汽车连杆加工工艺
- 格式:doc
- 大小:501.00 KB
- 文档页数:55
连杆的机械加工工艺分析简介连杆是一种重要的机械零件,常用于内燃机、汽车发动机等机械设备中。
其作用是将来自活塞的运动转化为旋转运动,从而驱动其他部件工作。
为了确保连杆的质量和性能,需要经过精细的机械加工工艺。
本文将对连杆的机械加工工艺进行分析,包括工艺流程、加工方法、加工工具等方面的内容。
通过对机械加工工艺的详细分析,可以更好地理解和掌握连杆的加工过程,提高加工效率和产品质量。
工艺流程连杆的机械加工工艺流程大致包括以下几个步骤:1.材料准备:选择合适的连杆材料,并对其进行切割,得到合适尺寸的工件。
2.粗加工:使用车床等设备进行粗加工,包括车削和钻孔等操作。
车削是将连杆材料切削成所需形状和尺寸的工艺,钻孔是在工件上钻孔,以便后续操作。
3.热处理:对粗加工后的工件进行热处理,以提高其硬度和强度。
常用的热处理方法包括淬火、回火等。
4.精加工:在热处理后,使用磨床等设备进行精加工。
磨床可以对工件进行精确的研磨和修整,以获取高精度的表面和尺寸。
5.总检和装配:对精加工后的工件进行检验,确保其质量达到要求。
然后进行组装,将连杆与其他零件连接,组成完整的机械装置。
加工方法连杆的加工方法主要包括车削、铣削、钻削、磨削等。
车削车削是将材料切削成所需形状和尺寸的加工方法。
在连杆的加工中,常用的车削方法有以下几种:•面车削:将工件放置在车床上,使用车刀从工件的外表面切削,得到所需的外形和尺寸。
•长孔车削:通过在车床上旋转工件,并使用特制刀具将长孔切削出来。
•内孔车削:通过在车床上旋转工件,并使用特制刀具将内孔切削出来。
铣削是通过刀具在工件上进行旋转和移动,将工件上的材料切削下来,从而得到所需形状和尺寸的加工方法。
在连杆的加工中,铣削常用于切削连杆的端面和孔口。
钻削钻削是通过钻头在工件上旋转并推进,将工件上的材料切削下来,从而得到所需孔形和尺寸的加工方法。
在连杆的加工中,钻削主要用于加工连杆上的孔。
磨削磨削是利用磨料颗粒切削工件的加工方法。
汽车连杆加工工艺及夹具设计1. 前言嘿,朋友们!今天我们来聊聊汽车连杆的加工工艺和夹具设计。
这可不是枯燥无味的机械话题,咱们就像聊聊天一样,把它变得生动有趣。
汽车连杆呢,简单来说,就是发动机和活塞之间的小桥梁。
它的工作就像一个努力的小推手,把发动机的动力传递给轮子,让你的车子开得飞快。
不过,别以为连杆就只是个简单的零件哦,背后可是有一套复杂的加工工艺和夹具设计在支撑呢。
2. 汽车连杆的加工工艺2.1 材料的选择首先,连杆的材料选择可是一门大学问。
通常用铝合金和高强度钢,为什么呢?因为它们既轻又强,像个健身教练,既能减轻车重,又能承受巨大的压力。
想象一下,如果连杆用的是塑料,那汽车一加速,连杆可能就会“咔嚓”一声散架,谁敢上路啊?所以,材料得选得好,才能保证车子的安全。
2.2 加工工艺流程接下来就是加工工艺流程了,听起来很高大上,其实就是把材料变成连杆的步骤。
一般来说,这个流程包含了锻造、铣削、钻孔和热处理等。
想象一下,锻造就像是在锻造一把利剑,经过高温高压的锤炼,连杆逐渐成型;接着铣削和钻孔,简直就像是在给连杆做美容,修整得光滑又完美,最后热处理则是给它来个“热身”,增强它的强度。
看吧,这整个过程就像是一个轮回,变得越来越完美。
3. 夹具设计的重要性3.1 夹具的角色好啦,聊完了连杆的加工,我们再来看看夹具。
这玩意儿就像是连杆加工过程中的“好帮手”,没有它,工件就像没有了灵魂。
夹具的作用就是把连杆稳稳地固定住,让加工过程中的每一步都能精确无误。
想想,如果夹具不牢靠,那加工的时候岂不是跟在跳舞?摇摇晃晃的,结果可想而知,可能就要“事与愿违”了。
3.2 夹具的设计原则在设计夹具的时候,有几个原则必须牢记。
第一,稳定性!夹具要稳如老狗,保证工件不晃动。
第二,方便性,夹具要容易装卸,省得工人们像解谜一样折腾半天。
第三,通用性,设计得尽量通用,这样能在多个工序中使用,节省成本和时间。
咱们的目标就是让夹具像一位优秀的团队成员,默契配合,事半功倍。
连杆体机械加工工艺规程与小头钻孔夹具设计连杆体机械加工工艺规程与小头钻孔夹具设计连杆体是汽车发动机的重要组成部分之一,它连接了活塞和曲轴,使得活塞通过连杆来转换为曲轴的旋转。
连杆体的精度和质量对发动机的性能和寿命具有重要影响,因此必须经过严格的机械加工过程。
本文将介绍连杆体的加工工艺规程和小头钻孔夹具的设计。
一、加工工艺规程1.材料准备连杆体一般采用高强度合金钢或铸铁材料,加工前必须进行材料检验和确定材料性能。
2.车削(1)粗车:连杆体粗车时,首先需要进行材料去残余应力处理,然后根据设计图纸的尺寸进行切削,达到加工公差要求。
此时需要注意刀具的选择和切削参数的设置。
