数列中an与Sn的关系教学资料
- 格式:doc
- 大小:207.50 KB
- 文档页数:19
等差数列中S n 与a n 间的 重要关系及其应用“设S n、a n分别是等差数列{a n}的前n 和与通项,则它们之间有如下的重要关系:S n =(kn )a n ,其中k 是非零实数,n 是正整数。
”我们知道,等差数列{a n }的前n 和S n 、通项a n 分别有如下的表达式:⑴ S n =na 1- n(n-1)2 d ,其可等价变形为S n = d 2 n 2 +(a 1-d2 )n ,它是关于n 的二次函数且不含常数项,一般形式是:S n =An 2+Bn ,其中A 、B 是非零待定系数;⑵ a n = a 1 +(n-1)d ,其可等价变形为a n =dn+(a 1 -d ),它是关于n 的一次函数,一般形式是:a n =an+b ,其中a 、b 是非零待定系数;通过对等差数列{a n }前n 和S n 的一般形式S n =An 2+Bn 与其通项a n 的一般形式a n =an+b 的观察分析,不难得出S n 与a n 之间有这样的重要关系式:S n =(kn )a n 。
S n 与a n 相互关系的应用举例:[例1]在等差数列{a n }中,a 4=0.8,a 11=2.2,求a 51+a 52+…+a 80.【解】 由等差数列的通项公式得⎩⎨⎧=+=+2.2108.0311d a d a ,解得a 1=0.2,d =0.2.∴a 51+a 52+…+a 80=S 80-S 50 =80a 1+d a d 2495050279801⨯--⨯=30a 1+1935d =30×0.2+1935×0.2=393. 【点评】 本题求解分两个层次,首先由已知求出a 1和d ,再将所求转化为S 80-S 50,这是解题的关键.[例2]根据数列{a n }的前n 项和公式,判断下列数列是否是等差数列. (1)S n =2n 2-n (2)S n =2n 2-n +1【解】 (1)a 1=S 1=1 当n ≥2时,a n =S n -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=2(2n -1)-1=4n -3∵n =1 时也成立,∴a n =4n -3 a n +1-a n =[4(n +1)-3]-[4n -3]=4∴{a n }成等差数列(2)a 1=S 1=2 a 2=S 2-S 1=5 a 3=S 3-S 2=9 ∵a 2-a 1≠a 3-a 2 ∴{a n }不是等差数列.【点评】 已知S n ,求a n ,要注意a 1=S 1,当n ≥2时a n =S n -S n -1, 因此a n =⎩⎨⎧≥-=-)2( )1(11n S S n S n n.练习: 已知等差数列{a n }的前项和S n 满足条件:S n =2n 2+3n ,求此等差数列的通项a n解: 根据等差数列的前n 项和S n 是关于n 的二次函数且不含常数项,即S n = d 2n 2+(a 1-d 2 )n,并结合已知条件等差数列{a n }的前项和S n =2n 2+3n 立有, d2 =2且a 1-d2=3, 解之得 a 1=5,d=4,于是便得所求等差数列的通项a n =4n+1. [例3]已知等差数列{a n }满足:S p =q ,S q =p ,求S p +q (其中p ≠q ). 【解】 由已知S p =q ,S q =p 得 pa 1+q d p p =-2)1( ① qa 1+p d q q =-2)1( ② ①-②整理得2)1(21dq p a -++=-1∴d q p q p a q p S q p 2)1)(()(1-++++=+=(p +q )2)1(21d q p a -++=-(p +q ) 【点评】 本问题即是在a 1、d 、n 、a n 、S n 中知三求二问题,但在解方程的过程中体现出了较高的技巧;也可考虑设S n =An 2+Bn 去求解. 例4 有两个等差数列{a n }、{b n },其前n 和分别为S n 、 T n ,并且n n T S =7n+2n+3 ,求:⑴ 55b a 的值;⑵115b a的值分析:由等差数列可知,其前n 项和是关于n 的二次函数且不含常数项;根据已知条件,两个等差数列前n 项和的比的结果是关于n 的一次因式,说明它们在相比的过程中约去了一个共同的因式kn ,于是,我们只要将其还原,即可得到两个等差数列的前n 项和,再对照等差数列前n 项和的二次函数形式:S n = d 2 n 2 +(a 1-d2 )n ,很快便可得到其首项、公差与通项,进而由等差数列通项公式求出数列中的任意一项。
