比色分析的基本原理朗伯比尔定律
- 格式:doc
- 大小:17.31 KB
- 文档页数:4
比色分析的基本原理(朗伯-比尔定律,吸光度,消光度,吸光系数)( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数)比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1~10-4mg·L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系光是一种电磁波。
自然是由不同波长(400~700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
同理,CuSO4溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,有色溶液的颜色是被吸收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。
比色分析的基本原理(朗伯-比尔定律,吸光度,消光度,吸光系数)比色分析的基本原理(朗伯-比尔定律,吸光度,消光度,吸光系数)( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数 )比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1~10-4mg·L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有6 0%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系光是一种电磁波。
自然是由不同波长(400~700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
同理,CuSO4溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,有色溶液的颜色是被吸收光颜色的补色。
伯(Lambert)定律阐述为:光被透明介质吸收的比例与入射光的强度无关;在光程上每等厚层介质吸收相同比例值的光。
目录编辑本段定义朗伯比尔定律又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。
光被吸收的量正比于光程中产生光吸收的分子数目。
公式及参数意义log( Io/I)= εCl (1—4)公式中Io和I分别为入射光及通过样品后的透射光强度;log(Io/I)称为吸光度(ab—sorbance)旧称光密度(optical density);C为样品浓度;l为光程;ε为光被吸收的比例系数。
当浓度采用摩尔浓度时,ε为摩尔吸收系数。
它与吸收物质的性质及入射光的波长λ有关。
当产生紫外吸收的物质为未知物时,其吸收强度可用表示:(1—5)公式中C为lOOml溶液中溶质的克数;b为光程,以厘米为单位;A为该溶液产生的紫外吸收;表示lcm光程且该物质浓度为lg/lOOmL时产生的吸收。
朗伯—比尔定律数学表达式A=lg(1/T)=Kbc(A为吸光度,T为透射比,是透射光强度比上入射光强度c为吸光物质的浓度b 为吸收层厚度)物理意义当一束平行单色光垂直通过某一均匀非散射的吸光物质时,与其吸光度A与吸光物质的浓度c及吸收层厚度b成正比.朗伯-比耳定律成立的前提(1) 入射光为平行单色光且垂直照射.(2) 吸光物质为均匀非散射体系.(3) 吸光质点之间无相互作用.(4) 辐射与物质之间的作用仅限于光吸收,无荧光和光化学现象发生.比尔-朗伯定律维基百科,自由的百科全书(重定向自比尔-朗伯定律)比尔-朗伯定律(Beer–Lambert law),又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
(朗伯-比尔定律,吸光度,消光度,吸光系数)( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数 )比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1~10-4mg·L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系光是一种电磁波。
自然是由不同波长(400~700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
同理,CuSO4溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,有色溶液的颜色是被吸收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。