(2)细车:在粗车完成后,需要经过细车处理。
细车时需要注意保证加工表面的精度和光洁度。
为达到高精度要求,可采用数控车床进行加工。
3.磨削精度要求更高的情况下,需要进行磨削加工。
首先进行车磨双道的精密外圆磨削,然后进行车磨双道的内圆磨削,最后进行小孔和键槽的磨削。
4.平面及孔加工若要在连杆体上加工平面及孔,可采用数控铣床和钻床等设备进行加工。
加工时需要严格控制加工参数,保证平面和孔的中心连续性和精度。
5.质量检测在加工完成后,需要进行质量检测,检查加工精度和尺寸是否符合设计要求,以及其他性能指标是否合格。
二、小头钻孔夹具设计对于一些结构较为复杂的连杆体,如工字形连杆,往往需要进行小头钻孔加工。
在这种情况下,需要设计一种小头钻孔夹具来保证加工质量和效率。
小头钻孔夹具结构图如下:小头钻孔夹具由基座、卡板、夹紧耳、垂直板等部分组成。
其中,卡板采用可拆卸式结构设计,方便清理和更换。
夹紧耳设计成V形,以保证连接精度和夹紧力。
垂直板和基座采用定位销连接,以保证夹具的重复定位精度。
在使用小头钻孔夹具时,需要先确定加工位置和夹紧力,然后安装和固定夹紧耳。
夹紧耳采用顶紧式夹紧,在夹紧过程中要注意加大夹紧力,以确保零件牢固夹紧,不易滑动或旋转。
小头钻孔夹具使用完成后,要及时清理夹具残留的切屑和润滑油,以保证下次使用的加工质量和效率。
连杆制造工艺过程连杆是发动机中的重要零部件之一,它连接活塞和曲轴,将活塞的上下运动转化为曲轴的旋转运动,从而驱动汽车的运动。
连杆的制造工艺过程非常复杂,需要经过多道工序才能完成。
本文将详细介绍连杆制造工艺过程。
一、材料准备连杆的材料通常是高强度合金钢,如40Cr、35CrMo等。
在制造连杆之前,需要对材料进行热处理,以提高其强度和硬度。
热处理包括淬火和回火两个过程,淬火可以使材料达到最高硬度,回火可以使材料的韧性和韧度得到提高。
二、锻造锻造是制造连杆的第一道工序。
在锻造过程中,将经过热处理的材料放入锻造机中,通过锤击和挤压等方式将其变形成为连杆的初步形状。
锻造可以使材料的晶粒细化,提高其强度和韧性。
三、粗加工粗加工是制造连杆的第二道工序。
在粗加工过程中,将锻造好的连杆进行切割、铣削、钻孔等加工,使其达到设计要求的尺寸和形状。
粗加工的目的是为了为后续的精加工和热处理做好准备。
四、热处理热处理是制造连杆的重要工序之一。
在热处理过程中,将粗加工好的连杆放入炉中进行加热和冷却,以改变其组织结构和性能。
热处理的方式包括正火、淬火、回火等,不同的热处理方式可以使连杆达到不同的硬度和韧性。
五、精加工精加工是制造连杆的关键工序之一。
在精加工过程中,将经过热处理的连杆进行车削、磨削、拉削等加工,使其达到高精度和高表面质量的要求。
精加工的目的是为了保证连杆的精度和可靠性。
六、平衡平衡是制造连杆的最后一道工序。
在平衡过程中,将精加工好的连杆放入平衡机中进行平衡测试,以保证其在高速旋转时不会产生过大的振动和噪音。
平衡的目的是为了保证连杆的安全性和可靠性。
连杆制造工艺过程非常复杂,需要经过多道工序才能完成。
每个工序都非常重要,任何一个环节出现问题都可能导致连杆的质量不达标,从而影响发动机的性能和寿命。
因此,在制造连杆时,必须严格按照工艺流程进行操作,确保每个工序都符合要求,才能制造出高质量的连杆。
连杆加工的工艺流程连杆加工的工艺流程是:拉大小头两端面——粗磨大小头两端面→拉连杆大小头侧定位面→拉连杆盖两端面及杆两端面倒角→拉小头两斜面→粗拉螺栓座面,拉配对打字面、去重凸台面及盖定位侧面→粗镗杆身下半圆、倒角及小头孔→粗镗杆身上半圆、小头孔及大小头孔倒角→清洗零件→零件探伤、退磁→精铣螺栓座面及R5圆弧→铣断杆、盖→小头孔两斜端面上倒角→精磨连杆杆身两端面→加工螺栓孔→拉杆、盖结合面及倒角→去配对杆盖毛刺→清洗配对杆盖→检测配对杆盖结合面精度→人工装配→扭紧螺栓→打印杆盖配对标记号→粗镗大头孔及两侧倒角→半精镗大头孔及精镗小头衬套底孔→检查大头孔及精镗小头衬套底孔精度→压入小头孔衬套→称重去重→精镗大头孔、小头衬套孔→清洗→最终检查→成品防锈。
连杆的工艺特点(1)连杆体和盖厚度不一样,改善了加工工艺性。
连杆盖厚度为31mm,比连杆杆厚度单边小3.8mm,盖两端面精度产品要求不高,可一次加工而成。
由于加工面小,冷却条件好,使加工振动和磨削烧伤不易产生。
连杆杆和盖装配后不存在端面不一致的问题,故连杆两端面的精磨不需要在装配后进行,可在螺栓孔加工之前。
螺栓孔、轴瓦对端面的位置精度可由加工精度直接保证,而不会受精磨加工精度的影响。
(2)连杆小头两端面由斜面和一段窄平面组成。
这种楔形结构的设计可增大其承压面积,以提高活塞的强度和刚性。