等差数列sn和an的关系
等差数列是指数列中相邻两项的差是一个常数的数列。
其中,Sn表示等差数列的前n项和,An表示等差数列的第n项。
首先,我们来看Sn和An的关系。
1. Sn的计算公式:
等差数列的前n项和Sn可以通过以下公式计算,Sn = n/2 (a1 + an),其中n表示项数,a1表示首项,an表示末项。
2. An的计算公式:
等差数列的第n项An可以通过以下公式计算,An = a1 + (n-1)d,其中n表示项数,a1表示首项,d表示公差。
从上述公式可以看出,Sn和An之间的关系在于Sn是An的累
加和。
换句话说,Sn是前n项An的和。
另外,我们还可以从几何角度来理解Sn和An的关系。
1. Sn的几何意义:
等差数列的前n项和Sn可以表示为一个由n个相邻矩形组
成的图形的总面积。
其中,每个矩形的长是等差数列的项,宽是1。
2. An的几何意义:
等差数列的第n项An可以表示为一个以a1为首项,公差为d,共有n项的等差数列的最后一项。
综上所述,Sn和An之间的关系可以从代数和几何两个角度来
理解。
在代数上,Sn是An的累加和;在几何上,Sn可以表示为一
系列矩形的总面积,而An则表示等差数列的最后一项。
希望这些解
释能帮助你更好地理解Sn和An的关系。
数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
教案a n与s n的关系------------------------------------------作者------------------------------------------日期数列的应用教案教学目标:知识与技能:理解n n a S 与的关系,能利用n n a S 与的关系解决由n n a S 求的基本题型。
掌握由n n a S 求的解题技巧,规范基本程序和答题格式。
过程与方法:通过合作探究基本题型和学生展示学习结果培养学生的逻辑思维能力。
通过合作探究,培养学生团结协作,归纳总结的能力。
情感态度与价值观:培养学生科学严谨的学习态度,激发学习数学的热情和信心。
教学重点、难点:教学重点:理解n n a S 与的关系,并运用关系求数列的通项公式。
掌握解题方法和技巧。
教学难点:规范由n n a S 求的基本程序和答题格式。
教学方法:合作探究,讨论法、练习法。
教学过程:一、课前复习1.什么是等差数列,写出它的通项公式。
2.什么是等比数列,写出它的通项公式。
的关系:与n n a S .3关系式,通过观察得到,写出由⎩⎨⎧≥-==++⋅⋅⋅+++=---211111321n S S n S a S a a a a a S n n n n n n n检索学生已有知识水平,复习巩固知识,引入问题,导入新课。
二、新知探究1. 典例分析,合作共议n n n a N n n n S n a 求项和的前:已知数列例,,1}{12+∈++====111S a n 时,解:当122++=≥n n S n n 时,当=-1n S=-=-n n n n a S S a 得:由1=n a 所以合作探究,引导学生规范解答,培养学生科学严谨的态度。
学生体会归纳总结解觉问题的方法和步骤,培养学生归纳总结知识的能力。
n n n a N n n S n a 求项和为的前:已知数列练习,,1}{12+∈+=学生讨论完成练习一,落实本节课重点。
专题3: a n 与s n 的关系
一、数列中项与和的转换公式
a n = ⎪⎩⎪
⎨
⎧--11n n
S
S S
2
,1
,≥=n n
二、例题讲解
例1.若数列{}n a 的前n 项的和公式为5lo g (1)n S n =+,求5a 。
例2.已知数列{}n a 的前n 项和为2
n S n C =+ (C 为常数),求数列{}n a 的通项公式,并判断{}n a 是不是等差数列。
例 3.已知数列{}n a 中,11a =,前
n
项和为n S ,对任意
2
n ≥,总有
1334,,2
2
n n n S a S -
--成等差数列,求数列{}n a 的通项公式。
例4.已知数列{}
n a 的各项均为正数,前n 项的和2
1(
)4
n n a S +=,
(1)求{}n a 的通项公式;
(2)设等比数列{}n b 的首项为b ,公比为2,前n 项的和为T n .若对任意n ∈N *,S n ≤T n 均成立,求实数b 的取值范围。
例5.数列{}n a 中,
11
a =,当2n ≥时,其前n
项和n S 满足2
1()2
n n n S a S =-
,
(1)求n S 的表达式; (2)设21
n n S b n =+,数列{}n b 的前n 项和为n T .