(朗伯-比尔定律,吸光度,消光度,吸光系数)(关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数)比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1〜10-4mg-L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%- 5%的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系光是一种电磁波。
自然是由不同波长(400~ 700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMn0溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
同理,CuS04溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,有色溶液的颜色是被吸收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。
当单色光通过厚度相同,而浓度很小的溶液时,根据朗伯—比尔定律,光被溶液吸收的程度,称为吸收度,与溶液的浓度成正比,与溶液的厚度成正比,即A=εCL,式中:A为吸收度,C为溶液的浓度,L为溶液的厚度,ε为消光系数。
由朗伯—比尔定律得,当一束单色光通过一溶液时,由于溶液吸收一部分光能,使光的强度减弱。
若溶液的浓度(或厚度)不变,则溶液的厚度(浓度)愈大,光线强度的减弱也愈明显。
用同样的方法配制的标准溶液和待测溶液,其浓度分别为C1和C2,对同类溶液ε相同,当厚度也相同时则:A1=εC1LA2=εC2LC2=(A2/A1)*C1式中A1,A2可由罗维朋比色计直接读出,C1为标准溶液的已知浓度,据此可算出待测溶液的浓度。
朗伯—比尔定律许多化学物质的溶液具有颜色(无色的化合物也可以加显色剂经反应生成有色物质),当有色溶液的溶度改变时,颜色的深浅也随之改变,浓度愈大,颜色愈深。
因此,可以用比较溶液颜色深浅的方法来测定有色溶液的浓度。
这种方法叫做比色分析法。
一、朗伯—比尔定律当一束单色光通过有色溶液时,入射光线的一部分被器皿反射回来,一部分被溶液吸收,另一部分则透过溶液,如图所示。
它们之间有以下关系:o=Ia+Ir+It1-1式中:Io—入射光强度,Ia—吸收光强度,Ir—反射光强度,It—透过光强度由于在实际测定时,所用的比色皿都是同质料用规格的。
反射光的强度为一定值,不会引起测量误差,所以反射光的影响可以不加考虑。
则上式可简化为:Io=Ia+It1-2从式1-2可知:当入射光强度Io为一定时,被吸收光强度Ia愈大,则透过光强度It愈小。
也就是说:光强度的减弱仅与有色溶液对光线的吸收有关。
那么,溶液对光线的吸收与哪些因素有关呢?实验证明:溶液的浓度C愈大,液层厚度L愈厚(即光线在溶液中所经过的路程愈长),则溶液对光线吸收的愈多。
它们之间的关系有下式决定:lg = KCL1-3这个公式就是朗伯—比尔(Lambert---Beer)定律。
伯(Lambert)定律阐述为:光被透明介质吸收的比例与入射光的强度无关;在光程上每等厚层介质吸收相同比例值的光。
目录定义朗伯比尔定律又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是吸收的基本定律,适用于所有的和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比尔-朗伯定律是、比色分析法和的定量基础。
光被吸收的量正比于光程中产生光吸收的分子数目。
公式及参数意义log( Io/I)= εCl (1—4)公式中Io和I分别为入射光及通过样品后的强度;log(Io/I)称为(ab—sorbance)旧称光密度(optical density);C为样品浓度;l为;ε为光被吸收的比例系数。
当浓度采用浓度时,ε为摩尔吸收系数。
它与吸收物质的性质及入射光的波长λ有关。
当产生紫外吸收的物质为未知物时,其吸收强度可用表示:(1—5)公式中C为lOOml溶液中溶质的克数;b为光程,以厘米为单位;A为该溶液产生的紫外吸收;表示lcm光程且该物质浓度为lg/lOOmL时产生的吸收。
朗伯—比尔定律数学表达式A=lg(1/T)=Kbc(A为吸光度,T为透射比,是透射光强度比上入射光强度c为吸光物质的浓度b 为吸收层厚度)物理意义当一束平行单色光垂直通过某一均匀非散射的吸光物质时,与其吸光度A与吸光物质的浓度c及吸收层厚度b成正比.朗伯-比耳定律成立的前提(1) 入射光为平行单色光且垂直照射.(2) 吸光物质为均匀非散射体系.(3) 吸光质点之间无相互作用.(4) 辐射与物质之间的作用仅限于光吸收,无荧光和光化学现象发生.比尔-朗伯定律维基百科,自由的百科全书(重定向自)比尔-朗伯定律(Beer–Lambert law),又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是吸收的基本定律,适用于所有的和所有的物质,包括气体、固体、液体、分子、原子和离子。
伯(Lambert)定律阐述为:光被透明介质吸收的比例与入射光的强度无关;在光程上每等厚层介质吸收相同比例值的光。
