焊接接头和结构的疲劳强度
- 格式:pdf
- 大小:2.23 MB
- 文档页数:57
焊接接头设计中的疲劳分析和强度校核方法引言:焊接接头在工程结构中广泛应用,其质量直接关系到工程的安全和可靠性。
疲劳分析和强度校核是焊接接头设计中必不可少的环节,本文将探讨焊接接头的疲劳分析方法和强度校核方法。
一、焊接接头的疲劳分析方法焊接接头在使用过程中会受到循环加载的作用,长期受力容易引起疲劳破坏。
因此,疲劳分析是焊接接头设计的重要一环。
1. 确定加载条件疲劳分析的第一步是确定加载条件,包括加载幅值和加载频率。
通过实际工况和使用环境,了解焊接接头在使用过程中所受到的加载情况,确定加载条件。
2. 确定应力集中区域焊接接头的应力分布通常不均匀,存在应力集中的区域。
通过有限元分析等方法,确定焊接接头的应力集中区域,为后续的疲劳分析提供准确的应力数据。
3. 确定疲劳寿命曲线根据焊接接头的材料和加载条件,确定疲劳寿命曲线。
疲劳寿命曲线描述了焊接接头在不同加载次数下的寿命,可以用于预测焊接接头的使用寿命。
4. 进行疲劳分析根据确定的加载条件、应力集中区域和疲劳寿命曲线,进行疲劳分析。
通过计算焊接接头在不同加载次数下的应力,与疲劳寿命曲线进行对比,判断焊接接头的疲劳寿命是否满足要求。
二、焊接接头的强度校核方法除了疲劳分析外,强度校核也是焊接接头设计中的重要环节。
强度校核旨在保证焊接接头在正常工作条件下不发生塑性变形和破坏。
1. 确定加载条件强度校核的第一步是确定加载条件,包括静载和动载。
静载是指焊接接头所受到的常规静态加载,动载是指焊接接头所受到的冲击或振动加载。
2. 确定应力分布根据加载条件和焊接接头的几何形状,确定焊接接头的应力分布。
通过有限元分析等方法,计算焊接接头在加载条件下的应力分布。
3. 确定强度校核方法根据应力分布和焊接接头的材料性能,确定强度校核方法。
常用的强度校核方法有极限强度法、应力应变法和断裂力学法等。
4. 进行强度校核根据确定的强度校核方法,进行强度校核。
通过计算焊接接头在加载条件下的应力和应变,与强度校核方法进行对比,判断焊接接头的强度是否满足要求。
提高焊接接头疲劳强度的措施
应力集中是降低焊接接头和结构疲劳强度的主要原因,只有接头选择正确,结构设计合理,焊接工艺完善和焊缝质量良好时,才能保证接头和结构具有较高的疲劳强度。
换言之,只有减少各种不连续的情况,接头和结构才有较高的疲劳强度。
为提高其疲劳强度,一般可采取以下措施。
一、降低应力集中
(一)设计合理的结构形式,减小应力集中,以提高疲劳强度
下图为集中正确的设计方案与错误方案的比较。
图1 几种设计方案正误比较
(二)尽量采用应力集中系数小的焊接接头
由于对接接头的应力集中系数最小,疲劳强度最高,所以应尽量选用对接接头。
图2所示即为角焊缝改为对接焊缝的实例。
图2 角焊缝改为对接焊缝示意图
选用对接焊缝时,还应该注意到只有保证连接件的截面吗突变的情况下采用才是合理的。
图3是一些不合理的对接焊缝的实例。
在这些实例中,由于接头形状有突然改变,端部存在严重的应力集中,故容易在焊缝端部发生疲劳裂纹。
图3 不合理的对接焊缝
此外,虽然一般对接焊缝具有较高的疲劳极限,但如果焊缝质量不高,焊缝中存在严重的缺陷,则疲劳强度将明显下降,甚至于低于搭接焊缝,这点也应引起注意。
(三)在必须采用角焊缝的情况下,应采取综合措施来提高疲劳强度
如果焊趾处采用机械加工,合理选择角接板形状,并保证焊缝根部焊透,等等。
