X射线荧光光谱仪光谱分析
- 格式:ppt
- 大小:7.10 MB
- 文档页数:23
X射线荧光光谱仪的两种分析方法X射线荧光光谱仪(X-ray fluorescence spectrometer,XRF)是一种常见的化学分析仪器,可以在不破坏样品的情况下进行非破坏性的化学分析。
在XRF分析中,通过照射样品并测量样品辐射出的荧光X射线,可以确定样品中各种元素的含量。
本文介绍XRF的两种常见分析方法:定量分析和定性分析。
定量分析定量分析是通过测量样品辐射出的荧光X射线的强度,并根据已知标准样品的荧光强度与元素含量的关系,来计算样品中某种元素的含量。
在定量分析中,需要用到标准样品,这些样品已知各种元素的含量,例如NIST(美国国家标准技术研究所)的SRM(标准参考材料)。
定量分析的具体步骤如下:1.样品制备样品需要制备成薄片或颗粒状,通常需要使用磨片机或压片机进行制备。
为了获得准确的分析结果,样品制备时需要注意不要引入其他元素。
2.样品照射将样品放置在X射线荧光光谱仪中,使其受到射线照射,激发出元素的荧光X 射线。
3.测量荧光X射线利用荧光X射线探测器测量样品辐射出的荧光X射线的强度。
4.标准样品校准用标准样品进行校准,建立荧光强度与元素含量之间的关系。
对于每种元素,建立一个标准曲线。
5.计算元素含量利用标准曲线和样品荧光强度计算样品中某种元素的含量。
定性分析定性分析是通过比较样品荧光X射线的能量和强度与已知标准样品的对比,来确定样品中各种元素的类型和含量。
与定量分析不同,定性分析不需要对荧光强度进行精确的量化测量。
定性分析的具体步骤如下:1.样品制备和照射与定量分析相同。
2.测量荧光X射线与定量分析相同。
3.谱图比较将样品荧光X射线的能量和强度与标准样品进行比较,确定样品中含有哪些元素。
4.确定元素类型和含量通过谱图比较确定元素类型,通过谱峰强度的相对大小和谱图形状确定元素含量。
总结定量分析和定性分析是X射线荧光光谱仪中常用的分析方法,在各自的分析领域中都有广泛的应用。
定量分析需要进行精确的荧光强度测量和标准曲线建立,适用于需要准确测量各种元素含量的分析场合,例如矿石、环境样品等。
X射线荧光光谱分析的基本原理当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。
这个过程称为驰豫过程。
驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。
当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。
它的能量是特征的,与入射辐射的能量无关。
当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。
因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。
图10.1给出了X射线荧光和俄歇电子产生过程示意图。
K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。
同样,L层电子被逐出可以产生L系辐射(见图10.2)。
如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K 层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线等。
莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下:λ=K(Z-s)-2这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。
此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。
当一束光或电磁波照射到物质上时,光子就与物质的分子、原子或离子等微粒相互作用而交换能量。
在通常的状态下,物质中这些微粒处于基态,吸收一定频率的辐射后,由基态跃迁到激发态,这个过程称为辐射的吸收。
一 X射线荧光光谱分析原理利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。
按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X 射线能谱法(能量色散)。
当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。
较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。
根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。