在加工方面,与一般连杆相比,增加了斜面加工和小头孔两斜面上倒角工序;用提高零件定位及压头导向精度来避免衬套压偏现象的发生,但却增加了压衬套工序加工的难度。
(3)带止口斜结合面。
连杆结合面结构种类较多,有平切口和斜切口,还有键槽形、锯齿形和带止口的。
该连杆为带止口斜结合面.精加工基准采用了无间隙定位方法,在产品设计出定位基准面。
在连杆杆和总成的加工中,采用杆端面、小头顶面和侧面、大头侧面的加工定位方式;在螺栓孔至止口斜结合面加工工序的连杆盖加工中,采用了以其端面、螺栓两座面、一螺栓座面的侧面的加工定位方法。
汽车连杆加工工艺及夹具设计汽车连杆是发动机中非常重要的零部件,它连接活塞和曲轴,传递活塞的运动力到曲轴上,是发动机正常运转的关键。
因此,汽车连杆的加工工艺及夹具设计显得尤为重要。
本文将就汽车连杆的加工工艺及夹具设计进行详细介绍。
汽车连杆的加工工艺是指对汽车连杆进行加工时所采用的工艺方法和步骤。
汽车连杆的加工工艺主要包括锻造、粗加工、精加工和热处理等环节。
首先是锻造环节,汽车连杆的锻造是通过将金属坯料放入锻造模具中,利用冲击力和压力使其产生塑性变形,从而得到所需形状和尺寸的加工方法。
然后是粗加工环节,汽车连杆的粗加工主要包括车削、铣削和钻削等工艺,通过这些工艺将锻造后的汽车连杆进行初步的成型。
接着是精加工环节,汽车连杆的精加工主要包括磨削、镗削和拉削等工艺,通过这些工艺将汽车连杆进行精细加工,以满足其精度和表面质量的要求。
最后是热处理环节,汽车连杆的热处理是为了提高其强度和硬度,使其具有良好的机械性能。
在汽车连杆的加工工艺中,夹具设计起着至关重要的作用。
夹具是用来固定工件,保证工件在加工过程中的位置精度和加工质量的工具。
汽车连杆的加工对夹具的设计要求非常高,因为汽车连杆的形状复杂,加工难度大,所以需要设计出合理的夹具来保证加工质量和效率。
首先,夹具的选择要根据汽车连杆的形状和加工工艺来确定。
汽车连杆的形状复杂,需要设计出符合其形状的夹具,以保证汽车连杆在加工过程中的稳定性和精度。
其次,夹具的刚性和稳定性是夹具设计的关键。
汽车连杆在加工过程中需要承受较大的切削力和振动力,所以夹具的刚性和稳定性要能够满足这些要求。
再次,夹具的使用要方便和安全。
夹具的设计要考虑到操作人员的使用习惯和安全要求,使其能够方便地安装和拆卸,并保证操作人员的安全。
最后,夹具的成本也是夹具设计的考虑因素之一。
夹具的设计要尽量减少成本,提高经济效益。
综上所述,汽车连杆的加工工艺及夹具设计是汽车发动机制造中非常重要的环节。
合理的加工工艺和夹具设计能够保证汽车连杆的加工质量和效率,提高汽车发动机的性能和可靠性。
汽车连杆加工工艺的设计
汽车连杆加工工艺的设计需要考虑以下几个方面:
1. 材料选择:汽车连杆通常采用高强度的合金钢材料,如精炼钢、锻造钢等,在设计时需要根据使用条件和负载要求选择合适的材料。
2. 制造工艺:汽车连杆的制造工艺通常包括锻造、切削和热处理等工序。
锻造是首选的加工方法,可以通过热锻或冷锻实现连杆的形状和尺寸。
切削工序主要用于进行孔的加工和平面的精加工。
热处理是为了提高材料的硬度和强度,常见的热处理方法有淬火和回火。
3. 连杆结构设计:连杆的结构设计要考虑连杆的强度、刚度和重量等因素。
一般来说,连杆采用H形或I形截面设计,以提供足够的刚度和强度。
4. 表面处理:为了提高连杆的耐磨性和耐腐蚀性,常常需要进行表面处理,如喷涂润滑油、镀铬、磨削等。
5. 质量控制:在工艺设计过程中需要对加工过程进行控制,以确保产品的质量。
常见的质量控制方法包括材料的估算和选择、工艺参数的确定和控制、加工过程中的检测和检验等。
总之,汽车连杆加工工艺的设计需要综合考虑材料选择、制造工艺、连杆结构设
计、表面处理和质量控制等因素,以确保连杆的性能和品质。
连杆零件的机械加工工艺规程和专用夹具设计一、前言连杆是发动机中重要的零件之一,其作用是将活塞的上下运动转化为曲轴的旋转运动。
因此,连杆的质量和加工精度直接影响发动机的性能和寿命。
本文将介绍连杆零件的机械加工工艺规程和专用夹具设计。
二、工艺流程1. 材料准备选用高强度合金钢作为连杆零件的材料。
在进行机械加工之前,需要对原材料进行热处理,以提高其硬度和强度。
2. 粗加工(1)锯切将原材料锯成长度略大于实际尺寸的毛坯。
(2)车削采用车床进行粗加工,先将毛坯两端面加工成平行面,然后进行外圆柱面、内孔等基本形状的车削。
(3)铣削采用立式铣床进行粗加工,主要是对连杆头部进行铣削,并开出油孔等结构。
3. 精密加工(1)磨削采用平面磨床和圆柱磨床对外圆柱面、内孔和连杆头等进行精密加工。
(2)钻孔采用钻床对油孔等细小结构进行加工。
(3)拉削采用拉床对轴向槽、键槽等进行加工。
4. 热处理将加工好的连杆零件进行热处理,以提高其硬度和强度。
通常采用淬火和回火的方式进行处理。
