域上是增函数;④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数的单调性的定义是指定义在区间I 上任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x <0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);④y =1x的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法. 2.函数y =x 2-3x +2的单调减区间是( ) A .[0,+∞) B .[1,+∞) C .[1,2]D .(-∞,32]解析:选D.由二次函数y =x 2-3x +2图象的对称轴为x =32且开口向上,所以单调减区间为(-∞,32],故选D.3.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3) B .(0,+∞) C .(3,+∞)D .(-∞,-3)∪(3,+∞)解析:选C.因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3,故选C.4.函数f (x )=|x -3|的单调递增区间是________,单调递减区间是________. 解析:f (x )=⎩⎪⎨⎪⎧x -3,x ≥3,-x +3,x <3.其图象如图所示,则f (x )的单调递增区间是[3,+∞),单调递减区间是(-∞,3]. 答案:[3,+∞) (-∞,3]5.若函数f (x )=ax +1x +2在区间(-2,+∞)上单调递增,则a 的取值范围为________.解析:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2,f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2=(x 1-x 2)(2a -1)(x 1+2)(x 2+2). ∵f (x )在(-2,+∞)上单调递增, ∴f (x 1)-f (x 2)<0. ∴(x 1-x 2)(2a -1)(x 1+2)(x 2+2)<0, ∵x 1-x 2<0,x 1+2>0,x 2+2>0,∴2a -1>0,∴a >12.答案:(12,+∞)6.作出函数y =x |x |+1的图象并写出其单调区间. 解:由题可知y =⎩⎪⎨⎪⎧x 2+1,x ≥0,-x 2+1,x <0,作出函数的图象如图所示,所以原函数的单调增区间为(-∞,+∞).[B 级 能力提升]7.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( ) A .一定是增函数 B .一定是减函数 C .可能是常数函数 D .单调性不能确定解析:选D.由单调性定义可知,不能用特殊值代替一般值. 8.若函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2-1)<f (a )D .f (a 2+1)<f (a )解析:选D.∵a 2+1-a =(a -12)2+34>0,∴a 2+1>a .∴f (a 2+1)<f (a ).故选D.9.已知函数f (x )为区间[-1,1]上的增函数,则满足f (x )<f (12)的实数x 的取值范围为________.解析:由题设得⎩⎪⎨⎪⎧-1≤x ≤1,x <12,即-1≤x <12.答案:-1≤x <1210.作出函数f (x )=|2x -1|的图象并写出其单调区间. 解:当x >12时,f (x )=2x -1,当x ≤12时,f (x )=-2x +1,所以f (x )=⎩⎨⎧2x -1,x >12,-2x +1,x ≤12,画出函数的图象如图所示,所以原函数的单调增区间为[12,+∞),减区间为(-∞,12].11.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.解:(1)∵f (1)=0,f (3)=0, ∴⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∵f (x )=x 2-4x +3, ∴设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3)=(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4),∵x 1-x 2<0,x 1>2,x 2>2, ∴x 1+x 2-4>0. ∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).∴函数f (x )在区间(2,+∞)上为增函数.高中数学必修一同步训练及解析1.设函数f (x )=2x -1(x <0),则f (x )( ) A .有最大值 B .有最小值 C .是增函数 D .是减函数 解析:选C.画出函数f (x )=2x -1(x <0)的图象,如右图中实线部分所示.由图象可知,函数f (x )=2x -1(x <0)是增函数,无最大值及最小值.故选C.2.函数y =1x -1在[2,3]上的最小值为( )A .2 B.12 C.13D .-12解析:选B.函数y =1x -1在[2,3]上为减函数,∴y min =13-1=12.3.函数f (x )=1x 在[1,b ](b >1)上的最小值是14,则b =________.解析:∵f (x )在[1,b ]上是减函数,∴f (x )在[1,b ]上的最小值为f (b )=1b =14,∴b =4. 答案:44.函数y =2x 2+2,x ∈N *的最小值是________. 解析:∵x ∈N *,∴x 2≥1, ∴y =2x 2+2≥4,即y =2x 2+2在x ∈N *上的最小值为4,此时x =1. 答案:4[A 级 基础达标]1.函数f (x )=x 2-4x +3,x ∈[1,4],则f (x )的最大值为( ) A .-1 B .0 C .3 D .-2解析:选C.∵f (x )在[1,2]上是减函数,在[2,4]上是增函数,又f (1)=0,f (4)=3. ∴f (x )的最大值是3.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10、6B .10、8C .8、6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-a D .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 4.函数f (x )=x -2,x ∈{0,1,2,4}的最大值为________.解析:函数f (x )自变量的取值是几个孤立的数,用观察法即得它的最大值为f (4)=2. 答案:25.函数f (x )=x 2+bx +1的最小值是0,则实数b =________. 解析:f (x )是二次函数,二次项系数1>0,则最小值为f (-b 2)=b 24-b 22+1=0,解得b =±2. 答案:±26.已知函数f (x )=⎩⎨⎧x 2 (-12≤x ≤1)1x(1<x ≤2),求f (x )的最大、最小值.解析:当-12≤x ≤1时,由f (x )=x 2,得f (x )的最大值为f (1)=1,最小值为f (0)=0;当1<x ≤2时,由f (x )=1x,得f (2)≤f (x )<f (1),即12≤f (x )<1. 综上f (x )max =1,f (x )min =0.[B 级 能力提升]7.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )的最小值为-2,则f (x )的最大值为( )A .-1B .0C .1D .2解析:选C.因为f (x )=-(x -2)2+4+a ,由x ∈[0,1]可知当x =0时,f (x )取得最小值,及-4+4+a =-2,所以a =-2,所以f (x )=-(x -2)2+2,当x =1时,f (x )取得最大值为-1+2=1.故选C.8.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元 D .120.25万元解析:选C.设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为 L =-x 2+21x +2(15-x ) =-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.9.函数y =ax +1在区间[1,3]上的最大值为4,则a =______.解析:若a <0,则函数y =ax +1在区间[1,3]上是减函数,并且在区间的左端点处取得最大值,即a +1=4,解得a =3,不满足a <0,舍去;若a >0,则函数y =ax +1在区间[1,3]上是增函数,当x =3时,y =4,∴3a +1=4,∴a =1. 综上:a =1. 答案:110.已知函数f (x )=1a -1x(a >0).(1)证明f (x )在(0,+∞)上单调递增;(2)若f (x )的定义域、值域都是[12,2],求实数a 的值.解:(1)证明:设x 2>x 1>0,则f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2. ∵x 2>x 1>0,∴x 2-x 1>0, ∴x 2-x 1x 1x 2>0,即f (x 2)>f (x 1). ∴f (x )在(0,+∞)上单调递增.