目录编辑本段定义朗伯比尔定律又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。
光被吸收的量正比于光程中产生光吸收的分子数目。
公式及参数意义log( Io/I)= εCl (1—4)公式中Io和I分别为入射光及通过样品后的透射光强度;log(Io/I)称为吸光度(ab—sorbance)旧称光密度(optical density);C为样品浓度;l为光程;ε为光被吸收的比例系数。
当浓度采用摩尔浓度时,ε为摩尔吸收系数。
它与吸收物质的性质及入射光的波长λ有关。
当产生紫外吸收的物质为未知物时,其吸收强度可用表示:(1—5)公式中C为lOOml溶液中溶质的克数;b为光程,以厘米为单位;A为该溶液产生的紫外吸收;表示lcm光程且该物质浓度为lg/lOOmL时产生的吸收。
朗伯—比尔定律数学表达式A=lg(1/T)=Kbc(A为吸光度,T为透射比,是透射光强度比上入射光强度c为吸光物质的浓度b 为吸收层厚度)物理意义当一束平行单色光垂直通过某一均匀非散射的吸光物质时,与其吸光度A与吸光物质的浓度c及吸收层厚度b成正比.朗伯-比耳定律成立的前提(1) 入射光为平行单色光且垂直照射.(2) 吸光物质为均匀非散射体系.(3) 吸光质点之间无相互作用.(4) 辐射与物质之间的作用仅限于光吸收,无荧光和光化学现象发生.比尔-朗伯定律维基百科,自由的百科全书(重定向自比尔-朗伯定律)比尔-朗伯定律(Beer–Lambert law),又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
郎伯-比尔定律为UV-Vis定量的基本公式,适用的前提是:1.入射光为单色平行光,2.吸收发生在均匀介质中,3.吸收物质及溶剂互不作用。
干扰因素包括:杂散光或复合光引起的负偏移,非平行光引起的正偏移,化学因素引起的偏移等。
另外该定律推导时未考虑反射分数的影响,因此在浓溶液及混浊液中也有偏离。
杂散光引起的误差:杂散光对吸光度的测定引起负偏移,且在吸光度愈大时愈明显。
另外,对仪器输出的边缘波长来说,单色器的透射率、光源光强和接收器的灵敏度都是比较低的,这时杂散光影响就更为明显,所以在紫外分光光度计中,首先应该检查200~220 nm处的杂散光。
由于杂散光强度在边缘波段较大,因此在波长小于220 nm进行紫外分光光度,测定时,常出现一种假峰,其原因,主要是样品随波长变短而吸收增大,可是由于杂散光在短波时急剧增大,因而使原来逐渐增大的吸收反而变小,就会出现不应有的“假峰”。
杂散光产生的原因:杂散光有两种,一种是杂散光的波长与测量波长相同,它是由于测量波长因种种原因偏离正常光路,在不通过样品的情况下,就直接射到光电接收器上。
引起这种杂光的原因是由于光学、机械零件包括样品本身的反射和散射所引起。
这种杂散光可以通过一个对测定波长不透明的样品来检查。
当发现放在试样池中的不透明样品的透光率不为零时,说明仪器中有上述杂光存在。
但当光度存在零位误差时,可能令造成混淆,如果在不透明的样品上涂上白色,则可增强样品本身反射和散射的效果,以提高测量灵敏度。
第二种杂散光是由光学系统中的缺陷所引起,如不必要的反射面、光束孔径不匹配、灰尘的散射、光学表面的擦痕、光学系统的象差、不均匀色散等都会降低光线的单色性,使杂光增加。
仪器光源系统设计不良、机械零部件加工不良、位置错移、仪器内壁防眩黑漆脱落等等也是造成杂散光的原因。
通常所指的杂散光是上述的第二种。
使用过程中减小杂散光的方法:(1 )因光学零件表面沾污、积尘而使杂散光增大,则可用清洁的软毛刷或吹气球除去积尘,或经脱脂的软布和纯净的溶剂(如乙醚:酒精=2 :1的混合液) ,小心地擦试光学零件(不包括反光镜)表面。
朗伯-比尔(Lambert-Beer )定律当入射光波长一定时,待测溶液的吸光度A 与其浓度和液层厚度成正比,即k 为比例系数,与溶液性质、温度和入射波长有关。
Lambert-Beer 定律是分光光度定量分析 的基础。
当浓度以 g/L 表示时,称 k 为吸光系数,以 a 表示,即当浓度以mol/L 表示时,称 k 为摩尔吸光系数,以e 表示,即比耳定律成立的前提条件是:(1)入射光是单色光;(2)吸收发生在均匀的介质中;(3)吸收过程中,吸收物质互相不发生作用透射率定义:T 取值为0.0 % ~ 100.0 %全部吸收T = 0.0 %全部透射T = 100.0 %吸光度与透射率 T : 透射率 A : 吸光度以百分透光度和吸光度分别对溶液浓度作图得一条通过原点的直线和一条指数曲线根据比尔定律,在理论上,吸光度对溶液浓度作图所得的直线的截距为零,斜率为kb 。
实际上,吸光度与浓度的关系有时是非线性的,或者不通过原点,这种现象称为偏离比尔定律。
引起偏离比尔定律的因素bc A ε=A KCb T ==-lg KbcA T --==1010abcA =样品吸光度 A 与光程 b 总是成正比。
但当 b 一定时,A 与 c 并不总是成正比,即偏离 L-B 定律!这种偏离由样品性质和仪器决定。
1. 样品性质影响a )稀溶液。