5. 组装将经过热处理的连杆零件组装到曲轴上,并进行调整,以确保其与其他零件的配合精度和运动平稳性。
三、专用夹具设计为了保证连杆零件在机械加工过程中的精度和稳定性,需要设计专用夹具。
下面介绍一种常见的夹具设计方案:1. 夹具整体结构该夹具主要由夹紧块、支撑块、定位块、压板等组成。
其中,夹紧块负责固定毛坯,支撑块负责支撑毛坯,在车削时起到了很好的辅助作用;定位块则是为了确保毛坯在夹具中的位置准确;压板则是为了防止毛坯在车削时发生移动。
2. 夹具夹紧方式该夹具采用机械夹紧的方式,通过螺旋压板来实现对毛坯的夹紧。
在进行车削等加工时,需要根据不同工序进行调整,以确保毛坯的稳定性和精度。
3. 夹具使用注意事项在使用该夹具时,需要注意以下几点:(1)夹具的各个部位需要经常清洗和润滑,以保证其正常运作。
(2)在进行车削等加工时,需要根据不同工序进行调整,并且要保证毛坯与夹具之间的接触面积充分。
汽车发动机连杆生产工艺连杆的结构及作用连杆是较细长的变截面非圆形杆件,其杆身截面从大头到小头逐步变小以适应在工作中承受的急剧变化的动载荷。
它是由连杆大头、杆身和连杆小头三部分组成,连杆大头是分开的,一半与杆身为一体,一半为连杆盖涟杆盖用螺栓和螺母与曲轴主轴颈装配在一起。
连杆是连接活塞和曲轴,并将活塞所受作用力传给曲轴,将活塞的往复运动转变为曲轴的旋转运动。
它是汽车发动机主要的传动构件之一,它是把作用于活塞顶部的膨胀气体压力传给曲轴,使活塞的往复直线运动变为曲轴的回转运动,以输出功率。
工件材料和毛坯连杆的材料大多采用高强度的精选45钢、40Dr钢等,并经调质处理以改善切削性能和提高抗冲击能力,硬度要求45钢为HB217~ 293,40Dr为HB223~280。
也有采用球墨铸铁和粉末冶金技术的,可降低毛坯成本。
钢制连杆的毛坯一般都是锻造生产,其毛坯形式有两种:一种是体、盖分开锻造;另一种是将体、盖锻成一体,在加工过程中再切开或采用胀断工艺将其胀断。
另外为避免毛坯出现缺陷,要求对其进行100%的硬度测量和探伤。
连杆加工工艺过程1.定位及夹紧1)粗基准的正确选择和初定位夹具的合理设计是加工工艺中至关重要的问题。
在拉连杆大小头侧定位面时,采用连杆的基准端面及小头毛坯外圆三点和大头毛坯外圆二点粗基准定位方式。
这样保证了大小头孔和盖上各加工面加工余量均匀,保证了连杆大头称重去重均匀,保证了零件总成最终形状及位置。
2)在连杆杆和总成的加工中,采用杆端面、小头顶面和侧面、大头侧面的加工定位方式。
在螺栓孔至止口斜结合面加工工序的连杆盖加工中,采用了以其端面、螺栓两座面、一螺栓座面的侧面的加工定位方法。
这种重复定位精度高且稳定可靠的定位、夹紧方法,可使零件变形小,操作方便,能通用于从粗加工到精加工中的各道工序。
由于定位基准统一,使各工序中定位点的大小及位置也保持相同。
这些都为稳定工艺、保证加工精度提供了良好的条件。
2.加工顺序的安排和加工阶段的划分连杆的尺寸精度、形状精度和位置精度的要求都很高,但刚度又较差,容易产生变形。
连杆加工工艺及夹具设计目录摘要第一章汽车连杆加工工艺1.1 连杆旳构造特点1.2 连杆旳主要技术要求1.2.1 大、小头孔旳尺寸精度、形状精度1.2.2 大、小头孔轴心线在两个相互垂直方向旳平行度1.2.3 大、小头孔中心距1.2.4 连杆大头孔两端面对大头孔中心线旳垂直度1.2.5 大、小头孔两端面旳技术要求1.2.6 螺栓孔旳技术要求1.2.7 有关结合面旳技术要求1.3连杆旳材料和毛坯1.4连杆旳机械加工工艺过程1.5 连杆旳机械加工工艺过程分析1.5.1 工艺过程旳安排1.5.2 定位基准旳选择1.5.3 拟定合理旳夹紧措施1.5.4 连杆两端面旳加工1.5.5 连杆大、小头孔旳加工1.5.6 连杆螺栓孔旳加工1.5.7 连杆体与连杆盖旳铣动工序1.5.8 大头侧面旳加工1.6 连杆加工工艺设计应考虑旳问题1.6.1工序安排1.6.2定位基准1.6.3夹具使用1.7 切削用量旳选择原则1.7.1 粗加工时切削用量旳选择原则1.7.2 精加工时切削用量旳选择原则1.8 拟定各工序旳加工余量、计算工序尺寸及公差1.8.1 拟定加工余量1.8.2 拟定工序尺寸及其公差1.9 计算工艺尺寸链1.9.1 连杆盖旳卡瓦槽旳计算1.9.2 连杆体旳卡瓦槽旳计算1.10 工时定额旳计算1.10.1 铣连杆大小头平面1.10.2 粗磨大小头平面1.10.3 加工小头孔1.10.4 铣大头两侧面1.10.5、扩大头孔1.10.6 铣开连杆体和盖1.10.7 加工连杆体1.10.8 铣、磨连杆盖结合面1.10.9 铣、钻、镗连杆总成体1.10.10 粗镗大头孔1.10.11 大头孔两端倒角1.10.12精磨大小头两平面1.10.13 