例6.已知数列{}n a 的首项a 1=5.前n 项和为S n 且S n +1=2S n +n +5(n∈N *).
证明:数列{}1n a +是等比数列;(2)求{}n a 的通项公式 。
数列中a n与S n的关系课题浅谈数列中a n 与S n 的递推公式的应用对于任意一个数列,当定义数列的前n 项和通常用S n 表示时,记作S n =a 1+a 2+…+a n ,此时通项公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.而对于不同的题目中的a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用a n =S n -S n -1(n ≥2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S n ,求a n ;角度二:客观运用a n =S n -S n -1(n ≥2),求与a n ,S n 有关的结论; 角度三:a n 与S n 的延伸应用.角度一:直观运用已知的S n ,求a n方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式): (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S n 求解.如:a 1+2a 2+3a 3+…+na n =2n -1,其中a 1+2a 2+3a 3+…+na n 表示数列{na n }的前n 项和.1.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧ 1,n =12n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =12n +3,n ≥2 【解析】当n ≥2时,a n =S n -S n -1=2n -3.当n =1时,a 1=S 1=1,不满足上式. 【答案】C2.(2015·河北石家庄一中月考)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1) ·3n +1+3(n ∈N *),则数列的通项公式a n = .【解析】当n ≥2时,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2) ·3n +3;则用已知等式减去上式得(2n -1)·a n =(2n -1)·3n ,得a n =3n ;当n =1时,a 1=3,满足上式;故a n =3n .【答案】a n =3n3.(2015·天津一中月考)已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n = .【解析】由已知得S n +1=2n +1,则S n =2n +1-1;当n ≥2时,a n =S n -S n -1=2n +1-1-2n+1=2n;当n =1时,a 1=S 1=3,不满足上式;故a n =⎩⎨⎧3,n =12n ,n ≥2.【答案】a n =⎩⎨⎧3,n =12n ,n ≥24.(2015·四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足a 3a 5=45,a 2+a 6=14.(1)求{a n }的通项公式;(2)若数列{b n }满足:b 12+b 222+…+b n2n =a n +1(n ∈N *),求{b n }的前n 项和. 【解】(1)设等差数列{a n }的公差为d ,则d >0, 由a 2+a 6=14,可得a 4=7由a 3a 5=45,得(7-d )(7+d )=45,解得d =2 或d =-2(舍) ∴a n =a 4+(n -4)d =7+2(n -4),即a n =2n -1.(2)令c n =b n2n ,则c 1+c 2+c 3+…+c n =a n +1=2n ① 当n ≥2时,c 1+c 2+c 3+…+c n -1=2(n -1) ② 由①-②得,c n =2,当n =1时,c 1=2,满足上式;则c n =2(n ∈N *),即b n2n =2,∴b n =2n +1, 故数列{b n }是首项为4,公比为2得等比数列, ∴数列{b n }的前n 项和S n =4(1-2n )1-2=2n +2-4.此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与a n ,S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n ,还是S n .那么,主要从两个方向利用a n =S n -S n -1(n ≥2):方向一:若所求问题是与a n 相关的结论,那么用S n -S n -1=a n (n ≥2)消去等式中所有S n与S n -1,保留项数a n ,在进行整理求解;1.(2015·广州潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列的通项公式是 .【解析】当n ≥2时,a n =2S n -1+1,两式相减得a n +1-a n =2(S n -S n -1),即a n +1-a n =2a n ,得a n +1=3a n ;当n =1时,a 2=3,则a 2=3a 1,满足上式;故{a n }是首项为1,公比为3得等比数列,∴a n =3n -1.【答案】a n =3n -12.数列{a n }的前n 项和为S n ,若a n +1=-4S n +1,a 1=1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .【解】(1)当n ≥2时,a n =-4S n -1+1,又a n +1=-4S n +1,∴a n +1-a n =-4a n ,即a n +1a n =-3(n ≥2),又a 2=-4a 1+1=-3,a 1=1,∴数列{a n }是首项为a 1=1,公比为q =-3的等比数列, ∴a n =(-3)n -1.(2)由(1)可得b n =n ·(-3)n -1,T n =1·(-3)0+2·(-3)1+3·(-3)2+…+(n -1)·(-3)n -2+n ·(-3)n -1, -3T n =1·(-3)1+2·(-3)2+…+(n -2)·(-3)n -2+(n -1)·(-3)n -1+n (-3)n , ∴4T n =1+(-3)1+(-3)2+…+(-3)n -1-n ·(-3)n ,所以,T n =1-(4n +1)(-3)n 16.