待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射 的吸收能力发生变化---e 变化;b )稳定溶液。
试液中各组份的相互作用,如缔合、离解、光化反应、异构化、配体数目改变等,会引起待测组份吸收曲线的变化;c )溶剂的影响:对待测物生色团吸收峰强度及位置产生影响;d )均匀溶液。
胶体、乳状液或悬浮液对光的散射损失。
2. 仪器因素仪器因素包括光源稳定性以及入射光的单色性等。
a )入射光的非单色性:不同波长的光所产生的吸收不同,可导致测定偏差。
假设入射光由测量波长λx 和干扰λi 波长组成,据Beer 定律,溶液对在λx 和λi 的光的吸光度分别为: bc x x x x x e Ix I bc Ix I A εε===)(0)(0lg 或综合前两式,得❶ 当λx =λi 时,或者说当εx =εi 时,有A=εx bc , 符合L-B 定律;❷ 当λx ≠λi 时,或者说当εx ≠εi 时,则吸光度与浓度是非线性的。
朗伯- 比尔定律摘要:一、朗伯-比尔定律的概念及意义二、朗伯-比尔定律的数学表达式三、朗伯-比尔定律的应用领域四、影响朗伯-比尔定律的因素五、朗伯-比尔定律在实际生活中的应用案例正文:朗伯-比尔定律(Lambert-Beer law)是一种描述物质在溶液中吸光度与浓度、厚度以及溶液对该光线的吸收波长之间关系的定律。
该定律在光学、环境科学、化学、生物学等领域具有广泛的应用。
一、朗伯-比尔定律的概念及意义朗伯-比尔定律是由约翰·亨利·朗伯(John Herschel)在1852年提出的。
它指出,在一定条件下,物质对某一波长光的吸收程度与该物质的浓度成正比,与溶液的厚度成反比。
这意味着,通过测量物质溶液在特定波长下的吸光度,我们可以推断出溶液中物质的浓度。
二、朗伯-比尔定律的数学表达式朗伯-比尔定律的数学表达式为:A = eb*l*C其中,A 表示吸光度,eb 表示摩尔吸光系数(单位:L/mol·cm),l 表示溶液厚度(单位:cm),C 表示溶液浓度(单位:mol/L)。
三、朗伯-比尔定律的应用领域朗伯-比尔定律在许多领域都有广泛的应用,如化学分析、环境监测、生物医学检测等。
通过测量物质溶液在特定波长下的吸光度,可以快速、准确地测定物质的浓度,从而为各种研究和实际应用提供数据支持。
四、影响朗伯-比尔定律的因素虽然朗伯-比尔定律提供了一种简单、快捷的测量方法,但在实际应用中,一些因素可能会影响到测量结果。
这些因素包括:溶液的温度、溶液的酸碱性、溶剂的种类、测量仪器的精度等。
因此,在应用朗伯-比尔定律进行测量时,需要注意这些因素的影响,并进行相应的校正。
五、朗伯-比尔定律在实际生活中的应用案例在日常生活中,朗伯-比尔定律也有很多实际应用。
例如,在酒类生产中,通过测量酒液对特定波长光的吸光度,可以了解酒中的糖分含量;在医学检测中,通过测量血液或尿液对特定波长光的吸光度,可以快速检测出患者是否患有某些疾病。
伯(Lambert)定律阐述为:光被透明介质吸收的比例与入射光的强度无关;在光程上每等厚层介质吸收相同比例值的光。
目录编辑本段定义朗伯比尔定律又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。
光被吸收的量正比于光程中产生光吸收的分子数目。
公式及参数意义log( Io/I)= εCl (1—4)公式中 Io和I分别为入射光及通过样品后的透射光强度;log(Io/I)称为吸光度(ab—sorbance)旧称光密度(optical density);C为样品浓度;l为光程;ε为光被吸收的比例系数。
当浓度采用摩尔浓度时,ε为摩尔吸收系数。
它与吸收物质的性质及入射光的波长λ有关。
当产生紫外吸收的物质为未知物时,其吸收强度可用表示:(1—5)公式中 C为lOOml溶液中溶质的克数;b为光程,以厘米为单位;A为该溶液产生的紫外吸收;表示lcm光程且该物质浓度为lg/lOOmL时产生的吸收。
朗伯—比尔定律数学表达式A=lg(1/T)=Kbc(A为吸光度,T为透射比,是透射光强度比上入射光强度 c为吸光物质的浓度 b 为吸收层厚度)物理意义当一束平行单色光垂直通过某一均匀非散射的吸光物质时,与其吸光度A与吸光物质的浓度c及吸收层厚度b成正比.朗伯-比耳定律成立的前提(1) 入射光为平行单色光且垂直照射.(2) 吸光物质为均匀非散射体系.(3) 吸光质点之间无相互作用.(4) 辐射与物质之间的作用仅限于光吸收,无荧光和光化学现象发生.比尔-朗伯定律维基百科,自由的百科全书(重定向自比尔-朗伯定律)比尔-朗伯定律(Beer–Lambert law),又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比尔-朗伯定律(Beer–Lambert law)又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。
概述一束单色光照射于一吸收介质表面,在通过一定厚度的介质后,由于介质吸收了一部分光能,透射光的强度就要减弱。