半精镗大头孔及精镗小头孔1.10.14精镗大头孔1.10.16 小头孔两端倒角1.10.17 镗小头孔衬套1.10.18 珩磨大头孔1.11 连杆旳检验1.11.1 观察外表缺陷及目测表面粗糙度1.11.2 连杆大头孔圆柱度旳检验1.11.3 连杆体、连杆上盖对大头孔中心线旳对称度旳检验1.11.4 连杆大小头孔平行度旳检验1.11.5 连杆螺钉孔与结合面垂直度旳检验第二章夹具设计2.1 铣剖分面夹具设计2.1.1问题旳指出2.1.2 夹具设计1) 定位基准旳选择2) 夹紧方案3) 夹详细设计4) 切削力及夹紧力旳计算5) 定位误差分析2.2 扩大头孔夹具2.2.1 问题旳指出2.2.2 夹具设计1) 定位基准旳选择2) 夹紧方案3) 夹详细设计4) 切削力及夹紧力旳计算5) 定位误差分析结束语:参照文件:附件图纸摘要连杆是柴油机旳主要传动件之一,本文主要论述了连杆旳加工工艺及其夹具设计。
汽车连杆加工工艺及夹具设计
汽车连杆是连接活塞和曲轴的重要组成部分,在汽车发动机中
起着至关重要的作用。
汽车连杆加工工艺是一项较为复杂的任务,
需要进行多道工序和精密的加工过程。
以下是汽车连杆加工工艺及
夹具设计的一些基本内容:
工艺流程:
1. 靠边切割:将整体铸造的连杆切割成两截,即连杆头和大端。
2. 精密车削:将大端加工成标准直径,并进行精密车削加工。
3. 钻孔:在连杆头和大端上进行孔的钻削。
大端孔是针对曲轴
销的,连杆头孔则是为了润滑油的通道。
4. 镗孔:对孔进行精度要求较高的活塞销孔进行钻削。
5. 磨削:将大端和连杆头加工成标准尺寸,同时进行表面质量
处理和精度调整。
6. 表面处理:对大端和连杆头进行磨削和抛光等表面处理。
夹具设计:
夹具是汽车连杆加工过程中的关键工具。
一般而言,汽车连杆
夹具主要由两部分组成:定位部分和压紧部分。
定位部分:用于将待加工的汽车连杆放置到加工位置,并确定
其相对位置、方向和位置精度。
压紧部分:用于将待加工的汽车连杆固定在夹具上,并保持加
工过程中的稳定性和精度。
特别的,对于汽车连杆的加工,还需要制定严格的环境要求和
材料要求,以确保加工精度和质量。
此外,还需要对加工过程中的
刀具、切削速度、切削深度和切削角度等参数进行严格控制和调整,以提高加工效率和精度。
汽车连杆的加工工艺流程
一、施工前准备工作:
1. 检查机床是否能正常运转,加工设备是否齐全可用。
2. 根据产品图纸和工艺参数准备好所需的原材料。
3. 洁净加工区域,确保环境清洁。
二、主要加工工艺:
1. 原材料粗采型:采用锤冲模具对原材料进行粗型采样,得到近似的尺寸。
2. 磨削:采用车削机对粗采型的零件进行精磨,得到尺寸公差为±0.02的制成品。
3. 冷焊:将两个零部件进行冷焊,形成连杆主体。
4. 橡胶缓冲装配:在连杆两端安装橡胶缓冲装置。
5. 表面处理:采用砂纸擦亮连杆表面,进行除锈和脱油处理。
6. 集成测试:对加工好的连杆进行机能性能测试。
7. 包装运输:对合格的产品进行塑料或纸包装,便于运输。
三、库存管理:按产品数量和时间要求及时补充原材料,合格品按产品
需求分类存储。
连杆加工工艺详解工艺特点:(1)大头孔加工。
传统工艺一般是切断后对大头孔进行拉削,或者在切断前将它加工成椭圆形,因为是断续加工,振动大、刀具磨损快、刀具消耗大。
而涨断工艺将大头孔加工成圆形。
(2)连杆体、盖分离。
传统工艺采用拉断(或铣断、锯断)法,而涨断工艺是在螺栓孔加工之后涨断。
采用涨断工艺后,连杆与连杆盖的分离面完全啮合,改善了连杆盖与连杆分离面的结合质量,所以分离面不需要进行拉削加工和磨削加工。
由于分离面完全啮合,将连杆与连杆盖装配时,也不需要增加额外的定位,如螺栓孔定位(或定位环孔),只要两枚螺栓拧紧即可,这样可省去螺栓孔的精加工。
(3)结合面的加工。
传统工艺是在拉断后还要磨削结合面,且连杆体/盖的装配定位靠两个螺栓孔中的定位孔和螺栓的定位部分配合来定位,所以对螺栓孔与其分离面的垂直度和两螺栓孔的中心距尺寸都有严格的要求。
尺寸误差导致连杆与连杆盖装配后有残余应力留在连杆总成。
(4)螺栓孔加工。
涨断工艺加工的连杆体/盖的装配定位是以涨断断面作定位,而传统工艺加土的连杆体/盖的装配定位靠两个螺栓孔中的定位孔和螺栓的定位部分配合来定位,所以对螺栓孔和螺栓的精度要求都很高。
采用涨断工艺加工连杆时,精度要求大大降低,两个螺栓孔可不同时加工,这样为多品种加工创造了便利条件。
连杆大头孔采用涨断工艺后,它们的分离面是***完全的啮合,所以没有分离面及螺栓孔加工误差等影响。
(5)螺栓装配。
通过带振动式储料器的螺栓进料装置、分离装置以及带导管和气嘴的进料器,将螺栓进料、安装,并用安装在齿条式安装支架及液压驱动垂直滑台上.的快速BOSCH拧紧机进行预拧紧,当拧紧至某一设定扭矩处时,通过设有等待功能的装置松开螺栓,清理结合面,***后拧紧螺栓至要求。