方向二:若所求问题是与S n 相关的结论,那么用a n =S n -S n -1(n ≥2)消去等式中所有项数a n ,保留S n 与S n -1,在进行整理求解.1.已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求a n 的表达式.【解】(1)证明:∵a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .当n ≥2时,a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.2.(2015·江西名校联盟调考)已知正项数列{a n }的前n 项和为S n ,且a 2n -2S n a n +1=0. (1)求数列{S n }的通项公式;(2)求证:1S 1+1S 2+…+1S n >2(S n+1-1).(提示:1n >2n +1+n)【解】(1)∵a n =S n -S n -1(n ≥2),由a 2n -2S n a n +1=0,得(S n -S n -1)2-2S n (S n -S n -1)+1=0,整理得S 2n -S 2n -1=1. 当n =1时,a 21-2S 1a 1+1=0,且a 1>0,解得a 1=1,故由等差数列的定义知{S 2n}是以1为首项,1为公差的等差数列. ∴S 2n =n ,则S n =n .(2)由(1)知1S n =1n =22n >2n +1+n=2(n +1-n ),∴1S 1+1S 2+…+1S n >2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1)即1S 1+1S 2+…+1S n>2(S n +1-1) .【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.解此类题目中不仅需要深刻理解“数列的前n 项和”的实际意义,还需要对a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2关系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向.方向一:关于双重前n 项和此类题目中一般出现“数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ”的条件,在解答时需要确定清楚求的是与a n ,S n ,T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的a n .1.(2015·湖北武汉质检)设数列{a n }的前n 现和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1,且T 1=S 1=a 1,解得a 1=1,(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1 ∴S n =2S n -1+2n -1 ① 则S n +1=2S n +2n +1 ②由②-①,得a n +1=2a n +2,∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2), 易求得,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2,∴数列{a n +2}是首项为3,公比为2的等比数列,∴a n +2=3·2n -1,则a n =3·2n -1-2(n ∈N *).2.(2015·安徽滁州期末联考)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,且2T n =4S n -(n 2+n ),n ∈N *.(1)证明:数列{a n +1}为等比数列; (2)设b n =n +1a n +1,证明:b 1+b 2+…+b n <3. 【解】(1)当n =1时,2T 1=4S 1-2,且T 1=S 1=a 1,解得a 1=1,当n =2时,2T 2=2(a 1+a 1+a 2)=4(a 1+a 2)-6,解得a 2=3, 当n ≥2时,2T n -1=4S n -1-[(n -1)2+(n -1)]∴2S n =2T n -2T n -1=4S n -(n 2+n )-4S n -1+[(n -1)2+(n -1)] 整理得S n =2S n -1+n ① 则S n +1=2S n +n +1 ②由②-①,得a n +1=2a n +1,∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2),显然a 2+1a 1+1=2,∴数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n +1=2n,则b n =n +12n .则b 1+b 2+…+b n =22+322+423…+n +12n , 令T n =22+322+423…+n +12n ,①则12T n = 222+323+424…+n 2n +n +12n +1,② 由①-②,得12T n =1+122+123+124…+12n -n +12n +1=1+122(1-12n -1)1-12-n +12n +1=32-n +32n +1<32 则T n <3,即b 1+b 2+…+b n <3. 方向二:已知等式在整理过程中需要因式分解此类问题大多数时候会伴随“各项均为正数的数列{a n }”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.1.(2015·山东青岛一模)各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n为{a n }的前n 项和.(1)求a 1,a 2的值; (2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1;又T 1=S 1=a 1,则a 1=2a 1-1,解得a 1=1;(2)当n ≥2时,S n =T n -T n -1=(2S n -n 2)-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, 整理得S n =2S n -1+2n -1 ① ∴S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2)又T 2=2S 2-4;得a 2=4当n =1时,a 1+2=3,a 2+2=6,则a 1+2a 2+2=2,∴数列{a n +2}是以3为首项,2为公比的等比数列.