这些措施,都能使应力集中降低,减少残余应力的不利影响。
下表1是部分焊接接头进行综合处理的实例。
试验证明,经过这样综合处理后,低碳钢焊接接头的疲劳强度可提高3~13倍,对于低合金钢来说,效果更为显著。
提高焊接接头疲劳强度的措施
应力集中是降低焊接接头和结构疲劳强度的主要原因,只有接头选择正确,结构设计合理,焊接工艺完善和焊缝质量良好时,才能保证接头和结构具有较高的疲劳强度。
换言之,只有减少各种不连续的情况,接头和结构才有较高的疲劳强度。
为提高其疲劳强度,一般可采取以下措施。
一、降低应力集中
(一)设计合理的结构形式,减小应力集中,以提高疲劳强度
下图为集中正确的设计方案与错误方案的比较。
图1 几种设计方案正误比较
(二)尽量采用应力集中系数小的焊接接头
由于对接接头的应力集中系数最小,疲劳强度最高,所以应尽量选用对接接头。
图2所示即为角焊缝改为对接焊缝的实例。
图2 角焊缝改为对接焊缝示意图
选用对接焊缝时,还应该注意到只有保证连接件的截面吗突变的情况下采用才是合理的。
图3是一些不合理的对接焊缝的实例。
在这些实例中,由于接头形状有突然改变,端部存在严重的应力集中,故容易在焊缝端部发生疲劳裂纹。
图3 不合理的对接焊缝
此外,虽然一般对接焊缝具有较高的疲劳极限,但如果焊缝质量不高,焊缝中存在严重的缺陷,则疲劳强度将明显下降,甚至于低于搭接焊缝,这点也
应引起注意。
(三)在必须采用角焊缝的情况下,应采取综合措施来提高疲劳强度
如果焊趾处采用机械加工,合理选择角接板形状,并保证焊缝根部焊透,等等。
这些措施,都能使应力集中降低,减少残余应力的不利影响。
下表1是部分焊接接头进行综合处理的实例。
试验证明,经过这样综合处理后,低碳钢焊接接头的疲劳强度可提高3~13倍,对于低合金钢来说,效果更为显著。
焊接疲劳实验报告焊接疲劳实验报告引言焊接是一种常见的金属连接方法,广泛应用于工业生产和建筑领域。
然而,焊接接头在长期使用过程中容易发生疲劳破坏,对结构的安全性和可靠性带来潜在威胁。
为了研究焊接接头的疲劳性能,本实验通过设计并进行一系列疲劳试验,以评估焊接接头的寿命和疲劳强度。
实验设备和方法本实验选取了常见的焊接材料和焊接方法,以保证实验结果的可靠性和适用性。
实验所用设备包括焊接机、焊接电极、金属试样等。
首先,将金属试样进行清洁处理,确保焊接接头的质量。
然后,采用电弧焊接方法进行焊接,通过调整焊接电流和电压等参数,控制焊接接头的质量和强度。
接下来,对焊接接头进行疲劳试验,通过施加不同的载荷和循环次数,模拟实际工况下的疲劳破坏过程。
最后,通过观察焊接接头的破坏形态和测量其寿命,得出焊接接头的疲劳强度和可靠性。
实验结果和分析在实验中,我们对不同焊接接头进行了疲劳试验,并记录了其破坏形态和寿命。
实验结果显示,焊接接头的疲劳寿命与载荷和循环次数呈正相关关系。
随着载荷的增加和循环次数的增多,焊接接头的寿命逐渐减小。
此外,我们还观察到焊接接头在疲劳破坏过程中出现了裂纹扩展和断裂现象。
这些裂纹往往从焊接接头的焊缝处开始,逐渐扩展至整个接头区域,最终导致接头的完全破坏。
通过对破坏形态的分析,可以得出焊接接头的疲劳强度和寿命。
讨论与改进焊接接头的疲劳破坏是由于长期受到循环载荷的作用,导致接头材料的微观结构发生变化,进而引发裂纹扩展和断裂。
为了提高焊接接头的疲劳强度和寿命,可以采取以下改进措施。
首先,选择合适的焊接材料和焊接方法,确保焊接接头的质量和强度。