连杆涨断技术在连杆加工发展史上,涨断工艺的发明具有划时代的意义。
目前,连杆涨断加工工艺在国内已被广泛使用。
上海大众、一汽大众、、华晨和奇瑞等厂家均采用此种连杆工艺,一些专业的连杆制造厂家也开始采用此工艺。
连杆生产工艺连杆是一种连接汽车发动机曲轴和活塞的重要零部件,承受着巨大的压力和负荷。
因此,其生产工艺对于连杆的质量和性能起着至关重要的影响。
下面将介绍连杆的生产工艺。
1. 材料选择:连杆的主要材料一般为高强度合金钢,如50CrMo4,40CrNiMoA等。
这些材料具有良好的强度、韧性和抗疲劳性能,能够满足连杆在高温、高压和高速运转条件下的使用要求。
2. 锻造:连杆的制造一般采用热锻造工艺。
首先,将预制的钢坯加热到适当的温度,使其变成可塑性较好的状态,然后将其放入锻造机械中进行锻造。
通过锻造,连杆的内部组织得到了重新排列和调整,提高了连杆的强度和韧性。
3. 模锻和精修:在锻造过程中,连杆的毛坯形状基本得到了确定,但还需要进行模锻和精修来得到最终的形状和尺寸。
模锻是通过在模具中施加压力来使连杆毛坯形成所需形状的一种加工方法。
而精修则是利用机床和刀具对模锻得到的连杆进行切削和修整,使其达到所要求的精度和表面质量。
4. 热处理:连杆的热处理是为了提高其硬度、强度和韧性。
常用的热处理方法包括淬火和回火。
淬火是将连杆加热到临界温度后迅速冷却,使其内部产生马氏体组织,提高硬度和强度。
而回火则是将淬火后的连杆重新加热到一定温度,保温一段时间后冷却,以减轻淬火带来的内应力,提高韧性。
5. 机加工:连杆的机加工包括车削、铣削、钻孔等工序。
通过机床和刀具的加工,使连杆的各个轴向尺寸和孔径达到设计要求,同时提供平整的连接面和良好的表面质量。
这一过程需要控制好切削刀具的选用、加工参数和工艺流程,以确保连杆的精度和表面质量。
6. 组装和测试:最后,将加工好的连杆与其他发动机零部件进行组装,并进行相关的测试和检验。
包括尺寸测量、动平衡、硬度测试、动态加载测试等。
只有通过各项指标和测试的检验,连杆才能够符合要求,并投入使用。
通过以上步骤,连杆的生产工艺就得到了完善的实施。
这个工艺流程是有严格要求的,需要高精度的设备和技术,以确保连杆的质量和性能。
连杆的加工工艺流程
《连杆的加工工艺流程》
连杆是一种机械传动件,通常用于连接两个运动机构,并且在发动机、汽车等领域中得到广泛应用。
其加工工艺流程是非常重要的,下面将介绍一般的加工工艺流程。
首先,连杆的加工通常从原材料的选取开始。
常用的原材料有铸铁、铝合金、钢等,根据要求选择不同的原材料。
然后进行锻造、铸造或者铣削等初步成型工艺,将原材料加工成具有一定形状和尺寸的初步毛坯。
接下来,对初步毛坯进行精加工。
首先进行粗车工艺,将其表面进行车削,使其具有较高的精度和表面质量。
然后,进行精密磨削,将其进行内外圆磨削等加工,使得其表面更加平整光滑。
在精加工结束后,需要进行热处理工艺。
这一步非常重要,通过热处理可以提高连杆的硬度和强度,同时改善其耐磨性和韧性,增加使用寿命。
最后,进行涂装和组装工艺。
将经过热处理的连杆进行表面处理,如镀镍、喷漆等,提高其抗腐蚀能力。
然后进行组装,将其与其他部件组装在一起,形成最终的机械传动装置。
总的来说,连杆的加工工艺流程包括原材料选取、初步成型、精加工、热处理、涂装和组装等多个环节。
每一步工艺都至关
重要,需要进行精准控制和严格管理,以确保最终的产品质量和性能达到要求。
连杆连杆是发动机的主要传动件之一,本文主要论述了连杆的加工工艺及其夹具设计。
连杆的尺寸精度、形状精度以及位置精度的要求都很高,而连杆的刚性比较差,容易产生变形,因此在安排工艺过程时,就需要把各主要表面的粗精加工工序分开。
逐步减少加工余量、切削力及内应力的作用,并修正加工后的变形,就能最后达到零件的技术要求。
第一章汽车连杆加工工艺1.1 连杆的结构特点连杆是汽车发动机中的主要传动部件之一,它在柴油机中,把作用于活塞顶面的膨胀的压力传递给曲轴,又受曲轴的驱动而带动活塞压缩气缸中的气体。
连杆在工作中承受着急剧变化的动载荷。
连杆由连杆体及连杆盖两部分组成。
连杆体及连杆盖上的大头孔用螺栓和螺母与曲轴装在一起。
为了减少磨损和便于维修,连杆的大头孔内装有薄壁金属轴瓦。
轴瓦有钢质的底,底的内表面浇有一层耐磨巴氏合金轴瓦金属。
在连杆体大头和连杆盖之间有一组垫片,可以用来补偿轴瓦的磨损。
连杆小头用活塞销与活塞连接。
小头孔内压入青铜衬套,以减少小头孔与活塞销的磨损,同时便于在磨损后进行修理和更换。
在发动机工作过程中,连杆受膨胀气体交变压力的作用和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的质量,以减小惯性力的作用。
