第5讲、点群、空间群和表面几何结构
- 格式:ppt
- 大小:4.41 MB
- 文档页数:29
点群:一个结晶多面体所有的全部宏观对称要素的集合,称为该结晶多面体的点群。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合称为对称型,也称点群。
空间群:空间群:指在一个晶体结构中所存在的一切对称要素的集合。
它由两部分组成,一是平移轴的集合(也就是平移群),另外是除平移轴之外的所有其他对称要素的集合(与对称型相对应)。
无规则网络假说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。
这种网络是由离子多面体(三角体或四面体)构筑起来的。
晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。
网络形成体:单键强度大于335KJ/mol的氧化物,可单独形成玻璃。
网络变性(改变)体:单键强度小于250KJ/mol的氧化物,这类氧化物不能形成玻璃,但是能改变网络结构。
从而使玻璃性质改变。
正尖晶石;二价阳离子分布在1/8四面体空隙中,三价阳离子分布在l/2八面体空隙的尖晶石。
反型尖晶石:二价阳离子分布在八面体空隙中,三价阳离子一半在四面体空隙中,另一半在八面体空隙中的尖晶石。
萤石结构(CaF2):F-填充在八个小立方体中心,8个四面体全被占据,八面体全空(有1+12*1/4=4个八面体空隙,其中有12个位于棱的中点,为4个晶胞所共用,1个位于体心) 。
可塑性:粘土与适当比例的水混合均匀制成泥团,该泥团受到高于某一个数值剪应力作用后,可以塑造成任何形状,当去除应力泥团能保持其形状,这种性质称为可塑性。
弗伦克尔缺陷:如果在晶格热振动时,一些能量足够大的原子离开平衡位置后,挤到晶格的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
Frenkel缺陷的特点是:①间隙原子和空位成对出现;②缺陷产生前后,晶体体积不变。
网络形成剂:这类氧化物单键强度大于335KJ/mol,其正离子为网络形成离子,可单独形成玻璃。
液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,就是液相独立析晶。
空间几何的基本知识点总结空间几何是数学中的一个重要分支,研究的是空间中的点、线、面的性质和相互关系。
在几何学中,我们常常会遇到各种奇特的图形和问题,掌握空间几何的基本知识点是解决这些问题的关键。
本文将对空间几何的基本概念、公式和定理进行总结,帮助读者更好地理解和运用空间几何知识。
1. 点、线、面的定义和性质在空间几何中,点、线、面是最基本的概念,它们相互依存,相互联系,并且具有独特的性质。
点是空间中没有大小和形状的基本元素;线由无数个点组成,是由两点确定的直线段;面是由无数个点组成的平面,可以由三个或更多的点确定。
2. 距离和角度的计算在空间几何中,距离和角度是非常重要的概念,它们用来度量点、线、面之间的位置关系和相互间的夹角。
两点之间的距离可以通过距离公式来计算,即两点之间的直线段的长度。
角度是由两个交叉的线或两个相交的平面所围成的空间角,可以通过余弦定理或正弦定理计算。
3. 平行和垂直关系在空间几何中,平行和垂直是常见的相对关系。
两条直线平行的定义是它们在同一平面内不相交,可以使用平行线判定定理来验证两条直线是否平行。
两个平面平行的定义是它们内部没有交点,可以通过平行平面定理来判断两个平面是否平行。
垂直关系是指两条直线或两个平面的交线垂直,可以使用垂直线判定定理来验证。
4. 线面的位置关系在空间几何中,线和面常常会有各种不同的位置关系。
如果一条直线和平面内的直线没有交点,那么它们就是平行的;如果直线和平面内的直线有且只有一个交点,那么它们就是相交的。
此外,还存在直线包含于平面和直线与平面相交于一点的特殊位置关系。
5. 空间图形的体积和表面积计算在空间几何中,体积和表面积是描述立体图形大小的重要指标。
不同类型的立体图形有不同的计算公式。
常见的立体图形包括正方体、长方体、圆柱体、圆锥体和球体等,它们的体积和表面积可以通过相应的公式来计算。
6. 空间几何中的投影在空间几何中,投影是研究一个点或一条直线在另一个平面上的影子。
空间几何体——点、线、面一、空间中最基本的元素:点、线、面的画法 点 A ·引申:斜二测画法1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
若A ,B ,C 不共线,则A ,B ,C 确定平面α推论1:过直线的直线外一点有且只有一个平面若A l ∉,则点A 和l 确定平面α推论2:过两条相交直线有且只有一个平面若m nA = ,则,m n 确定平面α推论3:过两条平行直线有且只有一个平面若m n ,则,m n 确定平面α 公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。