其次,加强焊接接头的表面处理,提高其抗腐蚀和抗疲劳性能。
此外,可以通过增加焊接接头的厚度和强化焊接缝的设计,来提高焊接接头的疲劳强度。
最后,进行定期的检测和维护,及时发现和修复焊接接头的裂纹和缺陷,以延长其使用寿命。
结论通过本次焊接疲劳实验,我们得出了焊接接头的疲劳强度和寿命。
第6章焊接接头和结构的疲劳强度§6-1 概述一、定义结构在变动载荷下工作,虽然应力低于材料的但在较长时间工作后仍发生断裂的现象叫金属的疲劳。
疲劳断裂金属结构失效的一种主要形式,大量统计资料表明,因为疲劳而失效的金属结构约占结构的90%项目实际中的疲劳有多种表现形式:机械疲劳:完全由变动外载荷引起接触疲劳:表面间滚动接触与交变应力共同作用蠕变疲劳:高温和交变应力作用热疲劳:温度变化引起本章讨论的是具有典型意义和普遍意义的材料、焊接接头和结构的机械疲劳情况。
例如:直升飞机起落架,疲劳断裂,裂纹从应力集中很高的角接板尖端开始,断裂时飞机已起落2118次。
再如:载重汽车的纵梁的疲劳裂纹,该梁承受反复的弯曲应力,在角钢和纵梁的焊接处,因应力集中很高而产生裂纹,开裂时该车运行3万公里。
可见,疲劳断裂是在正常的工作应力作用下经较长时间后产生的,也就是说疲劳断裂的结构是在应力低于许用应力的情况下产生的,这使我们联想到结构的低应力脆断,疲劳和脆断都是在低应力作用下产生的,那么它们之间有什么相同点和不同点呢?二、疲劳和脆断的比较疲劳和脆断都是低应力情况下的破坏,那么它们之间有什么异同三、疲劳的类型根据构件所受应力的大小、应力交变频率的高低,通常可以把金属的疲劳分为2类:一类为高速疲劳它是在应力低,应力交变频率高的情况下产生的,也叫应力疲劳,即通常所说的疲劳;另一类为低周疲劳,它是在应力高,工作应力近于或高于材料的屈服强度,应力交变频率低断裂时应力交变周次少(少于102—105次)的情况下产生的疲劳,也叫应变疲劳。
1、高速疲劳(应力疲劳):载荷小(应力小),频率高,裂纹扩展速率小。
2、低周疲劳(应变疲劳):应力高,频率低,裂纹扩展速率大。
焊接结构的疲劳破坏大部分属于第二类:低周疲劳。
§6-2 疲劳限的常用表示方法一、变动载荷(掌握σmax、σmin、σm、σa、r概念)金属的疲劳是在变动载荷下经过一定的循环周次后出现的,所以要首先了解变动载荷的性质。
焊接结构疲劳强度焊接是一种常见的金属连接方法,但焊接接头在使用过程中容易受到疲劳破坏。
焊接结构的疲劳强度是指焊接接头在受到交变载荷作用下能够承受的最大循环载荷次数。
疲劳强度的评估对于焊接结构的设计和使用至关重要。
本文将介绍焊接结构的疲劳破坏机制、影响疲劳强度的因素以及提高焊接接头疲劳强度的方法。
焊接结构的疲劳破坏机制主要包括以下几种:1.脆性断裂:焊接接头容易出现脆性断裂,主要是由于焊接过程中,焊缝和周边热影响区的组织发生变化,使其变得脆性,降低了焊接接头的疲劳强度。
2.裂纹扩展:焊接接头中存在的焊接缺陷(如气孔、夹杂等)是裂纹扩展的起始点。
在交替加载下,焊接接头中的裂纹会逐渐扩展,最终导致疲劳破坏。
影响焊接结构疲劳强度的因素主要包括以下几个方面:1.焊接材料选择:焊接材料的强度和塑性对焊接接头的疲劳强度有着重要影响。
通常情况下,焊接接头的强度应大于被焊接材料的强度,以保证焊接接头的疲劳寿命。
2.焊接工艺参数:焊接过程中的工艺参数(如焊接电流、焊接速度等)会对焊接接头的组织结构和性能产生影响,进而影响焊接接头的疲劳强度。
3.焊接接头形状和几何尺寸:焊接接头的形状和几何尺寸也会影响其疲劳强度。