(2)∵f (x )在(0,+∞)上单调递增,且定义域和值域均为[12,2],∴⎩⎨⎧f (12)=1a -2=12,f (2)=1a -12=2,∴a =25.11.如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m ,问每间笼舍的宽度x 为多少m 时,才能使得每间笼舍面积y 达到最大?每间最大面积为多少? 解:设总长为b , 由题意知b =30-3x ,可得y =12xb ,即y =12x (30-3x )=-32(x -5)2+37.5,x ∈(0,10).当x =5时,y 取得最大值37.5,即每间笼舍的宽度为5 m 时,每间笼舍面积y 达到最大,最大面积为37.5 m 2.高中数学必修一同步训练及解析1.下列函数为偶函数的是( ) A .f (x )=|x |+xB .f (x )=x 2+1xC .f (x )=x 2+xD .f (x )=|x |x2解析:选D.只有D 符合偶函数定义.2.f (x )=x 3+1x的图象关于( )A .原点对称B .y 轴对称C .y =x 对称D .y =-x 对称解析:选A.x ≠0,f (-x )=(-x )3+1-x=-f (x ),f (x )为奇函数,关于原点对称.3.函数f (x )=x 3+ax ,f (1)=3,则f (-1)=________. 解析:显然f (x )是奇函数,∴f (-1)=-f (1)=-3. 答案:-34.若函数f (x )=(x +1)(x -a )为偶函数,则a =________. 解析:f (x )=x 2+(1-a )x -a 为偶函数, ∴1-a =0,a =1. 答案:1[A 级 基础达标]1.下列命题中,真命题是( )A .函数y =1x是奇函数,且在定义域内为减函数B .函数y =x 3(x -1)0是奇函数,且在定义域内为增函数C .函数y =x 2是偶函数,且在(-3,0)上为减函数D .函数y =ax 2+c (ac ≠0)是偶函数,且在(0,2)上为增函数解析:选C.选项A 中,y =1x在定义域内不具有单调性;B 中,函数的定义域不关于原点对称;D 中,当a <0时,y =ax 2+c (ac ≠0)在(0,2)上为减函数,故选C. 2.下面四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确的个数为( ) A .1 B .2 C .3 D .4解析:选A.偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x2,故①错,③对;奇函数的图象不一定通过原点,如y =1x,故②错;既奇又偶的函数除了满足f (x )=0,还要满足定义域关于原点对称,④错.故选A.3.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .是非奇非偶函数 解析:选A.g (x )=x (ax 2+bx +c )=xf (x ),g (-x )=-x ·f (-x )=-x ·f (x )=-g (x ),所以g (x )=ax 3+bx 2+cx 是奇函数;因为g (x )-g (-x )=2ax 3+2cx 不恒等于0,所以g (-x )=g (x )不恒成立.故g (x )不是偶函数.4.如图给出奇函数y =f (x )的局部图象,则f (-2)的值是________.解析:f (-2)=-f (2)=-32.答案:-325.已知函数f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a =________,b =________.解析:∵f (x )是定义域为[a -1,2a ]的偶函数,∴a -1=-2a ,∴a =13.又f (-x )=f (x ), 即13x 2-bx +1+b =13x 2+bx +1+b . ∴b =0.答案:136.判断下列函数的奇偶性. (1)f (x )=x -1+1-x ; (2)f (x )=|x |+x 2;(3)f (x )=⎩⎪⎨⎪⎧x -1 (x >0)0 (x =0).x +1 (x <0)解:(1)∵⎩⎪⎨⎪⎧x -1≥01-x ≥0.∴x =1.定义域为{1},不关于原点对称,∴函数f (x )为非奇非偶函数.(2)f (x )=|x |+x 2=2|x |, 定义域为(-∞,+∞),关于原点对称.且有f (-x )=2|-x |=2|x |=f (x ), ∴f (x )为偶函数.(3)法一:显然定义域为(-∞,+∞),关于原点对称. 当x >0时,-x <0,则f (-x )=1-x =-f (x ), 当x <0时,-x >0,则f (-x )=-x -1=-f (x ). 则f (-0)=f (0)=-f (0)=0. ∴f (x )为奇函数.法二:作出函数f (x )的图象,可知f (x )的图象关于原点对称,所以f (x )为奇函数.[B 级 能力提升]7.若f (x )为偶函数,且当x ≥0时,f (x )≥2,则当x ≤0时( ) A .f (x )≤2 B .f (x )≥2C .f (x )≤-2D .f (x )∈R解析:选B.可画出f (x )的大致图象:易知当x ≤0时,有f (x )≥2.故选B.8.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A .f (π)>f (-3)>f (-2) B .f (π)>f (-2)>f (-3) C .f (π)<f (-3)<f (-2) D .f (π)<f (-2)<f (-3)解析:选A.∵f (x )为偶函数,且当x ∈[0,+∞)时,f (x )为增函数. 又∵f (-2)=f (2),f (-3)=f (3), 且2<3<π,∴f (2)<f (3)<f (π),即f (-2)<f (-3)<f (π).9.若偶函数f (x )在(-∞,0]上为增函数,则满足f (1)≤f (a )的实数a 的取值范围是________. 解析:由已知偶函数f (x )在(-∞,0]上为增函数, ∴f (x )在(0,+∞)上是减函数,∴f (1)≤f (a )⇔⎩⎪⎨⎪⎧ a >0,1≥a 或⎩⎪⎨⎪⎧a ≤0-1≤a ⇔0<a ≤1,或-1≤a ≤0.。
高一上册数学课堂同步练习答案高一数学练习册答案1.下列幂函数为偶函数的是()A.y=某12B.y=3某C.y=某2D.y=某-1解析:选C.y=某2,定义域为R,f(-某)=f(某)=某2.2.若a<0,则0.5a,5a,5-a的大小关系是()A.5-a<5a<0.5aB.5a<0.5a<5-aC.0.5a<5-a<5aD.5a<5-a<0.5a解析:选B.5-a=(15)a,因为a<0时y=某a单调递减,且15<0.5<5,所以5a<0.5a<5-a.3.设α∈{-1,1,12,3},则使函数y=某α的定义域为R,且为奇函数的所有α值为()A.1,3B.-1,1C.-1,3D.-1,1,3解析:选A.在函数y=某-1,y=某,y=某12,y=某3中,只有函数y=某和y=某3的定义域是R,且是奇函数,故α=1,3.4.已知n∈{-2,-1,0,1,2,3},若(-12)n>(-13)n,则n=________.解析:∵-12<-13,且(-12)n>(-13)n,∴y=某n在(-∞,0)上为减函数.又n∈{-2,-1,0,1,2,3},∴n=-1或n=2.答案:-1或21.函数y=(某+4)2的递减区间是()A.(-∞,-4)B.(-4,+∞)C.(4,+∞)D.(-∞,4)解析:选A.y=(某+4)2开口向上,关于某=-4对称,在(-∞,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是()A.(0,+∞)B.[0,+∞)C.(-∞,0)D.(-∞,+∞)解析:选C.幂函数为y=某-2=1某2,偶函数图象如图.3.给出四个说法:①当n=0时,y=某n的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=某n在第一象限为减函数,则n<0.其中正确的说法个数是()C.3D.4解析:选B.显然①错误;②中如y=某-12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设α∈{-2,-1,-12,13,12,1,2,3},则使f(某)=某α为奇函数且在(0,+∞)上单调递减的α的值的个数是()A.1B.2C.3D.4解析:选A.∵f(某)=某α为奇函数,∴α=-1,13,1,3.又∵f(某)在(0,+∞)上为减函数,∴α=-1.5.使(3-2某-某2)-34有意义的某的取值范围是()A.RB.某≠1且某≠3C.-3解析:选C.(3-2某-某2)-34=143-2某-某23,∴要使上式有意义,需3-2某-某2>0,解得-36.函数f(某)=(m2-m-1)某m2-2m-3是幂函数,且在某∈(0,+∞)上是减函数,则实数m=()A.2B.3解析:选A.m2-m-1=1,得m=-1或m=2,再把m=-1和m=2分别代入m2-2m-3<0,经检验得m=2.7.关于某的函数y=(某-1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当某-1=1,即某=2时,无论α取何值,均有1α=1,∴函数y=(某-1)α恒过点(2,1).答案:(2,1)8.已知2.4α>2.5α,则α的取值范围是________.