3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
,P P l P l αβαβ∈∈⇒=∈ 且公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。
4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.,a b c b a c ⇒公理4作用:证明两直线平行。
5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
,1212a a b b ''∠∠⇒∠∠ 且与方向相同=,1212180a a b b ''∠∠⇒∠+∠︒ 且与方向相反= 作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。
lBAαB AαClαAlm αAmnαP· αL βa b b a b 'a '方向相反则∠1+∠2=180°方向相同则∠1=∠22121a 'b '二、点、线、面之间的位置关系1.点与线位置关系:点在线上,点不在线上 引申:点到直线的距离点在线上的投影(垂直)2.点与面位置关系:点在面上,点不在面上 引申:点在面上的投影 点到面的距离3.线线位置关系:平行、相交、异面。
空间几何点线面知识点总结一、点1. 点的定义在空间中,点是最基本的几何要素,他是一个没有大小的有位置的对象。
点通常用大写字母来表示,比如A、B、C等。
2. 点到点的距离两个点之间的距离是两个点之间的直线段的长度,可以使用勾股定理求解。
3. 点的坐标在空间中,点的位置可以用坐标来表示。
常用的坐标系有直角坐标系、极坐标系和球坐标系。
比如直角坐标系中的点A(x,y,z),其中x、y、z分别表示点A在X轴、Y轴、Z轴上的投影。
4. 点的映射点在空间的位置可以通过平移、旋转、对称等方式进行映射,从而得到新的点。
5. 点的分类在空间中,点可以根据其位置的不同进行分类,包括同一平面上的点、在同一直线上的点、在同一球面上的点等。
二、线1. 线的定义在空间几何中,线是由一系列无限多的点组成的集合,它没有长度、宽度和厚度。
可以用一对点来确定一条直线的位置。
2. 直线的方程在直角坐标系中,可以用一元一次方程或者参数方程来表示一条直线。
3. 线段直线上的两个点之间的部分称为线段,线段有固定的长度。
4. 平行线和垂直线在空间几何中,平行线是指不相交的两条直线,它们的斜率相同;垂直线是指两条直线相交成直角的情况。
5. 直线的位置关系在空间中,两条直线可以有不同的位置关系,例如相交、平行、重合等。
三、面1. 面的定义在空间几何中,面是由一系列无限多的点组成的集合,它没有厚度,但有长度和宽度。
可以用三个点或者一对直线来确定一个平面。
2. 平面的方程在直角坐标系中,可以用一元一次方程或者参数方程来表示一个平面。
3. 平面的位置关系在空间中,两个平面可以有不同的位置关系,例如相交、平行、重合等。
4. 平面与直线的位置关系在空间中,一条直线可以与一个平面有不同的位置关系,包括相交、平行、垂直等。
5. 空间图形的投影在三维空间中,我们经常需要将三维图形的投影在二维平面上,这是空间几何中的重要概念。
四、空间几何的分析方法1. 空间几何的分析方法包括向量法、坐标法和解析几何等。
材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。
化学键是指晶体内相邻原子(或离子)间强烈的相互作用。
金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。
离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。
范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。
氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。
近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。
它是构成高分子聚合物最底层、最基本的结构。
又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。
晶体熔化时具固定的熔点,具有各向异性。
2、非晶体:原子是无规则排列的固体物质。
熔化时没有固定熔点,存在一个软化温度范围,为各向同性。
3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。
4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。