X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。
激发单元的作用是产生初级X射线。
它由高压发生器和X 光管组成。
后者功率较大,用水和油同时冷却。
色散单元的作用是分出想要波长的X射线。
它由样品室、狭缝、测角仪、分析晶体等部分组成。
通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。
探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。
记录单元由放大器、脉冲幅度分析器、显示部分组成。
通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。
X射线荧光能谱仪没有复杂的分光系统,结构简单。
X射线激发源可用X射线发生器,也可用放射性同位素。
能量色散用脉冲幅度分析器。
探测器和记录等与X射线荧光光谱仪相同。
X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。
前者分辨率高,对轻、重元素测定的适应性广。
对高低含量的元素测定灵敏度均能满足要求。
后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。
可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。
对于能量小于2万电子伏特左右的能谱的分辨率差。
波长色散x射线荧光光谱仪工作原理波长色散X射线荧光光谱仪(WDXRF)是一种常用的分析仪器,广泛应用于材料科学、地质学、环境保护等领域,用于元素分析和组分分析。
它的工作原理基于X射线与样品相互作用后产生的荧光辐射,通过波长色散技术实现光谱分析。
WDXRF光谱仪主要由射线源、样品支架、能谱仪(色散器)、荧光探测器组成。
其中射线源是由X射线管产生的,通常采用连续或称为白线辐射的X射线。
样品支架用于固定样品,并确保样品与射线之间的准直关系。
当射线源照射在样品上时,样品中的原子会吸收射线并激发到高能级,随后通过荧光放射回到基态。
这些荧光辐射的能量与样品中的元素类型相关,因此通过测量荧光辐射的能谱可以确定样品中的元素组成。
能谱仪(色散器)是WDXRF光谱仪关键的部分,它用于将不同波长的荧光辐射分离开来。
在能谱仪中,通常采用一系列的晶体或多层衍射片来实现波长色散。
这些晶体或衍射片的入射面和出射面都有倾角,使得入射的X射线和出射的荧光辐射有不同的入射角度和出射角度,从而实现波长分离。
具体来说,当荧光辐射通过能谱仪时,不同波长的荧光辐射由于经过晶体或衍射片后入射角度不同,会在晶体或衍射片中发生不同程度的衍射,进而出射角度和波长也会有差别。
通过调整晶体或衍射片的角度,可以选择不同的入射角度和出射角度,从而实现波长的选择性分散。
最后,荧光辐射被聚焦到荧光探测器上进行测量和分析。
荧光探测器通常采用多道光电二极管(PMT)或半导体探测器,可以高效地测量荧光辐射的强度。
将荧光辐射的能谱与已知元素的荧光辐射能谱进行比较,可以确定样品中含有的元素种类和浓度。
总之,波长色散X射线荧光光谱仪通过射线源产生X射线,并将其照射在样品上,样品中的元素吸收射线并发出荧光辐射。
通过波长色散技术将荧光辐射进行分散,最后荧光辐射被探测器测量并分析,从而实现元素分析和组分分析。
X射线荧光光谱分析X射线荧光光谱分析(X-ray Fluorescence Spectroscopy, XRF)是一种无损分析技术,常用于元素和化合物的定性和定量分析。
这种技术利用X射线与物质相互作用产生的特殊光谱,通过测量和分析光谱特征来确定物质的组成和浓度。
X射线荧光光谱分析是基于X射线与物质相互作用的原理。
在分析过程中,样品暴露在高能X射线束下,X射线与样品中的原子产生相互作用,使原子内的内层电子被激发。
当激发的电子回到基态时,会发射出特定能量的X射线,这些特定能量的X射线被称为荧光X射线。
每个元素都有其特定的荧光X射线能量,通过测量样品发射的荧光X射线能量和强度,可以确定样品中元素的种类和相对浓度。
X射线荧光光谱分析常用的仪器是X射线荧光光谱仪(XRF spectrometer)。
该仪器由X射线源、样品支撑台、能量分散元件(如闪烁体晶体),以及能量敏感的探测器(如光电倍增管或固态探测器)等部分组成。
X射线荧光光谱仪可根据实验需要分为两种类型,即能量散射型和功率型。
能量散射型X射线荧光光谱仪在分析中使用了X射线与样品相互作用后发生散射的原理。
这种仪器测量荧光X射线的强度和能量,并通过能量散射的方式来确定元素的种类和相对浓度。
能量散射型X射线荧光光谱仪具有较高的分析灵敏度和较低的检测限。
功率型X射线荧光光谱仪则主要利用了荧光X射线的能量和强度之间的关系。