则a n +2=3·2n -1,所以a n =3·2n -1-2.2.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .【解】(1)由已知得,当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1. 即(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.方向三:需对已知等式变形后,再求解1.(2015·江西五校联考)已知正项数列{a n }中,其前n 项和为S n ,且a n =2S n -1. (1)求数列{a n }的通项公式;(2)设b n =1a n ·a n+1,T n = b 1+b 2+b 3+…+b n ,求T n .【解】(1)由已知得,4S n =(a n +1)2.当n ≥2时,4S n -1=(a n -1+1)2,则4S n -4S n -1=(a n +1)2-(a n -1+1)2,整理得 (a n -1)2-(a n -1+1)2=0, ∴(a n -a n -1-2)(a n +a n -1)=0 又a n >0,则a n -a n -1=2,当n =1时,4S 1=(a 1+1)2,得a 1=1; 故数列{a n }是首项为1,公差为2的等差数列;∴a n=2n-1.(2)由(1)可得b n=1a n·a n+1=12n-1×12n+1=12⎝⎛⎭⎪⎫12n-1-12n+1,∴T n=1b1+1b2+1b3+…+1b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n-1-12n+1=12⎝⎛⎭⎫1-12n+1=n2n+1.2.(2015·浙江温州中学月考)设数列{a n}的前n项和为S n,已知a1=2,a2=8,S n+1+4S n-1=5S n(n≥2),T n是数列{log2a n}的前n项和.(1)求数列{a n}的通项公式;(2)求T n.【解】(1)当n≥2时,S n+1+4S n-1=5S n,∴S n+1-S n=4(S n-S n-1),即a n+1=4a n,当n=1时,a2=4a1;故数列{a n}是以2为首项,4为公比的等比数列.∴a n=2·4n-1=22n-1.(2)由(1)可知log2a n=log222n-1=2n-1,∴T n=log2a1+log2a2+log2a3+…+log2a n=1+3+5+…+2n-1=n(1+2n-1)2=n2.3.(2015·江西三县联考)已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,其中n∈N*.(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)依次组成等差数列,求数列{a n}的通项公式;(2) a 1=1,对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列,求数列{a n }的前n 项和A n .【解】(1)∵任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,∴B (n )-A (n )=C (n )-B (n ),则a n +1-a 1=a n +2-a 2,即a n +2-a n +1=a 2-a 1=4, 故数列{a n }是首项为1,公差为4的等差数列; ∴a n =1+(n -1)×4=4n -3.(2)若对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列, ∴B (n )=qA (n ),C (n )=qB (n ), 则C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1, 当n =1时,由B (1)=qA (1),可得a 2=qa 1;则a n +2-qa n +1=a 2-qa 1=0,又a n >0,则a n +2a n +1=a 2a 1=q ,故数列{a n }是以1为首项,q 为公比的等比数列. ∴A n =⎩⎨⎧n ,q =1,1-q n1-q ,q ≠1.4.(2015·辽宁沈阳诊断考试)设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3(lg a n )(lg a n +1)的前n 项和,求T n ;(3)求使T n >14(m 2-5m )对所有的n ∈N *恒成立的整数m 的取值集合. 【解】(1)证明:当n ≥2时,a n =9S n -1+10,∴a n +1-a n =9(S n -S n -1),则a n +1=10a n ,即a n +1a n=10,当n =1时,a 2=9a 1+10=100,则a 2a 1=10,故数列{a n }是以10为首项,10为公比的等比数列. ∴a n =10n ,则lg a n =n , ∴lg a n +1-lg a n =n +1-n =1,故数列{lg a n }是首项为1,公差为1的等差数列. (2)解:由(1)知3(lg a n )(lg a n +1)=3n (n +1)=3⎝ ⎛⎭⎪⎫1n -1n +1, ∴T n =3⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=3⎝ ⎛⎭⎪⎫1-1n +1=3n n +1.(3)∵T n =3n n +1=3-3n +1,∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故整数m 的取值集合为{0,1,2,3,4,5}.1.(2015·江苏扬州外国语中学模拟)已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为 .【解析】当n ≥2时,a n =S n -S n -1=2n -3-2n -1+3=2n -1.当n =1时,a 1=S 1=-1,不满足上式.【答案】a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥22.(2015·辽宁沈阳二中月考)已知数列{a n }满足a 1+a 22+…+a nn =a 2n -1,求数列{a n }的通项公式.