一般来说,焊接接头的强度随着接头厚度的增加而增加,但是当厚度过大时,会导致应力集中,从而降低疲劳强度。
提高焊接接头疲劳强度的方法主要包括以下几个方面:1.选择合适的焊接方法:不同的焊接方法对焊接接头的疲劳强度有着重要影响。
例如,自动化焊接方法相对于手工焊接方法具有更高的焊接质量和疲劳强度。
2.进行焊接前的准备工作:在焊接前,需要对焊接接头进行彻底的清洁和表面处理,以减少焊接缺陷的产生。
3.优化焊接工艺参数:通过调整焊接的工艺参数,可以改善焊接接头的疲劳强度。
例如,适当增大焊接电流和焊接速度,可以减少焊缝内的局部熔化区,从而提高焊接接头的强度。
4.对焊接接头进行后处理:通过对焊接接头进行热处理或应力释放,可以改善焊接接头的组织结构和性能,提高其疲劳强度。
焊接结构疲劳强度相关知识焊接结构的疲劳强度是指在循环载荷作用下,焊接接头在无限次载荷循环中不会发生破坏的能力。
焊接结构的疲劳强度是较为复杂和重要的一种力学性能,对于确保焊接接头在长期使用中不发生破坏具有重要意义。
下面将介绍与焊接结构疲劳强度相关的各方面知识。
焊接接头的疲劳破坏模式主要有断裂疲劳和表面疲劳。
断裂疲劳是指焊接接头在循环载荷作用下,由于应力集中和裂纹发展所致的破坏。
表面疲劳是指焊接接头表面由于循环载荷的作用而出现的镀层剥落、锈蚀和微小裂纹等破坏形式。
为了保证焊接结构的疲劳强度,需要对焊接接头的设计、工艺、材料选择和检测等方面进行综合考虑。
焊缝设计对焊接结构的疲劳强度具有重要影响。
焊接接头的几何形状和尺寸对疲劳强度的影响很大。
一般来说,焊缝的几何形状应尽量避免应力集中,并应尽量减小焊缝尺寸和长度,以提高疲劳强度。
此外,焊缝的连续性和密度也对疲劳强度具有影响,焊缝的连续性和密度越高,疲劳强度越好。
焊接工艺对焊接结构的疲劳强度具有重要影响。
焊接工艺参数的选择和控制可以影响焊缝的质量和性能,从而影响焊接结构的疲劳强度。
焊接工艺参数主要包括焊接电流、焊接电压、焊接速度、焊接时间和焊接温度等。
合理选择和控制这些参数可以避免焊接接头出现瑕疵和裂纹等缺陷,提高焊接接头的疲劳强度。
焊接材料对焊接结构的疲劳强度具有重要影响。
焊接材料的物理、化学和力学性能会直接影响焊接接头的性能和疲劳强度。
焊接材料应具有良好的疲劳性能,具有较高的强度和韧性,并且能够适应焊接过程中的热变形和应力集中等问题。
一般来说,焊接材料应与母材具有相似的力学性能,以提高焊接接头的疲劳强度。
焊接接头的疲劳检测对焊接结构的疲劳强度评估和维护具有重要意义。
常用的焊接接头疲劳检测方法包括传统的力学性能试验和现代的无损检测技术。
力学性能试验主要通过加载焊接接头并测量其应力应变关系来评估其疲劳强度,但这种方法需要实际加载焊接接头,成本较高。
无损检测技术主要包括超声波检测、磁粉检测、涡流检测和X射线检测等,可以通过对焊接接头进行非破坏性检测来评估其疲劳强度。
影响焊接结构疲劳强的工艺因素焊接结构的疲劳强度是指在循环载荷作用下,焊接结构具有一定的耐久能力。
焊接结构的疲劳强度受到许多工艺因素的影响,下面将详细介绍其中几个重要的工艺因素。
1.焊接材料的选择:材料的疲劳强度是影响焊接结构疲劳强度的决定性因素之一、焊接填充材料和母材的选择应考虑到其抗拉强度、塑性韧性、抗疲劳裂纹扩展性能等指标。
通常情况下,焊接结构中的焊缝区域的疲劳强度较低,因为焊缝区域由于焊接过程中的热变形和固化过程,使得焊接材料的微观组织发生不均匀变化,形成了处于一个相对较弱区域。