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y=某α在(0,+∞)为减函数.答案:α<09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13>(23)0=1,(35)12<1,(25)12<1,∵y=某12为增函数,∴(25)12<(35)12<(76)0<(23)-13.答案:(25)12<(35)12<(76)0<(23)-1310.求函数y=(某-1)-23的单调区间.解:y=(某-1)-23=1某-123=13某-12,定义域为某≠1.令t=某-1,则y=t-23,t≠0为偶函数.因为α=-23<0,所以y=t-23在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t=某-1单调递增,故y=(某-1)-23在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.已知(m+4)-12<(3-2m)-12,求m的取值范围.解:∵y=某-12的定义域为(0,+∞),且为减函数.∴原不等式化为m+4>03-2m>0m+4>3-2m,解得-13∴m的取值范围是(-13,32).12.已知幂函数y=某m2+2m-3(m∈Z)在(0,+∞)上是减函数,求y的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m2+2m-3<0⇒(m-1)(m+3)<0⇒-3又∵m∈Z,∴m=-2,-1,0.当m=0或m=-2时,y=某-3,定义域是(-∞,0)∪(0,+∞).∵-3<0,∴y=某-3在(-∞,0)和(0,+∞)上都是减函数,又∵f(-某)=(-某)-3=-某-3=-f(某),∴y=某-3是奇函数.当m=-1时,y=某-4,定义域是(-∞,0)∪(0,+∞).∵f(-某)=(-某)-4=1-某4=1某4=某-4=f(某),∴函数y=某-4是偶函数.∵-4<0,∴y=某-4在(0,+∞)上是减函数,又∵y=某-4是偶函数,∴y=某-4在(-∞,0)上是增函数.高一数学上册课堂练习题答案一、选择题1.某商店某种商品(以下提到的商品均指该商品)进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件.商店为使销售该商品的月利润,应将每件商品定价为()A.45元B.55元C.65元D.70元[答案] D[解析] 设每件商品定价为某元,则一个月的销量为500-(某-50)某10=1000-10某件,故月利润为y=(某-40)•(1000-10某)=-10(某-40)(某-100),∵某>401000-10某>0,∴40∴当某=70时,y取值,故选D.2.某债券市场发行三种债券,A种面值为100元,一年到期本息和为103元;B种面值为50元,半年到期本息和为51.4元;C种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,从小到大排列为()A.B,A,CB.A,C,BC.A,B,CD.C,A,B[答案] B[解析] A种债券的收益是每100元收益3元;B种债券的利率为51.4-5050,所以100元一年到期的本息和为100(1+51.4-5050)≈105.68(元),收益为5.68元;C种债券的利率为100-97100,100元一年到期的本息和为100(1+100-9797)≈103.09(元),收益为3.09元.3.某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则()A.a=bB.a>bC.a[答案] B[解析] 一月份产量为a(1+10%),二月份产量b=a(1+10%)(1-10%)=a(1-1%),∴b4.甲、乙两人在一次赛跑中,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点[答案] D[解析] 从图可以看出,甲、乙两人同时出发(t=0),跑相同多的路程(S0),甲用时(t1)比乙用时(t2)较短,即甲比乙的速度快,甲先到达终点.5.如图所示,花坛水池中央有一喷泉,水管OA=1m,水从喷头A喷出后呈抛物线状,先向上至点落下,若点距水面2m,A离抛物线对称轴1m,则在水池半径的下列可选值中,最合算的是()A.3.5mB.3mC.2.5mD.2m[答案] C[解析] 建立如图坐标系,据题设y轴右侧的抛物线方程为y=a(某-1)2+2.∵抛物线过点A(0,1)∴将(0,1)点代入方程得a=-1,∴y=-(某-1)2+2.令y=0,得某=1+2,某=1-2(舍),故落在水面上的最远点B到O点距离为(1+2)m,考虑合算,须达到要求条件下用料最少,∴选C.6.某市原来民用电价为0.52元/kw•h.换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kw•h,谷时段(晚上九点到次日早上八点)的电价为0.35元/kw•h.对于一个平均每月用电量为200kw•h的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量()A.至少为82kw•hB.至少为118kw•hC.至多为198kw•hD.至多为118kw•h[答案] D[解析] ①原来电费y1=0.52某200=104(元).②设峰时段用电为某kw•h,电费为y,则y=某某0.55+(200-某)某0.35=0.2某+70,由题意知0.2某+70≤(1-10%)y1,∴某≤118.答:这个家庭每月在峰时段的平均用电量至多为118kw•h.二、填空题7.英语老师准备存款5000元.银行的定期存款中存期为1年的年利率1.98%.试计算五年后本金和利息共有________元.[答案] 5514.99[解析] 根据题意,五年后的本息共5000(1+1.98%)5=5514.99(元).8.设物体在8∶00到16∶00之间的温度T是时间t的函数:T(t)=at2+bt+c(a≠0),其中温度的单位是°C,时间的单位是小时,t=0表示12∶00,t取正值表示12∶00以后,若测得该物体在8∶00的温度为8°C,12∶00的温度为60°C,13∶00的温度为58°C,则T(t)=________.[答案] -3t2+t+60[解析] 将t=-4,T=8;t=0,T=60;t=1,T=58分别代入函数表达式中即可解出a=-3,b=1,c=60.三、解答题9.某物品的价格从1964年的100元增加到2004年的500元,假设该物品的价格年增长率是平均的,那么2022年该物品的价格是多少(精确到元)[解析] 从1964年开始,设经过某年后物价为y,物价增长率为a%,则y=100(1+a%)某,将某=40,y=500代入得500=100(1+a%)40,解得a=4.1,故物价增长模型为y=100(1+4.1%)某.到2022年,某=46,代入上式得y=100(1+4.1%)46≈635(元).10.有甲、乙两个水桶,开始时水桶甲中有a升水,水通过水桶甲的底部小孔流入水桶乙中,t分钟后剩余的水符合指数衰减曲线y=ae-nt,假设过5分钟时水桶甲和水桶乙的水相等,求再过多长时间水桶甲的水只有a8.[解析] 由题意得ae-5n=a-ae-5n,即e-5n=12,设再过t分钟桶甲中的水只有a8,得ae-n(t+5)=a8,所以(12)t+55=(e-5n)t+55=e-n(t+5)=18=(12)3,∴t+55=3,∴t=10.∴再过10分钟桶甲的水只有a8.11.某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.请你想一想;哪一种销售方式更吸引人哪一家商厦提供给消费者的实惠大.面对问题我们并不能一目了然.于是我们首先作了一个随机调查.把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以.调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢请给予说明.[解析] 在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种情形:(1)若甲商厦确定每组设奖.当参加人数较少时,少于1+2+10+200=213人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客.(2)若甲商厦的每组营业额较多时,他给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共10000+2000+1000+1000=14000元.假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为14000÷5%=280000.所以由此可得:(1)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.(2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是14000元,优惠较大.(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的优惠大.12.某种新栽树木5年成材,在此期间年生长率为20%,以后每年生长率为某%(某<20).树木成材后,既可以砍伐重新再栽,也可以继续让其生长,哪种方案更好[解析] 只需考虑10年的情形.