【解】当n ≥2时,a 1+a 22+…+a n -1n -1=a 2n -2-1由已知等式减去上式,得a nn =a 2n -1-a 2n -2+1=(a 2-1)a 2n -2, ∴a n =n (a 2-1)a 2n -2,当n =1时,a 1=a 2-1,满足上式; ∴a n =n (a 2-1)a 2n -2.3.(2015·安徽江淮十校联考)已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )= f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )= f (3)(n ∈N *),则a n 为( )A .2n -1B .nC .2n -1D .⎝ ⎛⎭⎪⎫32n -1【解析】由f (x ·y )= f (x )+f (y ),f (S n +2)-f (a n )= f (3),得S n +2=3a n ,S n -1+2=3a n -1(n ≥2),两式相减得2a n =3a n -1;当n =1时,S 1+2=3a 1=a 1+2,则a 1=1.所以数列{a n }是首项为1,公比为32的等比数列.【答案】a n =⎝⎛⎭⎫32n -14.(2015·辽宁鞍山二中期中)设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足S n =32(b n -1),且a 2=b 1,a 5=b 2.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ·b n ,T n 为{c n }的前n 项和,求T n .【解】(1)当n ≥2时,S n -1=32(b n -1-1),则b n =S n -S n -1=32(b n -1)-32(b n -1-1),整理得b n =3b n -1,当n =1时,b 1=32(b 1-1),解得b 1=3;故数列{b n }是以3为首项,3为公比的等比数列. ∴b n =3n ,设等差数列{a n }的公差为d ,由a 2=b 1=3,a 5=b 2=9, 则⎩⎨⎧a 1+d =3,a 1+4d =3,解得d =2,a 1=1,∴a n =2n -1, ∴a n =2n -1,b n =3n .(2)由(1)知c n =a n ·b n =(2n -1)·3n ,∴T n =3+3·32+5·33+…+(2n -1)·3n ,①3T n = 32+3·33+5·34+…+(2n -3)·3n +(2n -1)·3n +1,② 由①-②,得-2T n =3+2(32+33+…+3n )-(2n -1)·3n+1=3+2×32(1-3 n -1)1-3-(2n -1)·3n +1=(2-2n )·3n +1-6,∴T n =(n -1) 3n +1+3.5.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N *),则数列的通项公式是 .【解析】由已知n ≥2时,a n =2S n -1 ①;当n ≥3时,a n -1=2S n -2 ②①-②整理得a na n -1=3 (n ≥3),∴a n =⎩⎪⎨⎪⎧1, n =1,2×3n -2, n ≥2. 【答案】a n =⎩⎪⎨⎪⎧1, n =1,2×3n -2, n ≥2. 6.(2015·广东桂城摸底)已知各项均为正数的数列{a n }的前n 项和为S n ,且a 2n +a n =2S n .(1)求a 1;(2)求数列{a n }的通项公式;(3)若b n =1a 2n (n ∈N *),T n =b 1+b 2+…+b n ,求证:T n <53.⎝ ⎛⎭⎪⎫提示:1n 2<2⎝⎛⎭⎪⎫12n -1-12n +1 【解】(1)当n =1时,a 21+a 1=2S 1,且a n >0,得a 1=1;(2)当n ≥2时,a 2n -1+a n -1=2S n -1 ①;且a 2n +a n =2S n ②;由②-①,得(a n +a n -1)(a n -a n -1-1)=0, 又a n >0,则a n -a n -1=1,故数列{a n }是首项为1,公差为1的等差数列; ∴a n =n .(3)证明:由(2)知,b n =1a 2n=1n 2,当n =1时,b 1=1<53,不等式成立;当n ≥2时,1n 2<1n 2-14=44n 2-1=2⎝⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =1+122+132+…+1n 2<1+2⎝ ⎛⎭⎪⎫13-15+15-17…+12n -1-12n +1<1+23=53,∴T n <537.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 【解析】当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2. 【答案】⎩⎪⎨⎪⎧4,n =12n +1,n ≥28.(2014·烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.【解】(1)∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得:a n =S n -S n -1=2a n -2a n -1,∴a na n -1=2,所以数列{a n }是首项为12,公比为2的等比数列,即a n =12×2n -1=2n -2.(2)∵b n =(log 2a 2n +1)×(log 2a 2n +3)=(log 222n+1-2)×(log 222n+3-2)=(2n -1)(2n +1),∴1b n =12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n =1b 1+1b 2+1b 3+…+1b n =12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.9.(2014·山西四校联考)已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.【解析】当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1), ∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.