5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。
6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。
7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。
13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。
属于此晶带的晶面称为共带面。
14、晶面间距:晶面间的距离。
《结晶学与矿物学》复习要点结晶学一、基本概念:1.晶体(crystal)的概念:内部质点在三维空间周期性重复排列构成的固体物质。
这种质点在三维空间周期性地重复排列称为格子构造,所以晶体是具有格子构造的固体。
2对称型(class of symmetry)晶体宏观对称要素之组合。
(点群,point group)3.空间群:一个晶体结构中,其全部对称要素的总和。
也称费德洛夫群或圣佛利斯群。
4.单形(Simple form):一个晶体中,彼此间能对称重复的一组晶面的组合。
即能借助于对称型之全部对称要素的作用而相互联系起来的一组晶面的组合。
5.双晶:两个以上的同种晶体,彼此间按一定的对称关系相互取向而组成的规则连生晶体。
6.平行六面体:空间格子中按一定的原则划分出来的最小重复单位称为平行六面体。
是晶体内部空间格子的最小重复单位,是由六个两两平行且相等的面网组成。
7.晶胞:能充分反映整个晶体结构特征的最小结构单元,其形状大小与对应的单位平行六面体完全一致。
8.类质同像:晶体结构中某种质点为性质相似的他种质点所替代,共同结晶成均匀的单一相的混合晶体,而能保持其键性和结构型式不变,仅晶格常数和性质略有改变。
9.同质多像:化学成分相同的物质,在不同的物理化学条件下,形成结构不同的若干种晶体的现象。
10.多型:一种元素或化合物以两种或两种以上层状结构存在的现象。
这些晶体结构的结构单元层基本上是相同的,只是它们的叠置次序有所不同。
二、晶体的6个基本性质1、均一性(homogeneity):同一晶体的任一部位的物理和化学性质性质都是相同的。
2、自限性(property of self-confinement):晶体在自由空间中生长时,能自发地形成封闭的凸几何多面体外形。
3. 异向性(各向异性)异向性(anisotropy):晶体的性质随方向的不同而有所差异。
4. 对称性(property of symmetry):晶体的相同部分(如外形上的相同晶面、晶棱或角顶,内部结构中的相同面网、行列或质点等)或性质,能够在不同的方向或位置上有规律地重复出现。
一些物理对象能够在一定的操作下保持不变,这种性质称为对称性,使物理对象保持不变的操作O叫做对称操作。
按顺序先做对称操作O1,再做对称操作O2,显然物理对象保持不变,因此连做两次对称操作是一个新的对称操作O3,可以记为O3 O2O1,O2O1称为对称操作的乘积。
对称操作O的逆操作也保持物理对象不变,因此也是一个对称操作,记为O−1,按照数学上的定义,对称操作全体关于前面定义的乘法成为一个群,称为对称群,对称操作O称为对称元素。
使晶体保持不变的空间变换构成的群称为空间群。
空间群的元素一般写成 R| ,其中R是一个3 3矩阵,代表对称操作的旋转部分(包括空间反演), 是一个矢量, R| 把空间矢量r 变为 R| r Rr 。
乘法规则R2| 2 R1| 1 r R2| 2 R1r 1R2R1r R2 1 2R2R1|R2 1 2 r就是说R2| 2 R1| 1 R2R1|R2 1 2因此R−1|−R−1 R| I|0R| −1 R−1|−R−1一般来说即使 R| 是一个对称操作,单纯的转动R也不是对称操作,但是按照上面的乘法和取逆规则,空间群元素的旋转部分全体也构成一个群,这个群叫做点群。
晶体的点群的元素R一般不能保持晶体不变,点群一般不是晶体的空间群的子群。
下面证明几个基本事实:1.对任意格矢l 和对称操作 R| ,都有Rl l ′,也就是说虽然 R|0 一般不能保持晶体不变,但是 R|0 可以保持空间点阵不变。
证明: R| 、 I|l 和 R| −1 R−1|−R−1 都是对称操作,因此它们的乘积也是对称操作,按照上面的乘法规则,我们有R| I|l R−1|−R−1R|Rl R−1|−R−1I|Rl这是一个单纯的平移,因此Rl l ′必定是一个格矢。
2.对称操作的旋转角只能取0,60∘,90∘,120∘,180∘及其整数倍。
证明:首先任取一个不平行于转轴的格矢l ,按照上面的结论,Rl 也是格矢,因此非零矢量Rl −l (如果det R −1,R包含空间反演或镜面反射,则取Rl l )也是格矢,且从几何关系易知格矢Rl −l (如果det R −1,R包含空间反演或镜面反射,则取Rl l )垂直于转轴。