设新树苗的木材量为Q,则连续生长10年后木材量为:Q(1+20%)5(1+某%)5,5年后再重栽的木材量为2Q(1+20%)5,画出函数y=(1+某%)5与y=2的图象,用二分法可求得方程(1+某%)5=2的近似根某=14.87,故当某<14.87%时就考虑重栽,否则让它继续生长._13.(湖南长沙同升湖实验学校高一期末)商场销售某一品牌的羊毛衫,购买人数n是羊毛衫标价某的一次函数,标价越高,购买人数越少.已知标价为每件300元时,购买人数为零.标价为每件225元时,购买人数为75人,若这种羊毛衫的成本价是100元/件,商场以高于成本价的相同价格(标价)出售,问:(1)商场要获取利润,羊毛衫的标价应定为每件多少元(2)通常情况下,获取利润只是一种“理想结果”,如果商场要获得利润的75%,那么羊毛衫的标价为每件多少元[解析] (1)设购买人数为n人,羊毛衫的标价为每件某元,利润为y元,则n=k某+b(k<0),∴0=300k+b75=225k+b,∴k=-1b=300,∴n=-某+300.y=-(某-300)•(某-100)=-(某-200)2+10000,某∈(100,300]∴某=200时,yma某=10000即商场要获取利润,羊毛衫的标价应定为每件200元.(2)由题意得,-(某-300)•(某-100)=10000某75%∴某2-400某+30000=-7500,∴某2-400某+37500=0,∴(某-250)(某-150)=0∴某1=250,某2=150所以当商场以每件150元或250元出售时,可获得利润的75%.14.学校请了30名木工,要制作200把椅子和100张课桌.已知制作一张课桌与制作一把椅子的工时数之比为10∶7,问30名工人应当如何分组(一组制课桌,另一组制椅子),能使完成全部任务最快[分析] 制作课桌和椅子中所花较多的时间即为完成任务的时间,只要它最小,即完成任务最快.[解析] 设某名工人制课桌,(30-某)名工人制椅子,一个工人在一个单位时间里可制7张课桌或10把椅子,∴制作100张课桌所需时间为函数P(某)=1007某,制作200把椅子所需时间为函数Q(某)=20010(30-某),完成全部任务所需的时间f(某)为P(某)与Q(某)中的较大值.欲使完成任务最快,须使P(某)与Q(某)尽可能接近(或相等).令P(某)=Q(某),即1007某=20010(30-某),解得某=12.5,∵人数某∈N,考察某=12和13的情形有P(12)≈1.19,Q(12)≈1.111,P(13)≈1.099,Q(13)≈1.176,∴f(12)=1.19,f(13)=1.176,∵f(12)>f(13),∴某=13时,f(某)取最小值,∴用13名工人制作课桌,17名工人制作椅子完成任务最快.[点评] 本题有几点需特别注意,人数某必须是自然数,故P(某)与Q(某)不相等,f(某)是P(某)与Q(某)中的较大者,完成任务最快的时间是f(某)的最小值.高一数学上册练习题答案第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
4.4 对数函数(精讲)考法一 对数函数的判断【例1】(1)(2021·全国高一课时练习)给出下列函数:①223log y x =;①3log (1)y x =-;①(1)log x y x +=;①log e y x =.其中是对数函数的有( ) A .1个B .2个C .3个D .4个(2).(2021·全国高一课时练习)若函数2log 32a y x a a =+-+为对数函数,则a =( )A .1B .2C .3D .4【一隅三反】1.(2021·全国高一课时练习)下列函数表达式中,是对数函数的有( )①y =log x 2;①y =log a x (a ①R );①y =log 8x ;①y =ln x ;①y =log x (x +2);①y =log 2(x +1). A .1个 B .2个 C .3个 D .4个2.(2021·全国高一课时练习)下列函数表达式中,是对数函数的有( )①log 2x y =;①()log a y x a =∈R ;①8log y x =;①ln y x =;①()log 2x y x =+;①42log y x =;①()2log 1y x =+. A .1个 B .2个 C .3个 D .4个3.(2021·全国高一课时练习)若函数()2()log 45a f x x a a =+--是对数函数,a =_________.考法二 对数函数的解析式或函数值【例2】(1)(2021·上海高一专题练习)对数函数的图像过点M (125,3),则此对数函数的解析式为( ) A .y =log 5xB .y =15log xC .y =13log xD .y =log 3x (2)(2021·全国高一课前预习)设()log a f x x =(0a >且1a ≠),若1(2)2f =,则12f ⎛⎫= ⎪⎝⎭( ). A .2B .2-C .12-D .12【一隅三反】1.(2021·全国高一课时练习)若某对数函数的图象过点()4,2,则该对数函数的解析式为( ) A .2log y x =B .42log y x =C .2log y x =或42log y x =D .不确定2.(2021·全国高一课时练习)若函数()()lo 1g a f x x =+(0,1)a a >≠的图像过点(7,3),则a 的值为( )A B .2C D .12考法三 对数函数的定义域【例3】(1)(2021·奉新县第一中学高一月考)函数()ln 1x f x -=的定义域为( )A .(]1,2B .[]1,4C .()1,4D .[]2,4(2).(2021·江苏)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是( ) A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .(3)(2021·全国高一课前预习)若函数()lg 1y ax =+的定义域为(),1-∞,则a =( ) A .1 B .-1 C .2 D .无法确定【一隅三反】1.(2021·全国)函数()00.5log 21y x =-⎡⎤⎣⎦的定义域为( )A .1,12⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .()1,11,2⎛⎫+∞ ⎪⎝⎭2.(2021·四川自贡·)函数3()log (21)xf x x =-的定义域是( ) A .1,12⎛⎤ ⎥⎝⎦B .1,12⎡⎤⎢⎥⎣⎦ C .(1,)+∞ D .1(,1)23.(2021·陕西宝鸡市·高一期末)若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100], B .[1 2], C .[0 1], D .[0 lg2],4(2021·全国高一课时练习)求下列函数的定义域(1)12y x=- (2)函数2()f x =(3)20()(54)lg(43)x f x x x =+-+考法四 对数函数的定点【例4】(2021·四川高一开学考试)函数()log 272=+-a y x (0a >,且1a ≠)的图象一定经过的点是( ) A .7,22⎛⎫-- ⎪⎝⎭B .()3,2--C .()3,1--D .()4,2--【一隅三反】1.(2021·镇远县文德民族中学校高一月考)函数()()log 310,1a y x a a =->≠的图象过定点( ) A .2,13⎛⎫ ⎪⎝⎭B .()1,0-C .2,03⎛⎫ ⎪⎝⎭D .()0,1-2.(2021·全国)函数()log 1a y x =-的图象必过的点是( ) A .()1,0- B .()1,0 C .()0,0 D .()2,03.(2021·湖北高一开学考试)已知函数log (3)2a y x =-+(0a >且1a ≠)的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则lg (4)lg (25)f f +=( )A .2-B .2C .1D .1-考法五 对数函数的值域(最值)【例5】(1)(2021·浙江高一单元测试)已知184x ≤≤,则函数2()log f x x =的值域是 。
5.3 诱导公式(精练)【题组一 诱导公式化简】1.(2021·陕西咸阳市实验中学高一月考(理))(1)化简:πcos 2sin(π)cos(2π)5πsin 2αααα⎛⎫- ⎪⎝⎭⋅-⋅-⎛⎫+ ⎪⎝⎭(2)求值:5ππ11π5πsincos sin cos 6464⎛⎫-+ ⎪⎝⎭【答案】(1)2sin α-;. 【解析】(1)()()πcos 2sin πcos 2π5πsin 2αααα⎛⎫- ⎪⎝⎭⋅-⋅-⎛⎫+ ⎪⎝⎭ ()()πcos 2sin πcos 2ππsin 2αααα⎛⎫- ⎪⎝⎭=⋅--⋅-⎡⎤⎣⎦⎛⎫+ ⎪⎝⎭()2sin sin cos sin cos ααααα=⋅-⋅=-, (2)5ππ11π5πsincos sin cos 6464⎛⎫-+ ⎪⎝⎭ππππsin πcos sin 2πcos π6464⎛⎫⎛⎫⎛⎫⎛⎫=--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ππππsin cos sin cos 6464⎛⎫⎛⎫=+-⨯- ⎪ ⎪⎝⎭⎝⎭ππππ11sin cos sin cos 646422=+==2.(2021·银川三沙源上游学校高一期中(文))求下列各式的值. (1)tan 405sin 450cos750-+; (2)7sin tan 2cos 02ππ⎛⎫-++ ⎪⎝⎭. 【答案】(2)3. 