2.焊接工艺参数:焊接工艺参数的选择对焊接结构疲劳强度也有很大影响。
焊接电流、焊接电压、焊接速度、焊接温度等工艺参数的调整,可以调节焊接热量的输入和分布,从而改变焊接结构的组织和性能,进而影响焊接结构的疲劳强度。
通常来说,采用较小的焊接电流、较高的焊接电压、适当的焊接速度和温度等参数,可以有效减少焊接结构中的焊缝和热影响区域的疲劳强度。
3.焊接缺陷的控制:焊接过程中的缺陷对焊接结构的疲劳强度产生很大的影响。
焊接缺陷包括气孔、夹杂、未熔合、未焊透、裂纹等。
这些缺陷会导致焊接接头的局部应力集中,在循环载荷作用下,易于发生疲劳裂纹的产生和扩展。
因此,在焊接结构中应通过控制焊接工艺、严格执行操作规范等方法,尽可能减少焊接缺陷的产生,以提高焊接结构的疲劳强度。
4.焊接残余应力的影响:焊接过程中会产生很高的温度梯度和应力梯度,导致焊接结构中产生残余应力。
这些残余应力会影响焊接结构的疲劳强度。
残余应力会使焊接接头内部应力场变得复杂,并进一步影响应力集中的位置和大小。
残余应力一方面会加剧焊接接头的局部应力集中,使其更易于发生疲劳裂纹的产生和扩展;另一方面,残余应力会改变焊接结构的形状和尺寸,从而改变焊接结构的应力分布,进一步影响焊接结构的疲劳强度。
综上所述,焊接结构的疲劳强度受到材料选择、焊接工艺参数、焊接缺陷的控制和残余应力的影响。
影响焊接结构疲劳强度的因素清单目录1.焊接结构的疲劳断裂: (1)2.焊接缺陷引起的应力集中: (2)3.按疲劳破坏的原因分为: (2)3.1.疲劳破坏的原因划分 (2)3.2.材料强度对接头疲劳强度的影响: (2)3.3.焊接缺陷其它因素对接头疲劳强度的影响: (3)3.4.疲劳破坏及影响因素(疲劳裂纹形成过程): (3)3.5.疲劳断口可分成三个区域: (3)3.6.焊接接头疲劳强度计算(疲劳设计方法分类): (3)3.7.静载强度对焊接结构疲劳强度的影响 (3)4.应力集中对疲劳强度的影响 (4)4.1.接头类型的影响 (4)4.2.焊缝形状的影响 (5)4.3.焊接缺陷的影响 (6)5.焊接残余应力对疲劳强度的影响 (7)1.焊接结构的疲劳断裂:•疲劳断裂是指机件在变动载荷下经过较长时间运行发生的失效现象•疲劳断裂呈低应力脆性断裂性质①断裂发生在较低的应力下,其最大循环应力低于抗拉强度,甚至低于屈服强度;②断裂部位无宏观塑性变形;③断裂呈突发性,没有预先征兆;④疲劳断裂在交变应力作用下经过数百次,甚至几百万次循环才发生。
•疲劳断裂呈损伤积累过程①金属材料内部组织首先在局部区域发生变化并受到损伤;②损伤逐渐积累,并到一定程度后发生疲劳断裂;③疲劳断裂三个阶段:疲劳裂纹的形成、扩展、断裂。
•疲劳断裂是焊接钢结构失效的一种主要形式,在焊接结构断裂事故中,疲劳失效约占90%。
如:船舶及海洋工程结构、铁路及公路钢桥以及高速客车转向架等。
2.焊接缺陷引起的应力集中:・焊接缺陷一一应力集中源,对接头疲劳强度的影响程度取决于缺陷的种类、方向和位置。
•缺陷种类:平面状缺陷(如裂纹、未熔合等)体积型缺陷(如气孔、夹渣等)⑴裂纹:如热裂纹、冷裂纹,是严重的应力集中源,大幅度降低结构及接头的疲劳强度。
如裂纹面积约为试件横截面积的10%时,在交变载荷作用下,接头2X106循环寿命的疲劳强度下降了55%~65%.⑵未焊透:◎未焊透并非都是缺陷,有些结构要求接头局部焊透;◎未焊透缺陷:①表面缺陷(单面焊缝);②内部缺陷(双面焊缝);◎未焊透缺陷对疲劳强度的影响不如裂纹严重。