连杆杆身一般都采用从大头到小头逐步变小的工字型截面形状。
为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大,因此,在连杆部件的大、小头两端设置了去不平衡质量的凸块,以便在称量后切除不平衡质量。
连杆大、小头两端对称分布在连杆中截面的两侧。
考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等(基本尺寸相同)。
在连杆小头的顶端设有油孔(或油槽),发动机工作时,依靠曲轴的高速转动,把气缸体下部的润滑油飞溅到小头顶端的油孔内,以润滑连杆小头衬套与活塞销之间的摆动运动副。
连杆的作用是把活塞和曲轴联接起来,使活塞的往复直线运动变为曲柄的回转运动,以输出动力。
因此,连杆的加工精度将直接影响柴油机的性能,而工艺的选择又是直接影响精度的主要因素。
反映连杆精度的参数主要有5个:(1)连杆大端中心面和小端中心面相对连杆杆身中心面的对称度;(2)连杆大、小头孔中心距尺寸精度;(3)连杆大、小头孔平行度;(4)连杆大、小头孔尺寸精度、形状精度;(5)连杆大头螺栓孔与接合面的垂直度。
1.2 连杆的主要技术要求连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,连杆体与连杆盖的结合面及连杆螺栓定位孔等。
连杆总成的主要技术要求(图1-1)如下。
连杆总成图(1—1)1.2.1 大、小头孔的尺寸精度、形状精度为了使大头孔与轴瓦及曲轴、小头孔与活塞销能密切配合,减少冲击的不良影响和便于传热。
大头孔公差等级为IT6,表面粗糙度Ra应不大于0.4μm;大头孔的圆柱度公差为0.012 mm,小头孔公差等级为IT8,表面粗糙度Ra应不大于3.2μm。
小头压衬套的底孔的圆柱度公差为0.0025 mm,素线平行度公差为0.04/100 mm。
1.2.2 大、小头孔轴心线在两个互相垂直方向的平行度两孔轴心线在连杆轴线方向的平行度误差会使活塞在汽缸中倾斜,从而造成汽缸壁磨损不均匀,同时使曲轴的连杆轴颈产生边缘磨损,所以两孔轴心线在连杆轴线方向的平行度公差较小;而两孔轴心线在垂直于连杆轴线方向的平行度误差对不均匀磨损影响较小,因而其公差值较大。
两孔轴心线在连杆的轴线方向的平行度在100 mm长度上公差为0.04 mm;在垂直与连杆轴心线方向的平行度在100 mm长度上公差为0.06 mm。
1.2.3 大、小头孔中心距大小头孔的中心距影响到汽缸的压缩比,即影响到发动机的效率,所以规定了比较高的要求:190±0.05 mm。
1.2.4 连杆大头孔两端面对大头孔中心线的垂直度连杆大头孔两端面对大头孔中心线的垂直度,影响到轴瓦的安装和磨损,甚至引起烧伤;所以对它也提出了一定的要求:规定其垂直度公差等级应不低于IT9(大头孔两端面对大头孔的轴心线的垂直度在100 mm长度上公差为0.08 mm)。
1.2.5 大、小头孔两端面的技术要求连杆大、小头孔两端面间距离的基本尺寸相同,但从技术要求是不同的,大头两端面的尺寸公差等级为IT9,表面粗糙度Ra不大于0.8μm, 小头两端面的尺寸公差等级为IT12,表面粗糙度Ra不大于6.3μm。
这是因为连杆大头两端面与曲轴连杆轴颈两轴肩端面间有配合要求,而连杆小头两端面与活塞销孔座内档之间没有配合要求。
连杆大头端面间距离尺寸的公差带正好落在连杆小头端面间距离尺寸的公差带中,这给连杆的加工带来许多方便。
1.2.6 螺栓孔的技术要求在前面已经说过,连杆在工作过程中受到急剧的动载荷的作用。
这一动载荷又传递到连杆体和连杆盖的两个螺栓及螺母上。
因此除了对螺栓及螺母要提出高的技术要求外,对于安装这两个动力螺栓孔及端面也提出了一定的要求。
规定:螺栓孔按IT8级公差等级和表面粗糙度Ra应不大于6.3μm加工;两螺栓孔在大头孔剖分面的对称度公差为0.25 mm。
1.2.7 有关结合面的技术要求在连杆受动载荷时,接合面的歪斜使连杆盖及连杆体沿着剖分面产生相对错位,影响到曲轴的连杆轴颈和轴瓦结合不良,从而产生不均匀磨损。
结合面的平行度将影响到连杆体、连杆盖和垫片贴合的紧密程度,因而也影响到螺栓的受力情况和曲轴、轴瓦的磨损。
对于本连杆,要求结合面的平面度的公差为0.025 mm。
1.3 连杆的材料和毛坯连杆在工作中承受多向交变载荷的作用,要求具有很高的强度。
因此,连杆材料一般采用高强度碳钢和合金钢;如45钢、55钢、40Cr、40CrMnB等。
近年来也有采用球墨铸铁的,粉末冶金零件的尺寸精度高,材料损耗少,成本低。
随着粉末冶金锻造工艺的出现和应用,使粉末冶金件的密度和强度大为提高。
因此,采用粉末冶金的办法制造连杆是一个很有发展前途的制造方法。