【解析】(1)()()()tan 405sin 450cos750tan 45360sin 90360cos 302360-+=+-+++⨯tan 45sin 90cos30112=-+=-+=(2)77sin tan 2cos 0sin 4tan 02cos 0sin 02123222πππππ⎛⎫⎛⎫-++=-+++=++=+= ⎪ ⎪⎝⎭⎝⎭. 3.(2021·全国高一专题练习)化简:cos 210cos(420)tan 330tan 390sin 750cos900︒︒︒︒︒︒⋅-⋅⋅⋅.【解析】原式=cos(18030)cos(36060)tan(36030)tan(36030)sin(72030)cos(720180)︒︒︒︒︒︒︒︒︒︒︒︒+⋅--⋅-+⋅+⋅+=()cos30cos60tan 30tan 30sin 30cos180︒︒︒︒︒-⋅⋅-⋅⋅1((⨯⨯4.(2021·贺州市桂东高级中学高一月考)计算:(1)sin cos 44ππ⎛⎫-+ ⎪⎝⎭;(2)75sin cos tan 224πππ++. 【答案】(1)0;(2)0.【解析】(1)sin cos 44ππ⎛⎫-+ ⎪⎝⎭sincos44ππ=-+22=+0=(2)75sincos tan 224πππ++ sin 4cos 2tan 224πππππ⎛⎫⎛⎫=-+++ ⎪ ⎪⎝⎭⎝⎭sincostan224πππ=-++1010=5.(2021·全国高一课时练习)化简求值:(1)234cos coscos cos 5555ππππ+++; (2)24sin 2cos ()33n n n ππππ⎛⎫⎛⎫-⋅+∈ ⎪ ⎪⎝⎭⎝⎭Z .【答案】(1)0;(2)答案见解析. 【解析】(1)23422coscoscos cos cos cos cos 5555555ππππππππ⎛⎫+++=++-+ ⎪⎝⎭22cos cos cos cos cos 055555ππππππ⎛⎫-=+--= ⎪⎝⎭.(2)①当n 为奇数时,原式24sin cos 33ππ⎛⎫⎛⎫=-⋅- ⎪⎪⎝⎭⎝⎭sin cos 33ππππ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭1sincos332ππ=-⋅== ②当n 为偶数时,原式24sin cos 33ππ=-⋅ sin cos 33ππππ⎛⎫⎛⎫=--⋅+ ⎪ ⎪⎝⎭⎝⎭sincos33ππ=⋅=【题组二 诱导公式与三角函数定义、同角运用】1.(2021·北京市第四十三中学)已知tan 2θ=,则sin cos()2cos sin()πθπθθπθ⎛⎫+-- ⎪⎝⎭=--( ) A .2 B .-2 C .0D .23【答案】B【解析】因为tan 2θ=, 所以sin cos()2cos sin()πθπθθπθ⎛⎫+-- ⎪⎝⎭--, 2cos cos sin θθθ=-,221tan θ==--,故选:B2.(2021·江西新余四中高一月考)已知3sin 5α=,则()()sin cos ππsin 2ααα--=⎛⎫- ⎪⎝⎭( ) A .45-B .45C .35D .35【答案】D【解析】()()()sin cos πsin cos 3sin πcos 5sin 2ααααααα---⋅-===⎛⎫- ⎪⎝⎭, 故选:D.3.(2021·淮北市树人高级中学高一期中)若3sin(π)5α+=,且α是第三象限角,则ππsin cos 22ππsin cos 22αααα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭( )A .1B .7C .-7D .-1【答案】B【解析】由()3sin πsin 5αα+=-=,则3sin 5α=-.又α是第三象限角,所以4cos 5α=-,所以ππ43sin cos cos sin 22557ππ43cos sin sin cos 2255αααααααα⎛⎫⎛⎫⎛⎫+-+-+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭===-⎛⎫⎛⎫⎛⎫------ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B.4.(2021·河南新乡县高中高一月考)已知α为第二象限角,且115tan tan 4αα-=则πsin sin(π)2πsin sin(π)2αααα⎛⎫+-+ ⎪⎝⎭⎛⎫--- ⎪⎝⎭的值为______. 【答案】35【解析】由115tan tan 4αα-=,得24tan 15tan 40αα--=,得1tan 4α=-或tan 4α=. α为第二象限角,∴1tan 4α=-,π1sin sin(π)1cos sin 1tan 3241πcos sin 1tan 51sin sin(π)42αααααααααα⎛⎫+-+-⎪++⎝⎭∴====--⎛⎫+--- ⎪⎝⎭. 故答案为:35. 5.(2021·全国高一课时练习)已知角α的终边经过点P 43(,)55-.(1)求sin α的值;(2)求sin tan()2sin()cos(3)πααπαππα⎛⎫-- ⎪⎝⎭+-的值. 【答案】(1)35;(2)54. 【解析】(1)因为点P 43(,)55-,所以|OP |=1,sin α=35. (2)sin tan()cos tan sin 2sin()cos(3)sin (cos )sin cos ⎛⎫-- ⎪⨯⎝⎭==+---πααπααααππααααα1cos =α, 由三角函数定义知cos α=45,故所求式子的值为54.6.(2021·陕西咸阳·高一期末)已知()()()()()3sin cos tan 202127cos cos sin 2f παπαπααπααππα⎛⎫--- ⎪⎝⎭=⎛⎫+--+ ⎪⎝⎭(1)化简()f α;(2)若角α的终边经过点()2,3P -,求()f α. 【答案】(1)()1sin f αα=-;【解析】(1)3sin cos()tan(2021)2()7cos cos()sin()2f παπαπααπααππα⎛⎫--- ⎪⎝⎭=⎛⎫+--+ ⎪⎝⎭cos (cos )(tan )sin (cos )(sin )αααααα---=--sin cos cos 1cos sin cos sin sin αααααααα-==- (2)角α的终边经过点()2,3P -,sin α∴== ()1sin f αα∴=-= 7.(2021·河南(理))已知3cos 2sin 1sin 2cos 4αααα-=-+.(1)()()3cos cos sin 2235cos sin 3sin 22πππαααππαπαα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭的值(2)求()22sin cos sin 122πππααα⎛⎫⎛⎫-+-⋅++ ⎪ ⎪⎝⎭⎝⎭的值.【答案】(1)12;(2)3.【解析】(1)由3cos 2sin 1sin 2cos 4αααα-=-+,解得tan 2α=.()()()()()()()()3cos cos sin cos sin cos 112235sin sin cos tan 2cos sin 3sin 22πππααααααππαααααπαα⎛⎫⎛⎫++- ⎪ ⎪-⋅--⎝⎭⎝⎭===-⋅⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭(2)由(1)得tan 2α=,所以()22sin cos sin 122πππααα⎛⎫⎛⎫-+-⋅++ ⎪ ⎪⎝⎭⎝⎭22sin sin cos 1ααα=+⋅+2222sin sin cos 1sin cos ααααα+⋅=++222tan tan 1tan 1ααα+=++ 82141+=++3= 8.(2021·全国高一专题练习)已知角α的终边经过点()3,6P m m -(0m ≠).(1)求()()sin cos sin 2cos 22απαπππαα++-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭的值; (2)若α是第二象限角,求()23sin sin cos cos 22ππαπααα⎛⎫⎛⎫++--+ ⎪ ⎪⎝⎭⎝⎭的值.【答案】(1)13-;【解析】(1)0m ≠, cos 0α∴≠,即()()sin cos sin 2cos 22απαπππαα++-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭ sin cos cos 2sin αααα--=+ tan 112tan αα--=+.又角α的终边经过点()3,6P m m -(0m ≠), 6tan 23mmα-∴==-, 故()()()sin cos tan 121112tan 1223sin 2cos 22απαπαππααα++----===-++⨯-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭;(2)α是第二象限角,0m ∴<,则sin α==cos α=== ()23sin sin cos cos 22ππαπααα⎛⎫⎛⎫∴++--+ ⎪ ⎪⎝⎭⎝⎭2cos sin cos sin αααα=++2⎛⎛=+⎝⎭⎝⎭. 9.(2021·全国)(1)已知sin()cos()tan(3)()3cos 2f πθπθπθθπθ-+-=⎛⎫- ⎪⎝⎭,求73f π⎛⎫- ⎪⎝⎭的值 (2)已知1sin cos 5αα+=-,2παπ<<,求sin(3)cos(2)sin()sin 2παπαπαα--++⎛⎫-++ ⎪⎝⎭的值.