影响焊接结构疲劳强度的工艺因素焊接结构的疲劳强度是指其抵抗在循环加载下产生的疲劳裂纹和破裂的能力。
影响焊接结构疲劳强度的工艺因素主要包括焊缝形状、焊接温度、焊接变形和焊接质量等。
首先,焊缝形状是影响焊接结构疲劳强度的重要因素之一、焊缝形状决定了焊接件的应力分布,进而影响了其疲劳强度。
对于相同的焊接接头,不同的焊缝形状会导致不同的应力集中情况。
例如,边缘间距较大的焊角会导致应力集中于焊缝的临近区域,从而降低焊接结构的疲劳强度。
因此,通过合理设计焊缝形状,可以提高焊接结构的疲劳强度。
其次,焊接温度也对焊接结构疲劳强度有着重要影响。
焊接过程中,焊缝和母材受到高温作用,会引起材料的热变形和相变等。
过高的焊接温度会导致过度热影响区的扩展,使焊接结构的组织和性能发生变化,从而降低其疲劳强度。
因此,控制焊接温度,尽量避免高温对焊接结构的不良影响,可以提高焊接结构的疲劳强度。
焊接变形也是影响焊接结构疲劳强度的关键因素之一、焊接过程中,由于热应力和冷却收缩等因素,焊接结构往往会发生变形。
焊接变形会导致焊缝的应力集中,从而降低焊接结构的疲劳强度。
通过合理设计焊接结构和采用适当的焊接顺序,可以减小焊接变形,提高焊接结构的疲劳强度。
最后,焊接质量也对焊接结构疲劳强度有重要影响。
焊接质量的好坏直接影响焊接接头的强度和疲劳寿命。
焊接缺陷如气孔、夹杂物、裂纹等都会降低焊接结构的疲劳强度。
因此,在焊接过程中,需要采取合适的焊接工艺和控制焊接参数,确保焊接质量,提高焊接结构的疲劳强度。
总之,焊接结构的疲劳强度受到多个工艺因素的影响,包括焊缝形状、焊接温度、焊接变形和焊接质量等。
通过合理控制这些工艺因素,可以提高焊接结构的疲劳强度,确保焊接接头的可靠性和使用寿命。
第6章焊接接头和结构的疲劳强度§6-1 概述一、定义结构在变动载荷下工作,虽然应力低于材料的但在较长时间工作后仍发生断裂的现象叫金属的疲劳。
疲劳断裂金属结构失效的一种主要形式,大量统计资料表明,由于疲劳而失效的金属结构约占结构的90%例如:直升飞机起落架,疲劳断裂,裂纹从应力集中很高的角接板尖端开始,断裂时飞机已起落2118次。
再如:载重汽车的纵梁的疲劳裂纹,该梁承受反复的弯曲应力,在角钢和纵梁的焊接处,因应力集中很高而产生裂纹,开裂时该车运行3万公里。
可见,疲劳断裂是在正常的工作应力作用下经较长时间后产生的,也就是说疲劳断裂的结构是在应力低于许用应力的情况下产生的,这使我们联想到结构的低应力脆断,疲劳和脆断都是在低应力作用下产生的,那么它们之间有什么相同点和不同点呢?二、疲劳和脆断的比较疲劳和脆断都是低应力情况下的破坏,那么它们之间有什么异同三、疲劳的类型根据构件所受应力的大小、应力交变频率的高低,通常可以把金属的疲劳分为2类:一类为高速疲劳它是在应力低,应力交变频率高的情况下产生的,也叫应力疲劳,即通常所说的疲劳;另一类为低周疲劳,它是在应力高,工作应力近于或高于材料的屈服强度,应力交变频率低断裂时应力交变周次少(少于102—105次)的情况下产生的疲劳,也叫应变疲劳。
1、高速疲劳(应力疲劳):载荷小(应力小),频率高,裂纹扩展速率小。
2、低周疲劳(应变疲劳):应力高,频率低,裂纹扩展速率大。
焊接结构的疲劳破坏大部分属于第二类:低周疲劳。
§6-2 疲劳限的常用表示方法一、变动载荷(掌握σmax、σmix、σm、σa、r概念)金属的疲劳是在变动载荷下经过一定的循环周次后出现的,所以要首先了解变动载荷的性质。