通过测量荧光X射线的强度,并利用特定的标准物质进行校准,可以定量测量样品中的元素浓度。
功率型X射线荧光光谱仪通常具有较高的灵敏度和较低的分析误差。
X射线荧光光谱分析广泛应用于材料科学、地质学、环境监测、医药化学、金属检测等领域。
在材料科学中,X射线荧光光谱分析可用于分析材料中的元素组成和化合物含量,用于质量控制和质量评估;在地质学中,可以用于岩石和矿石的成分分析和矿物鉴定;在环境监测中,可以用于大气颗粒物和土壤中有毒金属元素的测定和分析;在医药化学中,可以用于药物中有害金属元素的检测和分析;在金属检测中,可以用于金属材料成分分析和金属产品质量检测。
X射线荧光光谱仪定量分析方法利用X射线荧光光谱仪分析物质组分时,除了正确使用和操作X射线荧光光谱仪外,还需要研究制定合理、准确的定量分析方法。
定量分析是要利用一定的实验或数学方法,准确获得未知样品中各元素的定量浓度数据。
定量分析的前提是要保证样品的代表性和均匀性。
过度强调分析准确度,而忽视样品采集方法和采样理论的研究应用,是不科学、不合理的。
只有采集具有代表性的特征样品,才具有科学价值和实际意义。
目前关于采样理论的研究还有待于深入探讨。
此处我们主要关注如何确保定量分析方法的准确。
要进行定量分析,需要完成三个步骤。
首先要根据待测样品和元素及分析准确度要求,采用一定的制样方法,保证样品均匀和合适的粒度;并通过实验,选择合适的测量条件,对样品中的元素进行有效激发和实验测量;再运用一定的方法,获得净谱峰强度,并在此基础上,借助一定的数学方法,定量计算分析物浓度。
这里主要讨论获取净强度的途径和定量分析方法。
一、获取谱峰净强度要获得待测元素的浓度,首先要准确测量出待测元素的谱峰净强度。
谱峰净强度等于谱峰强度减去背景。
尽管真实背景是指分析物为零时,在对应于分析元素能量或波长处测得的计数,但这样做并不实际,因为背景依赖于基体组分。
因此,使用一种不含分析物的所谓“空白”样测量背景并用于背景校正是危险的、不正确的。
当峰背比大于10时,背景影响较小。
这时,最佳计数方式是谱峰计数时间要长于背景计数时间。
当峰背比小于10时,背景影响较大,需要准确扣除。
扣除背景方法主要有单点法和两点法,如图1—1所示。
其净强度采用以下两式计算:IP IPIPIbθp θb θL θP θH θP(a)单点扣背景(b)两点扣背景(c)扣重叠干扰图1—1 单点法和两点法扣除背景单点法:Inet = IP-Ib两点法:I net = Ip-(IH+IL)/2当谱峰两边的背景比较平滑时,可采用单点扣背景,多在分析线波长的长波一侧,例如高出1°(2θ),选择高度角也是因为在某些情况下要考虑卫星线,例如Kα3、Kα4会显著地向谱峰短波边扩展,这种情况尤其在分析低原子序数时应该注意。
x射线荧光光谱方法通则X 射线荧光光谱(X-ray Fluorescence Spectroscopy,XRF)是一种分析技术,用于确定物质中的元素组成和浓度。
它基于物质对 X 射线的荧光发射现象,当物质受到 X 射线的照射时,原子内层电子被激发,随后外层电子跃迁至内层空穴,释放出的能量以荧光形式发射出来。
通过检测和分析这些荧光的波长和强度,可以确定物质中存在的元素及其浓度。
以下是 X 射线荧光光谱方法通则的一些详细解答:1. 原理:X 射线荧光光谱的原理基于 X 射线与物质相互作用时产生的荧光现象。
当 X 射线照射到物质上时,原子内层电子被激发,外层电子跃迁至内层空穴,释放出的能量以荧光形式发射出来。
不同元素发射的荧光具有不同的特征波长,通过检测和分析这些荧光的波长和强度,可以确定物质中存在的元素及其浓度。
2. 仪器:X 射线荧光光谱仪通常由 X 射线源、样品室、探测器和数据处理系统组成。
X 射线源产生 X 射线,照射到样品上,样品中的元素发射出荧光,由探测器检测并转换为电信号,最后通过数据处理系统进行分析和处理。
3. 样品制备:样品的制备对于 X 射线荧光光谱分析非常重要。
通常要求样品具有均匀的厚度和良好的表面光洁度,以确保 X 射线的均匀照射和荧光的有效检测。
对于液体或粉末样品,可能需要进行稀释或固定在适当的基质上。
4. 分析方法:X 射线荧光光谱分析可以采用定性分析和定量分析两种方法。
定性分析用于确定物质中是否存在特定元素,通过比较荧光的特征波长与已知元素的特征波长进行识别。
定量分析则用于测量元素的浓度,通常需要使用标准物质进行校准。
5. 应用领域:X 射线荧光光谱广泛应用于材料科学、地质矿产、环境监测、工业分析等领域。
它可以用于分析金属、合金、陶瓷、矿物、土壤、水质等各种物质中的元素组成和浓度。
6. 优点和限制:X 射线荧光光谱具有分析速度快、多元素同时分析、非破坏性、样品制备简单等优点。
实验报告内容一、实验目的1.了解X射线荧光光谱仪的结构和工作原理;2.掌握X射线荧光分析法用于物质成分分析方法和步骤;3.用X荧光分析方法确定样品中的主要成分。