连杆毛坯制造方法的选择,主要根据生产类型、材料的工艺性(可塑性,可锻性)及零件对材料的组织性能要求,零件的形状及其外形尺寸,毛坯车间现有生产条件及采用先进的毛坯制造方法的可能性来确定毛坯的制造方法。
根据生产纲领为大量生产,连杆多用模锻制造毛坯。
连杆模锻形式有两种,一种是体和盖分开锻造,另一种是将体和盖锻成—体。
整体锻造的毛坯,需要在以后的机械加工过程中将其切开,为保证切开后粗镗孔余量的均匀,最好将整体连杆大头孔锻成椭圆形。
相对于分体锻造而言,整体锻造存在所需锻造设备动力大和金属纤维被切断等问题,但由于整体锻造的连杆毛坯具有材料损耗少、锻造工时少、模具少等优点,故用得越来越多,成为连杆毛坯的一种主要形式。
总之,毛坯的种类和制造方法的选择应使零件总的生产成本降低,性能提高。
目前我国有些生产连杆的工厂,采用了连杆辊锻工艺。
图(1-2)为连杆辊锻示意图.毛坯加热后,通过上锻辊模具2和下锻辊模具4的型槽,毛坏产生塑性变形,从而得到所需要的形状。
用辊锻法生产的连杆锻件,在表面质量、内部金属组织、金属纤维方向以及机械强度等方面都可达到模锻水平,并且设备简单,劳动条件好,生产率较高,便于实现机械化、自动化,适于在大批大量生产中应用。
辊锻需经多次逐渐成形。
图(1-2)连杆辊锻示意图图(1-3)、图(1-4)给出了连杆的锻造工艺过程,将棒料在炉中加热至1140~1200C0,先在辊锻机上通过四个型槽进行辊锻制坯见图(1-3),然后在锻压机上进行预锻和终锻,再在压床上冲连杆大头孔并切除飞边见图(1-4)。
锻好后的连杆毛坯需经调质处理,使之得到细致均匀的回火索氏体组织,以改善性能,减少毛坯内应力。
为了提高毛坯精度,连杆的毛坯尚需进行热校正。
连杆必须经过外观缺陷、内部探伤、毛坯尺寸及质量等的全面检查,方能进入机械加工生产线。
1.4 连杆的机械加工工艺过程由上述技术条件的分析可知,连杆的尺寸精度、形状精度以及位置精度的要求都很高,但是连杆的刚性比较差,容易产生变形,这就给连杆的机械加工带来了很多困难,必须充分的重视。
连杆机械加工工艺过程如下表(1—1)所示:连杆的主要加工表面为大、小头孔和两端面,较重要的加工表面为连杆体和盖的结合面及连杆螺栓孔定位面,次要加工表面为轴瓦锁口槽、油孔、大头两侧面及体和盖上的螺栓座面等。
连杆的机械加工路线是围绕着主要表面的加工来安排的。
连杆的加工路线按连杆的分合可分为三个阶段:第一阶段为连杆体和盖切开之前的加工;第二阶段为连杆体和盖切开后的加工;第三阶段为连杆体和盖合装后的加工。
第一阶段的加工主要是为其后续加工准备精基准(端面、小头孔和大头外侧面);第二阶段主要是加工除精基准以外的其它表面,包括大头孔的粗加工,为合装做准备的螺栓孔和结合面的粗加工,以及轴瓦锁口槽的加工等;第三阶段则主要是最终保证连杆各项技术要求的加工,包括连杆合装后大头孔的半精加工和端面的精加工及大、小头孔的精加工。
如果按连杆合装前后来分,合装之前的工艺路线属主要表面的粗加工阶段,合装之后的工艺路线则为主要表面的半精加工、精加工阶段。
1.5 连杆的机械加工工艺过程分析1.5.1 工艺过程的安排在连杆加工中有两个主要因素影响加工精度:(1)连杆本身的刚度比较低,在外力(切削力、夹紧力)的作用下容易变形。
(2)连杆是模锻件,孔的加工余量大,切削时将产生较大的残余内应力,并引起内应力重新分布。
因此,在安排工艺进程时,就要把各主要表面的粗、精加工工序分开,即把粗加工安排在前,半精加工安排在中间,精加工安排在后面。
这是由于粗加工工序的切削余量大,因此切削力、夹紧力必然大,加工后容易产生变形。
粗、精加工分开后,粗加工产生的变形可以在半精加工中修正;半精加工中产生的变形可以在精加工中修正。
这样逐步减少加工余量,切削力及内应力的作用,逐步修正加工后的变形,就能最后达到零件的技术条件。
各主要表面的工序安排如下:(1)两端面:粗铣、精铣、粗磨、精磨(2)小头孔:钻孔、扩孔、铰孔、精镗、压入衬套后再精镗(3)大头孔:扩孔、粗镗、半精镗、精镗、金刚镗、珩磨一些次要表面的加工,则视需要和可能安排在工艺过程的中间或后面。
1.5.2 定位基准的选择在连杆机械加工工艺过程中,大部分工序选用连杆的一个指定的端面和小头孔作为主要基面,并用大头处指定一侧的外表面作为另一基面。
这是由于:端面的面积大,定位比较稳定,用小头孔定位可直接控制大、小头孔的中心距。
这样就使各工序中的定位基准统一起来,减少了定位误差。
具体的办法是,如图(1—5)所示:在安装工件时,注意将成套编号标记的一面不与夹具的定位元件接触(在设计夹具时亦作相应的考虑)。
在精镗小头孔(及精镗小头衬套孔)时,也用小头孔(及衬套孔)作为基面,这时将定位销做成活动的称“假销”。
当连杆用小头孔(及衬套孔)定位夹紧后,再从小头孔中抽出假销进行加工。