变动载荷是指载荷的大小、方向或大小和方向都随时间发生周期性变化(或无规则变化)的一类载荷。
变动载荷的变化是如此的不同,那么该怎样来描述它的特性呢?除了无规则的变动载荷外,变动载荷的特性可用下列几个参量表示:σmax:应力循环内的最大应力σmin:应力循环内的最小应力σm =(σmax + σmin)/2:平均应力σa =(σmax-σmin)/2:应力幅值r =σmix /σmax:应力循环特征系数,r的变化范围是-∞~+1下面介绍几种典型的具有特殊循环特性的变动载荷:1、对称交变载荷应力波形如图,由图可见:这种变动载荷的σmin =-σmax应力循环特征系数r =-1 。
焊接钢结构的疲劳强度在钢铁材料的研究中,人们总是希望材料具有较高的比强度,即以较轻的自身重量去承担较大的负载重量,因为相同重量的结构可以具有极大的承载能力;或是同样的承载能力可以减轻自身的重量。
所以高强钢应运而生,也具有较高的疲劳强度,基本金属的疲劳强度总是随着静载强度的增加而提高。
但是对于焊接结构来说,情况就不一样了,因为焊接接头的疲劳强度与母材静强度、焊缝金属静强度、热影响区的组织性能以及焊缝金属强度匹配没有多大的关系,这个规律适合对接接头、角接接头和焊接梁等各种接头型式。
材料的力学性能对裂纹扩展速率有一定影响,但影响并不大。
在设计承受交变载荷的焊接结构时,试图通过选用较高强度的钢种来满足工程需要是没有意义的。
造成上述结果的原因是由于在接头焊趾部位沿溶合线存在有类似咬边的熔渣楔块缺陷。
该尖锐缺陷是疲劳裂纹开始的地方,相当于疲劳裂纹形成阶段,因而接头在一定应力幅值下的疲劳寿命,主要由疲劳裂纹的扩展阶段决定。
这些缺陷的出现使得所有钢材的相同类型焊接接头具有同样的疲劳强度,而与母材及焊接材料的静强度关系不大。
1、接头类型的影响焊接接头的形式主要有:对接接头、十字接头、T 形接头和搭接接头,在接头部位由于传力线受到干扰,因而发生应力集中现象。
对接接头的力线干扰较小,因而应力集中系数较小,其疲劳强度也将高于其他接头形式。
但实验表明,对接接头的疲劳强度在很大范围内变化,这是因为有一系列因素影响对接接头的疲劳性能的缘故。
如试样的尺寸、坡口形式、焊接方法、焊条类型、焊接位置、焊缝形状、焊后的焊缝加工、焊后的热处理等均会对其发生影响。
具有永久型垫板的对接接头由于垫板处形成严重的应力集中,降低了接头的疲劳强度。
这种接头的疲劳裂纹均从焊缝和垫板的接合处产生,而并不是在焊趾处产生,其疲劳强度—般与不带垫板的最不佳外形的对接接头的疲劳强度相等。
十字接头或T 形接头在焊接结构中得到了广泛的应用。
在这种承力接头中,由于在焊缝向基本金属过渡处具有明显的截面变化,其应力集中系数要比对接接头的应力集中系数高,因此十字或T 形接头的疲劳强度要低于对接接头。
1焊接接头特有的疲劳属性金属疲劳的研究,要回答“裂纹从何处萌生?”,而对焊接接头而言,它没有裂纹萌生过程,焊缝上“大于零的”的微裂纹总是有的,问题是观察的放大镜的倍数是否足够大。
金属疲劳研究的另一个要回答的问题是,“裂纹沿着哪个方向扩展?”,对焊接接头而言,它的扩展模式是明确的,裂纹要么从焊趾沿板的厚度方向扩展,要么从焊根向焊喉方向扩展。
与金属疲劳不同,焊接接头中有残余应力,但是,不论其大与小,也不论其分布如何复杂,它是自平衡的,与外载荷无关。
2疲劳评估时如何确定应力一般使用有限元方法与焊接分级的方法相配合进行疲劳评估。