吸收介质的浓度愈大,介质的厚度愈大,则光强度的减弱愈显著,其关系为:其中:∙:吸光度;∙:入射光的强度;∙:透射光的强度;∙:透射比,或称透光度;∙:系数,可以是吸收系数或摩尔吸收系数,见下文;∙:吸收介质的厚度,一般以 cm 为单位;∙:吸光物质的浓度,单位可以是 g/L 或 mol/L。
比尔-朗伯定律的物理意义是,当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度与吸光物质的浓度及吸收层厚度成正比。
当介质中含有多种吸光组分时,只要各组分间不存在着相互作用,则在某一波长下介质的总吸光度是各组分在该波长下吸光度的加和,这一规律称为吸光度的加合性。
系数:∙当介质厚度以 cm 为单位,吸光物质浓度以 g/L 为单位时,用表示,称为吸收系数,其单位为。
这时比尔-朗伯定律表示为。
∙当介质厚度以 cm 为单位,吸光物质浓度以 mol/L 为单位时,用表示,称为摩尔吸收系数,其单位为。
这时比尔-朗伯定律表示为。
两种吸收系数之间的关系为:。
历史物质对光吸收的定量关系很早就受到了科学家的注意并进行了研究。
皮埃尔·布格(Pierre Bouguer)和约翰·海因里希·朗伯(Johann Heinrich Lambert)分别在1729年和1760年阐明了物质对光的吸收程度和吸收介质厚度之间的关系;1852年奥古斯特·比尔(August Beer)又提出光的吸收程度和吸光物质浓度也具有类似关系,两者结合起来就得到有关光吸收的基本定律——布格-朗伯-比尔定律,简称比尔-朗伯定律。
比色分析的基本原理(朗伯-比尔定律,吸光度,消光度,吸光系数)( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数)比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1~10-4mg·L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系光是一种电磁波。
自然是由不同波长(400~700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
有色溶液的颜色是被吸溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,同理,CuSO4收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。
比色分析的基本原理(朗伯-比尔定律,吸光度,消光度,吸光系数)
比色分析是利用物质对特定波长的光的吸收能力差异来确定物质的化学组成和浓度的分析方法。
它的基本原理包括:
1.朗伯-比尔定律
朗伯-比尔定律规定,比色分析的吸光度与样品溶液中的物质
浓度成正比。
即:A=εbc,在此式中,A是吸光度,ε是吸光
系数,b是样品所经过的光路长,c是样品中物质的浓度。
吸
光度是比色分析中最基本的参数。
2.吸光度和消光度
样品的吸光度以表示光线通过一个物质溶液时所吸收的光线强度。
吸收的波长、物质的光学性质以及样品中的吸收物质量均会影响吸光度的大小。
吸光度越大,溶液中吸收剂的浓度就越高。
消光度是物质光吸收能力的另一种表示形式,指的是一束光线通过物质后,剩余光线与初始光线之间发生的光的强度比值。
如果物质对光的吸收很强,则消光度就很大。
3.吸光系数
吸光系数是物质吸收能力的重要参数,根据朗伯-比尔定律,
它是比色反应中衡量物质吸收性的基本参数。
吸光系数是常数,它表示在单位光程内物质吸收光线的能力。
在比色分析中,吸
光系数是通过对标准标样进行测量、计算而来的。
吸光系数越大,物质对特定波长的光的吸收能力就越强,反之则越弱。
伯(Lambert)定律阐述为:光被透明介质吸收的比例与入射光的强度无关;在光程上每等厚层介质吸收相同比例值的光。
目录编辑本段定义朗伯比尔定律又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律〔Bouguer–Lambert–Beer law〕,是光吸收的根本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量根底。
光被吸收的量正比于光程中产生光吸收的分子数目。
公式及参数意义log( Io/I)= εCl (1—4)公式中Io和I分别为入射光及通过样品后的透射光强度;log〔Io/I〕称为吸光度(ab—sorbance)旧称光密度(optical density);C为样品浓度;l为光程;ε为光被吸收的比例系数。
当浓度采用摩尔浓度时,ε为摩尔吸收系数。
它与吸收物质的性质及入射光的波长λ有关。
当产生紫外吸收的物质为未知物时,其吸收强度可用表示:(1—5)公式中C为lOOml溶液中溶质的克数;b为光程,以厘米为单位;A为该溶液产生的紫外吸收;表示lcm光程且该物质浓度为lg/lOOmL时产生的吸收。