二、实验原理利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。
按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。
三、实验仪器X射线荧光分析仪四、实验步骤(一)实验参数选择1. 阳极靶的选择:选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。
不同靶材的使用范围见表1-1。
表1-1 不同靶材的使用范围必须根据试样所含元素的种类来选择最适宜的特征X射线波长(靶)。
当X射线的波长稍短于试样成分元素的吸收限时,试样强烈地吸收X射线,并激发产生成分元素的荧光X 射线,背底增高。
其结果是峰背比(信噪比)P/B低(P为峰强度,B为背底强度),衍射图谱难以分清。
X射线衍射所能测定的d值范围,取决于所使用的特征X射线的波长。
X射线衍射所需测定的d值范围大都在1nm至0.1nm之间。
为了使这一范围内的衍射峰易于分离而被检测,需要选择合适波长的特征X射线。
详见表1-2。
一般测试使用铜靶,但因X射线的波长与试样的吸收有关,可根据试样物质的种类分别选用Co、Fe,或Cr靶。
此外还可选用钼靶,这是由于钼靶的特征X射线波长较短,穿透能力强,如果希望在低角处得到高指数晶面衍射峰,或为了减少吸收的影响等,均可选用钼靶。
表1-2 不同靶材的特征X射线波长2. 管电压和管电流的选择工作电压设定为3~5倍的靶材临界激发电压。
选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。
X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。
但是,当管压超过激发电压5倍以上时,强度的增加率将下降。
x射线荧光光谱仪原理
x射线荧光光谱仪是一种用于分析物质成分的仪器。
其原理基
于荧光效应和能量谱分析原理。
荧光效应原理:当被测物质受到高能X射线或γ射线的照射时,其原子的内层电子会被激发到高能态,然后经过快速的非辐射跃迁返回低能态。
这个过程中,会发出特定能量的X射线,称为荧光X射线。
不同元素的原子内层电子结构不同,
因此荧光X射线具有特定的能量。
能量谱分析原理:荧光X射线由于不同元素的内层电子能级
结构的不同而具有不同的能量。
通过使用高能X射线或γ射
线照射被测物质,荧光X射线将被发射出来并通过一系列的
光学系统进行分光仪操作。
X射线荧光光谱仪使用能量色散探测技术分析荧光X射线的能量和强度。
仪器通过收集和分析
荧光X射线的能谱图,即不同能量荧光X射线的强度,可以
确定样品中各个化学元素的含量。
总结:x射线荧光光谱仪利用荧光效应和能谱分析原理,通过
测量样品荧光X射线的能谱图来确定样品中不同元素的含量。
X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种利用样品被X射线辐照后发出的荧光光谱进行化学元素定性和定量分析的方法。
它是一种非破坏性的分析技术,适用于固体、液体和气体样品。
X射线荧光光谱分析法基于X射线与物质相互作用的原理。
当样品受到X射线辐照后,其内部的原子会吸收部分X射线能量,随后再以荧光的形式发射出来。
这些发出的荧光光谱可以通过光谱仪进行检测和分析。
不同元素的荧光光谱特征不同,因此可以根据光谱特征来确定样品中的元素成分。
在X射线荧光光谱分析法中,首先需要制备样品,将其制备成均匀的固体、液体或气体形态。
为了提高分析的精确度,还可以选择加入一定的荧光剂,以增加荧光光谱的信号强度。
接下来,样品将被放置于X射线辐照源下,如X射线管,发射出的X 射线将通过样品,并激发样品中的原子产生荧光。
这些荧光将被荧光仪器所记录下来,并转换成一个荧光光谱。
荧光光谱中的特征峰可以通过对样品中各元素的荧光峰进行定性和定量分析。
对于定性分析,可以通过比对荧光峰的位置和强度与已知标准峰进行比较来确定样品中的元素成分。
对于定量分析,可以通过测量荧光峰的强度,并使用已知浓度的标准样品制备的校准曲线进行计算。
X射线荧光光谱分析法具有许多优点。
首先,它是一种非破坏性的分析方法,不需要对样品进行破坏性的处理,可以重复使用。
其次,它具有高分析速度和较高的灵敏度,可以在较短的时间内分析大量的样品,并且可以检测到低至ppm级别的元素含量。
此外,X射线荧光光谱分析法还具有广泛的适用性,可以用于各种类型的样品,包括金属、岩石、矿石、玻璃、陶瓷、塑料等。
尽管X射线荧光光谱分析法具有上述的优点,但也存在一些局限性。
首先,X射线荧光光谱分析法对于一些轻元素,如氢、碳、氮等,不敏感。
其次,由于X射线荧光光谱分析法使用的是非单一元素的基线和互作用效应,因而分析结果可能受到谱线重叠和基线的干扰。