2.1名义应力法BS 7608以材料力学范畴中的名义应力来描述与定义焊接接头S-N 曲线。
对于不同的接头类型(如喇叭口焊缝和对接焊缝)、载荷形式(如小的循环张力或者弯曲),就需要用不同的疲劳S-N 曲线。
BS 7608编入的设计曲线,对于给定焊接接头,严格说,当分级接头上的名义应力可以用材料力学教科书的内容计算时才可用。
在分析现实焊件时,名义应力的定义是很难确定的。
如果简单的名义应力的定义不能用来表达易出现疲劳位置的应力状态,那么,可靠的疲劳寿命设计或寿命预测就无法实现。
2.2热点应力法由于在焊趾处这样容易出现疲劳的位置的应力很难确定,以及应力的严重网格敏感性,有人就假设认为临近焊趾处的存在一些特定的位置,在这些位置处可以用表面外推法获得焊趾处的热点应力。
由于缺乏同表面应力和外推应力的焊趾应力状态相关联的合理可靠的力学基础,这些方法只能作为一些经验主义的应力确定过程来看待。
此外,在确定焊趾热点应力时用其它给定外推程序,一般也会遇到网格尺寸和单元类型敏感性问题。
2.3结构应力法在焊接件的疲劳评估时,如何以一致的方式确定应力?多少年来,工程中的S-N 曲线一直采用名义应力表示(不可将它与用热点应力表示的S-N 曲线混为一谈,比较而言,后者很难获得),其历史原因是,研究总是从简单问题开始,名义应力可以用材料力学的公式计算,或者用贴片的方法测试,对简单的焊接接头而言,名义应力是合适的,虽然人们知道疲劳破坏总是发生在在焊缝上,但是,如何在焊缝上获得那些应力,却是困难的。
第6章焊接接头和结构的疲劳强度§6-1 疲劳破坏及特性一、疲劳破坏疲劳破坏是焊接金属结构的一种主要失效形式。
材料在交变或波动载荷作用下,虽然工作应力的最大值小于材料的屈服极限,但由于材料局部造成某种程度的永久变形,从而产生裂纹并最终断裂。
在循环应力、拉伸应力和塑性应变的共同作用下形成的,一般来说,循环应力造成疲劳裂纹产生,拉伸应力造成扩展。
二、疲劳断裂分类1.按疲劳破坏的原因分为:腐蚀疲劳;热疲劳;机械疲劳。
2.按应力大小和应力循环次数分为(1)低周高应力疲劳:作用的应力超过弹性范围,承受远高于屈服极限的循环载荷。
疲劳循环次数小于104~105;(2)高周低应力疲劳:公称循环应力小于材料的屈服极限,疲劳破坏的应力循环次数大于104~105。
应力场强度因子K处于弹性范围,塑性变形仅局限在很小的局部区域。
高周低应力疲劳其应力应变曲线如图7-1(a)所示,一次拉伸的应力-应变曲线为OA,用相图6-1 应力应变循环图图6-2 大变形后卸载图7-3 疲劳裂纹扩展示意图 同的试样进行一次压缩,应力-应变曲线为OB 。
低周高应力疲劳其应力应变曲线如图7-1(b)所示,拉伸时应力应变曲线由O 点到A 点,之后进行压缩,应力应变曲线由A 点到B 点,再进行拉伸,应力应变曲线由B 点回到A 点,完成一次应力应变循环。
一次应力应变循环卸载后,产生了塑性应变εp 和弹性应变εe ,如图7-2所示。
总应变为:ε=εp +εe 三、疲劳断裂过程及断口特征1.疲劳断裂过程疲劳破坏的实质就是疲劳裂纹的成核和长大。
其过程分为三个阶段,如图7-3所示。
(1)疲劳形核:疲劳裂纹首先在应力最高、强度最弱的基体上形成。
夹渣物和基体晶面开裂,滑移带开裂,孪晶和晶界开裂。
该区域不大,最多为2~5晶粒范围。
当疲劳裂纹的核心一旦在试样表面滑移带或缺陷出晶界上形成后,立即沿滑移带的主滑移面向金属内部扩展,此滑移面的走向大致与主应力成450交角。