【答案】(2)17.【解析】(1)()()sin cos tan sin()cos()tan(3)()sin 3sin cos 2f θθθπθπθπθθθπθθ⋅-⋅--+-===--⎛⎫- ⎪⎝⎭所以77sin sin 2sin 3333f πππππ⎛⎫⎛⎫⎛⎫-=--=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)由1sin cos 5αα+=-,则112sin cos 25αα+=,所以242sin cos 25αα=-由2παπ<<,则sin 0,cos 0αα><设cos sin 0t αα=-<,则2244912cos sin 12525t αα=-=+= 由cos sin 0t αα=-<,所以7cos sin 5αα-=-1sin(3)cos(2)sin cos 157sin cos 7sin()sin 52παπαααπαααα---+++===-+⎛⎫--++ ⎪⎝⎭【题组三 角的拼凑】1.(2021·江西上饶·高一月考(理))若4sin 65x π⎛⎫+= ⎪⎝⎭,则cos 3x π⎛⎫-= ⎪⎝⎭___________.【答案】45【解析】依题意4cos cos sin 36265x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:452.(2021·全国高一课时练习)已知1sin 62πα⎛⎫-= ⎪⎝⎭,那么2cos 3πα⎛⎫-= ⎪⎝⎭( )A B .C .12 D .12-【答案】D【解析】因为1sin 62πα⎛⎫-= ⎪⎝⎭,所以21cos cos sin 32662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=--=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 故选:D3.(2021·全国高一课时练习)已知()1cos 753α︒+=,求()(cos 105sin 15)αα︒-+︒-的值. 【答案】0【解析】因为()()10575180αα︒-+︒+=︒,()()157590αα︒-++︒=︒, 所以()()cos 105cos 18075αα︒-=︒-︒+⎡⎤⎣⎦()1cos 753α=-︒+=-,()()sin 15sin 9075αα︒-=︒-+︒⎡⎤⎣⎦ ()1cos 753α=︒+=.所以()()11cos 105sin 15033αα︒-+︒-=-+=.。
3.3 幂函数(精练)【题组一 幂函数的概念】1.(2021·福建高一期末)若幂函数()f x 的图象过点()2,4,则()3f 的值为( ) A .5 B .6 C .8 D .9【答案】D【解析】设幂函数()f x x α=,因为幂函数()f x 的图象过点()2,4,所以24α=,解得2α=, 所以()2f x x =,所以()2339f ==,故选:D2.(2021·江苏省锡山高级中学高一期末)若幂函数()f x 经过点()3,33,且()8f a =,则a =( )A .2B .3C .128D .512【答案】A【解析】设()f x x α=,因为幂函数()f x 经过点()3,33,所以(3)(3)33f α==,解得3α=,所以()38f a a ==,解得2a =,故选:A3.(新教材苏教版必修第一册))若函数()21xf x a a =++是幂函数,则a =________. 【答案】0或1- 【解析】由函数()21xf x a a =++是幂函数,可得211a a ++=,解得0a =或1a =-, 故答案为:0或1-.4.(2021年湖南)若函数()222433mm y m m x+-=-+为幂函数,则实数m 的值为________;当此幂函数在()0,∞+单调递减,则实数m 的值为_________. 【答案】1或2 1【解析】由幂函数定义知:2331m m -+=,解得:1m =或2; 当1m =时,2241m m +-=-,此时幂函数在()0,∞+单调递减; 当2m =时,2244m m +-=,此时幂函数在()0,∞+单调递增;∴当幂函数在()0,∞+单调递减时,1m =.故答案为:1或2;1. 【题组二 幂函数的三要素】1.(2020·浙江高一课时练习)5个幂函数:①2y x ;②45y x =;③54y x =;④23y x =;⑤45y x -=.其中定义域为R 的是( ) A .只有①② B .只有②③ C .只有②④ D .只有④⑤【答案】C 【解析】①2yx 的定义域为(,0)(0,)-∞+∞,②45y x =的定义域为R , ③54y x =的定义域为(0,)+∞, ④23y x =的定义域为R ,⑤45y x -=的定义域为(,0)(0,)-∞+∞, 故选:C .2.(步步高高一数学寒假作业:作业9幂函数)下列函数中,其定义域和值域不同的函数是( ) A .13y x = B .12y x -= C .53y x = D .23y x =【答案】D【解析】A 中,13y x =的定义域和值域均为R ;B 中,12y x-=的定义域为()0,∞+,值域为()0,∞+;C 中,53y x =的定义域和值域均为R ;D 中,23y x =的定义域为R ,值域为[)0,+∞,定义域和值域不相同 故选:D3.(2021·江苏省)(多选)已知{}1,1,2,3α∈-,则使函数y x α=的值域为R ,且为奇函数的α的值为( ) A .-1 B .1 C .2 D .3【答案】BD【解析】当1α=-时,11y x x-==,为奇函数,但值域为{}0y y ≠,不满足条件; 当1α=时,y x =为奇函数,值域为R ,满足条件; 当2α=时,2yx 为偶函数,值域为{}0y y ≥,不满足条件;当3α=时,3y x =为奇函数,值域为R ,满足条件. 故选BD.4.(2021·湖南高一期末)已知幂函数()y f x =的图象经过点()9,3,则()f x 的解析式是______. 【答案】()12f x x =【解析】幂函数()y f x =可设为()f x x α=,图象过点()9,3,则()993f α==,则12α=, 所以()12f x x =.故答案为:()12f x x =.5.(2021·浙江)已知幂函数 f (x ) = x α满足 f (3) = 33,则该幂函数的定义域为___________. 【答案】(0,)+∞ 【解析】因为f (3) =33,所以333α=,即1233α-=,解得12α=-,所以12()f x x -=,所以函数的定义域为(0,)+∞,故答案为:(0,)+∞6.(2021·上海市川沙中学高一期末)幂函数12y x =的定义域为________________. 【答案】[)0,+∞【解析】解:因为12y x x ==,所以0x ≥,所以函数的定义域为[)0,+∞ 故答案为:[)0,+∞ 【题组三 幂函数的性质】1(新教材人教版必修第一册))幂函数的图象过点(3, 3),则它的单调递增区间是( ) A .[-1,+∞) B .[0,+∞) C .(-∞,+∞) D .(-∞,0)【答案】B【解析】设幂函数为f (x )=x α,因为幂函数的图象过点(3, 3),所以f (3)=3α=3=123,解得α=12, 所以f (x )=12x ,所以幂函数的单调递增区间为[0,+∞).故选:B2.(2021·务川仡佬族苗族自治县汇佳中学高一期末)下列函数既是幂函数又是偶函数的是( ) A .2()3f x x =B .()f x x =C .41()f x x =D .3()-=f x x【答案】C【解析】幂函数的图象都经过点(1,1),排除A ; ()f x x =与3()-=f x x 不是偶函数,排除B ,D.故选:C3.(2021·河北高一期末)已知幂函数()221()1m f x m m x +=+-在()0,∞+上单调递减,则实数m 的值为( )A .2-B .1-C .1D .2-或1【答案】A【解析】由于()f x 为幂函数,所以2112m m m +-=⇔=-或1m =;又函数()f x 在()0,∞+上单调递减,故当2m =-时符合条件,故选:A4.(2021·宁县第二中学高一期末)已知幂函数()223()22()n nf x n n xn -=+-∈Z 在(0,)+∞上是增函数,则n的值为( ) A .1- B .1 C .3- D .1和3-【答案】C【解析】因为函数是幂函数,所以2221+-=n n 解得:3n =-或1n =当3n =-时,()18=f x x 在()0,∞+上是增函数,符合题意. 当1n =时,()2f x x -=在()0,∞+上是减函数,不符合题意.故选:C5.(2021·四川高一期末)已知幂函数()()22222aaf x a a x+=--,满足()f x 在()0,x ∈+∞为减函数,则a 的值为( ) A .3或1- B .3 C .1- D .3-【答案】C【解析】由于幂函数()()22222aaf x a a x+=--在()0,x ∈+∞为减函数,所以,2222120a a a a ⎧--=⎨+<⎩,解得1a =-.故选:C.6.(2021·河南高一期末)已知幂函数()()()22231aa f x a a xa --=+-∈R 的图象在()0,∞+上单调递减,则实数a 的值是( )A .1B .2-C .1或2-D .512+ 【答案】A【解析】由幂函数定义得211a a +-=, 解得1a =或2a =-.