朗伯—比尔定律数学表达式A=lg(1/T)=Kbc〔A为吸光度,T为透射比,是透射光强度比上入射光强度c为吸光物质的浓度b 为吸收层厚度〕物理意义当一束平行单色光垂直通过某一均匀非散射的吸光物质时,与其吸光度A与吸光物质的浓度c及吸收层厚度b成正比.朗伯-比耳定律成立的前提(1) 入射光为平行单色光且垂直照射.(2) 吸光物质为均匀非散射体系.(3) 吸光质点之间无相互作用.(4) 辐射与物质之间的作用仅限于光吸收,无荧光和光化学现象发生.比尔-朗伯定律维基百科,自由的百科全书〔重定向自比尔-朗伯定律〕比尔-朗伯定律〔Beer–Lambert law〕,又称比尔定律、比耳定律、朗伯-比尔定律、布格-朗伯-比尔定律〔Bouguer–Lambert–Beer law〕,是光吸收的根本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。
比色分析的基本原理
(朗伯-比尔定律,吸光度,消光度,吸光系数)
( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数)
比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1~10-4mg·L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右
采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系
光是一种电磁波。
自然是由不同波长(400~700nm)的电磁波按一定比例组成
的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把
两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1
中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
有色溶液的颜色是被吸溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,同理,CuSO4收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,
实质上就是比较溶液对它所吸收光的吸收程度。
表8-1列出了溶液的颜色与吸收光颜色的关系。
表8-1 溶液的颜色与吸收光颜色的关系
溶液颜色绿黄橙红紫红紫蓝青蓝青
颜色紫蓝青蓝青青绿绿黄橙红
吸收波长/400~450~480~490~500~560~580~600~650~光760580480650490500600560450nm
二、朗伯-比尔(Lambert-Beer)定律
当一束平行单色光(只有一种波长的光)照射有色溶液时,光的一部分被吸收,一部分透过溶液(图8-2)。
图8-2 光吸收示意图
设入射光的强度为I,溶液的浓度为c,液层的厚度为b,透射光强度为I,则0
(8-1 )
式中lgI/I 表示光线透过溶液时被吸收的程度,一般称为吸光度(A)或消光度(E)。
0因此,上式又可写为:
A=Kcb(8-2)
上式为朗伯-比尔定律的数学表示式。
它表示一束单色光通过溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。
式中,K为吸光系数,当溶液浓度c和液层厚度b的数值均为1时,A=K,即吸光系数在数值上等于c和b均为1时溶液的吸光度。
对于同一物质和一定波长的入射光而言,它是一个常数。
色法中常把称为透光度,用T表示,透光度和吸光度的关比
系如下:
?(8-3)
-1-L·mol表示,其单位是以cmol·Lε为单位时,吸光系数称为摩尔吸光系数,用当
1-1-1E1)表示时,吸光系数称为百分吸光系数,用以质量体积浓度(g·mlc。
当·cm -1·-1。
吸光系数越大,表示溶液对入射光越容易吸收,当ccmm表示,单位是ml·g 有微小变化时就可使A有较大的改变,故测定的灵敏度较高。
一般ε值在103
以上即可进行比色分析。
如果测定某种物质对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图可得一条曲线,即物质对光的吸收曲线,可准确地描述物质对光的吸收情况。
图8-3是几种不同浓度的KMnO4溶液的吸收曲线,溶液对波长525nm附近的绿光吸收量最强,而对其他波长的光吸收较弱。
光吸收程度最大处的波长叫做吸收波长,用λmax表示。
不同浓度的KMnO4溶液所得的吸收曲线,最大吸收波长都一致,只是相应的光被吸收的程度不同。
吸收曲线可作为比色分析中波长选定的依据,测定时一般选择λmax 的单色
光作为入射光。
这样即使被测物质含量较低也可得到较大的吸光度,因而可使分析的灵每度较高。
若所测定的溶液无色,可在测定前加入适当的显色剂,通过与待测成分的化学反应使溶液晱色即可测定此待测成分。
-1-1,若用2cmmol比色皿,为使·cmε=2235L·处例如,已知在525nmKnO
溶液的4所测得的透光率介于20%~65%之间,溶液的浓度范围应是多少?
图8-3 KMnO液的吸收光谱曲线4解:若T=20%
则
-5-1) 则c=-lg65%/2235*2.0=4.19*10(mol·L。