【答案】2n -110.(2014·湖南卷)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 【解】(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .又a 1=1满足上式,故数列{a n }的通项公式为a n =n . (2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.11.已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7. (1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n +3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n≤2-1n. 【解】(1)设数列{a n }的公比为q ,由已知得q >0,且⎩⎪⎨⎪⎧ a 1q 2=4,a 1+a 1q +4=7,∴⎩⎪⎨⎪⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.(2)【证明】当n =1时,a 1b 1=1,且a 1=1,解得b 1=1.当n ≥2时,a n b n =(2n -3)2n +3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1.∵b 1=1=2×1-1满足b n =2n -1,∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列. ∴S n =n 2.∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n 2<1n (n -1)=1n -1-1n.∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n . 12.设数列{a n }的前n 项和为S n ,a 1=1,a n =S nn +2 (n -1) (n ∈N *).(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)是否存在自然数n ,使得S 1+S 22+S 33+…+S nn -(n -1)2=2 013?若存在,求出n 的值;若不存在,请说明理由.【解】(1)由a n =S nn+2(n -1),得S n =na n -2n (n -1) (n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),即a n -a n -1=4, 故数列{a n }是以1为首项,以4为公差的等差数列. 于是,a n =4n -3,S n =(a 1+a n )n2=2n 2-n (n ∈N *).(2)由S n =na n -2n (n -1),得S nn=2n -1 (n ∈N *),又S 1+S 22+S 33+…+S nn -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 013,得n =1 007,即存在满足条件的自然数n =1 007.1.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.【解】(1)由S n =12a 2n +12a n ,可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .2.在数列{a n }中,a 1=-5,a 2=-2,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2(n ∈N *),若对于任意n ∈N *,A (n ),B (n ),C (n )成等差数列.(1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和.【解】(1)根据题意A (n ),B (n ),C (n )成等差数列,∴A (n )+C (n )=2B (n ),整理得a n +2-a n +1=a 2-a 1=-2+5=3, ∴数列{a n }是首项为-5,公差为3的等差数列, ∴a n =-5+3(n -1)=3n -8.(2)|a n |=⎩⎪⎨⎪⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n .当n ≤2时,S n =n (5+8-3n )2=-3n 22+132n ;当n ≥3时,S n =7+(n -2)(1+3n -8)2=3n 22-132n +14,综上,S n=⎩⎨⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.3.(2014·广东卷)设各项均为正数的数列{a n } 的前n 项和为S n ,且 S n 满足 S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1 的值;(2)求数列{a n } 的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.【解】(1)由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2,即a 1=-3或2,又a n 为正数,所以a 1=2.(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数, ∴S n =n 2+n ,S n -1=(n -1)2+(n -1),当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n .(3)证明:当n =1时,1a 1(a 1+1)=12×3=16<13成立;当n ≥2时,1a n (a n +1)=12n (2n +1)<1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<16+12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=16+12⎝ ⎛⎭⎪⎫13-12n +1<16+16=13. 所以对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.。