当1a =时,()4f x x -=在()0,∞+上单调递减;当2a =-时,()5f x x =在()0,∞+上单调递增.故选:A7.(2021·山东高一期末)已知幂函数1234,,,a b c dy x y x y x y x ==== 在第一象限的图象如图所示,则( )A .a b c d >>>B .>>>b c d aC .>>>d b c aD .>>>c b d a【答案】B【解析】由图象可知,当2x =时,2222d a c b <<<,则a d c b <<< 故选:B8(2021·辽宁高一期末)幂函数23y x =的大致图像是( )A .B .C .D .【答案】B 【解析】203>,∴幂函数在第一象限内的图象为增函数,排除A ,C ,D , 故选:B .9.(2021·宁波中学高一期末)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈C .1()()2xy x R =∈D .1y x=-(x R ∈,且0)x ≠ 【答案】B【解析】对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确;对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误. 故选:B10.(2021·河南高一期末)下列函数中,在(),1-∞-上是增函数的是( ) A .3y x =- B .24y x x =--C .1x y x=+ D .2y x =-【答案】C【解析】本题考查函数的单调性.A 项中,函数3y x =-在R 上单调递减,故A 错误;B 项中,二次函数24y x x =--的图像开口向下,对称轴方程为2x =-,故该函数在(],2-∞-上单调递增,在()2,-+∞上单调递减,故B 错误;C 项中,函数1111x y x x==-++,在(),1-∞-和()1,+∞上分别单调递增,故C 正确;D 项中,函数2y x =-在(],2-∞上单调递减,故D 错误. 故选:C11.(2021·江苏南通·高一期末)幂函数2232m m y x --=是偶函数,在()0,∞+上是减函数,则整数m 的值为( )A .0B .1C .0或1D .2【答案】A【解析】因为幂函数2232m m y x --=在()0,∞+上是减函数,所以22320m m --<,解得122m -<<,又m Z ∈,所以0m =或1m =, 当0m =时,221yxx 定义域为()(),00,-∞⋃+∞,且()2211x x =-,所以2y x 是偶函数,满足题意;当1m =时,331y x x-==定义域为()(),00,-∞⋃+∞,而()3311x x =--,所以3y x -=是奇函数,不满足题意,舍去; 综上,0m =. 故选:A12.(2021·辽宁高一期末)使幂函数y x α=为偶函数,且在(0,)+∞上是减函数的α值为( ) A .1- B .23-C .12-D .2【答案】B 【解析】A 选项,1y x=是奇函数,不符合题意. B 选项,321y x =为偶函数,且在(0,)+∞上是减函数,符合题意.C 选项,1y x=是非奇非偶函数,不符合题意.D 选项,2y x ,在()0,∞+上递增,不符合题意.故选:B13.(2021·山东高一期末)已知点(),8a 在幂函数()()1bf x a x =-的图象上,若()()130f m f m +-<,则实数m 的取值范围为_________.2⎝⎭【解析】因为()()1bf x a x =-为幂函数,所以11a -=,解得a =2所以()b f x x =,又(2,8)在()f x 上,代入解得3b =, 所以3()f x x =,为奇函数因为()()130f m f m +-<,所以()(13)(31)f m f m f m <--=-, 因为3()f x x =在R 上为单调增函数, 所以31m m <-,解得12m >, 故答案为:1,2⎛⎫+∞ ⎪⎝⎭14.(2021·湖南师大附中高一月考)已知幂函数2()(1)m f x m m x =--的图象关于y 轴对称,则m 的值为_________. 【答案】2【解析】由于()f x 是幂函数,所以211m m --=,解得2m =或1m =-.当2m =时,()2f x x =,图象关于y 轴对称,符合题意.当1m =-时,()11x xf x -==,图象关于原点对称,不符合题意. 所以m 的值为2. 故答案为:215.(2021·辽宁庄河高中高一开学考试)若幂函数()222=33mm y m xm ---+的图象不经过坐标轴,则实数m的值为___________. 【答案】1或2【解析】由题意得:2233120m m m m ⎧-+=⎨--≤⎩,解得:m=1或2,故答案为:1或2.16.(2021·全国高一期末)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132mma a +>-的实数a 的值构成的集合为________.3⎝⎭【解析】因为函数()()2133m f x m m x +=-+为幂函数,则2331m m -+=,得1m =或2m =.若1m =,则()2f x x =为偶函数,不合乎题意;若2m =,则()3f x x =为奇函数,合乎题意.所以,2m =.所以不等式可转化为()()22132a a +>-,即231480a a -+<,解得243a <<.故答案为:2,43⎛⎫⎪⎝⎭.17.(2020·湖北高一期中)已知幂函数()2m f x x +=过点()2,8,且2(1)(24)0f k f k ++-<,则实数k 的取值范围是_____. 【答案】()3,1-【解析】由题设可得23282m +==,故1m =,所以()3f x x =,所以()f x 为R 上的奇函数且为增函数,而2(1)(24)0f k f k ++-<等价于()2(1)(24)42f k f k f k +<--=-,所以2230k k +-<,故31k -<<. 故答案为:()3,1-.【题组四 幂函数的综合运用】1.(新教材苏教版必修第一册)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()()11202g x h x h x x ⎛⎫⎡⎫=+-∈⎪ ⎪⎢⎣⎭⎝⎭,的值域.【答案】(1)0m =;(2)112⎛⎤⎥⎝⎦,. 【解析】(1)∵函数()()2151m h x m m x +=-+为幂函数,2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =,()h x 为奇函数, 当5m =时,()6h x x =,()h x 为偶函数,函数()h x 为奇函数,0m ∴=;(2)由(1)可知,()h x x =,则()12g x x x =+-,102x ⎡⎫∈⎪⎢⎣⎭,,令12x t -=,则21122x t =-+,(]01t ∈,,则()22111(1)1222f t t t t =-++=--+,(]01t ∈,,函数()f t 为开口向下,对称轴为1t =的抛物线, ∴当0t =时,函数()102f =, 当1t =,函数()f t 取得最大值为1,∴()f t 的值域为112⎛⎤ ⎥⎝⎦,,故函数()g x 的值域为112⎛⎤⎥⎝⎦,.2.(2021·山西高一期末)已知函数()()2151m h x m m x +=-+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()12=+-g x h x x 在11,2x ⎡⎤∈-⎢⎥⎣⎦的值域.【答案】(1)0m =;(2)1,12⎡⎤⎢⎥⎣⎦【解析】(1)因为函数()()2151m h x m m x +=-+为幂函数,所以2511m m -+=,解得0m =或5m =. 即()h x x =或()6h x x =.又因为函数()h x 为奇函数,所以()h x x =,0m =. (2)()()1212g x h x x x x =+-=+-,设12t x =-,因为11,2x ⎡⎤∈-⎢⎥⎣⎦,所以0,3t ⎡⎤∈⎣⎦,212t x -=. 所以()22111122t y t t -=+=--+, 当1t =时,max 1y =,当0t =时,min 12y =,故值域为1,12⎡⎤⎢⎥⎣⎦. 3.(2021·赤峰二中高一期末(理))已知幂函数()2()1()kf x k k x k R =--∈,且在区间(0,)+∞内函数图象是上升的.(1)求实数k 的值;(2)若存在实数a ,b 使得函数f (x )在区间[a ,b ]上的值域为[a ,b ],求实数a ,b 的值.【答案】(1)2;(2)a =0,b =1.【解析】(1)()2()1()k f x k k x k R =--∈为幂函数, ∴211k k --=,解得1k =-或2k =,又()f x 在区间(0,)+∞内的函数图象是上升的,0k ∴>,∴k =2;(2)∵存在实数a ,b 使得函数()f x 在区间,a b 上的值域为,a b ,且2()f x x =,∴()()f a a f b b =⎧⎨=⎩,即22a a b b ⎧=⎨=⎩, a b <,∴a =0,b =1.4.(2020·浙江高一课时练习)已知幂函数21322()()pp f x x p -++=∈N 在(0,)+∞上是增函数,且在定义域上是偶函数.(1)求p 的值,并写出相应的函数()f x 的解析式. (2)对于(1)中求得的函数()f x ,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(,4]-∞-上是减函数,且在区间(4,0)-上是增函数?若存在,请求出q ;若不存在,请说明理由.【答案】(1)当0p =或2p =时,32()f x x =;当1p =时,2()f x x =;(2)存在,130-. 【解析】(1)由于已知()f x 在(0,)+∞上是增函数,因而213022p p -++>,解得13p -<<. 又p ∈N ,因而0p =或1或2.当0p =或2p =时,32()f x x =,不是偶函数;当1p =时,2()f x x =,符合题意.(2)存在.理由如下: 由(1)知2()[()](21)()1()(21)()1g x qf f x q f x qf x q f x =-+-+=-+-+.由于2()0f x x =,因而当(,4]x ∈-∞-时,2()[16,)f x x =∈+∞,此时,函数()g x 单调递减,而函数()t f x =在(,4]-∞-上单调递减,则外层函数2(21)1y qt q t =-+-+在[16,)+∞上单调递增;当(4,0)∈-x 时,2()(0,16)f x x =∈,此时,函数()g x 单调递增,而函数()t f x =在(4,0)-上单调递减,则外层函数2(21)1y qt q t =-+-+在(0,16)上单调递减. 所以211620q q q -⎧-=⎪-⎨⎪->⎩,即130q =-. 所以存在130q =-满足题设条件. 5.(2021·上海市第二中学高一期末)已知幂函数223()mm y f x x --==(m ∈Z )在(0,)+∞是严格减函数,且为偶函数.(1)求()y f x =的解析式; (2)讨论函数5()(2)()y af x a x f x =+-⋅的奇偶性,并说明理由.【答案】(1)4()y f x x -==;(2)当2a =时,为偶函数;当0a =时,为奇函数;当2a ≠且0a ≠时,为非奇非偶函数.理由见解析.【解析】(1)因为幂函数223()m m y f x x --==(m Z ∈)在(0,)+∞是严格减函数,所以2230m m --<,即()()310m m -+< ,解得:13x ,因为m Z ∈,所以0,1,2m =,当0m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意;当1m =时,4()y f x x -==,此时()y f x =为偶函数,符合题意;当2m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意;所以4()y f x x -==,(2)4544(2)(2)y ax a x x ax a x ---=+-⋅=+-,令()4(2)F x ax a x -=+-当0a =时,()2F x x =-,()()()22F x x x F x -=-⨯-==-,此时是奇函数,当2a =时()4422F x x x -==,()()()444222F x x xx --=-==-,此时是偶函数, 当0a ≠且2a ≠时,()1(2)22F a a a =+-=-,()1(2)2F a a -=--=, ()()11F F ≠-,()()11F F -≠-,此时是非奇非偶函数函数.6.(2021·深圳市)已知幂函数()223mm y f x x --+==(其中22m -<<,m ∈Z )满足: ①在区间,0上为减函数;②对任意的x ∈R ,都有()()0f x f x --=.求幂函数()f x 的解析式,并求当[]0,4x ∈时,()f x 的值域.【答案】()4f x x =,值域为[]0,256【解析】22m -<<,m ∈Z ,1m ∴=-,0,1.对任意x ∈R ,都有()()0f x f x --=,即()()f x f x -=,f x 是偶函数.当1m =-时,()4f x x =,满足条件①②; 当1m =时,()0f x x =,不满足条件①;当0m =时,()3f x x =,条件①②都不满足,故同时满足条件①②的幂函数()f x 的解析式为()4f x x =,且在区间[]0,4上是增函数,∴当[]0,4x ∈时,函数()f x 的值域为[]0,256.。
1.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是__________.2.函数f(x)=13x3+12ax2(a>0)的递减区间是__________.3.函数ln()xf xx=的递增区间为__________.4.已知函数f(x)+ln x,则f(2),f(e),f(3)三个数从小到大的顺序为__________.5.函数f(x)=x-2sin x在(0,π)上的单调增区间为____.6.已知函数f(x),g(x)满足g(x)≠0,()()xf xag x= (a>0,且a≠1),若f′(x)g(x)>f(x)g′(x),则a的取值范围是____.7.已知a∈R且函数f(x)=13x3-ax+3在区间(-2,-1)内是减函数,则a的取值范围是__________.8.函数f (x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为__________.9.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).(1)求a,b的值;(2)讨论函数f(x)的单调性.10.设函数f(x)=x-1x-a ln x(a∈R),讨论f(x)的单调性.参考答案1.答案:②③ 解析:设g (x )=x 3-6x 2+9x =0,则x 1=0,x 2=x 3=3,其图象如下图:要使f (x )=x 3-6x 2+9x -abc 有3个零点,需将g (x )的图象向下平移,如图所示:又f ′(x )=3x 2-12x +9=0时,x 1=1,x 2=3,即得f (1)是极大值,f (3)是极小值. 故由图象可知f (0)·f (1)<0,f (0)·f (3)>0. 2.答案:(-a,0) 解析:f ′(x )=x 2+ax =x (x +a ). ∵a >0,∴当f ′(x )<0时,得-a <x <0. ∴f (x )的递减区间是(-a,0).3.答案:(0,e) 解析:f (x )的定义域为(0,+∞),f ′(x )=21ln xx-. 令f ′(x )>0得1-ln x >0,解得0<x <e. ∴f (x )的递增区间是(0,e).4.答案:f (2)<f (e)<f (3) 解析:f (x )的定义域为(0,+∞).f ′(x )1x+>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增, ∴f (2)<f (e)<f (3). 5.答案:π,π3⎛⎫⎪⎝⎭解析:f ′(x )=1-2cos x ,令f ′(x )>0得cos x <12.∵x ∈(0,π),∴π3<x <π, ∴f (x )的递增区间是π,π3⎛⎫⎪⎝⎭.6.答案:a >1 解析:∵2()()()()()0()()f x f x g x f x g x 'g x g x ⎛⎫-=> ⎪⎝⎭, ∴()()x f x a g x =为增函数,则a >1. 7.答案:[4,+∞) 解析:f ′(x )=x 2-a . ∵f (x )在(-2,-1)内是减函数,∴f ′(x )=x 2-a ≤0在(-2,-1)上恒成立, 即a ≥x 2在(-2,-1)上恒成立.∵x ∈(-2,-1),∴1<x 2<4.∴所求a 的范围是a ≥4.8.答案:(-1,+∞) 解析:由题意,令φ(x )=f (x )-2x -4, 则φ′(x )=f ′(x )-2>0,∴φ(x )在R 上是增函数. 又φ(-1)=f (-1)-2×(-1)-4=0, ∴当x >-1时,φ(x )>φ(-1)=0, 即f (x )-2x -4>0,即f (x )>2x +4. ∴解集为(-1,+∞).9.答案:解:(1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图象与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即13311,36312,a b a b -+=-⎧⎨-+=-⎩解得a =1,b =-3.(2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3).令f ′(x )>0,解得x <-1或x >3; 又令f ′(x )<0,解得-1<x <3. 故当x ∈(-∞,-1)时,f (x )是增函数, 当x ∈(3,+∞)时,f (x )也是增函数, 当x ∈(-1,3)时,f (x )是减函数10.答案:解:f (x )的定义域为(0,+∞).22211()1a x ax f'x x x x -+=+-=.令g (x )=x 2-ax +1,则对于方程x 2-ax +1=0,Δ=a 2-4. (1)当|a |≤2时,Δ≤0,f ′(x )≥0. 故f (x )在(0,+∞)上单调递增.(2)当a <-2时,Δ>0,g (x )=0的两根都小于0,在(0,+∞)上,f ′(x )>0. 故f (x )在(0,+∞)上单调递增.(3)当a >2时,Δ>0,g (x )=0的两根为1x =,2x =∴当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0.故f (x )分别在0,2a ⎛ ⎪⎝⎭,2a ⎛⎫++∞⎪ ⎪⎝⎭上单调递增,在22a a ⎛-+ ⎪⎝⎭上单调递减.。