机器学习导论
- 格式:pdf
- 大小:547.28 KB
- 文档页数:39
机器学习教案一、教案概述机器学习是近年来兴起的一门重要学科,它探索如何使计算机系统能够从数据中学习并自动改进性能。
本教案旨在引导学生系统地学习机器学习的基本概念、算法和应用,并培养学生的创新思维和问题解决能力。
二、教学目标1. 理解机器学习的基本概念和原理;2. 掌握机器学习中常用的算法和技术;3. 能够应用机器学习算法解决实际问题;4. 培养学生的数据分析和模型构建能力;5. 培养学生的团队合作和创新精神。
三、教学内容1. 机器学习导论1.1 机器学习的定义和分类1.2 机器学习的发展历程1.3 机器学习的应用领域2. 监督学习和无监督学习2.1 监督学习的原理和方法2.2 无监督学习的原理和方法2.3 监督学习与无监督学习的比较3. 常用机器学习算法3.1 决策树算法3.2 朴素贝叶斯算法3.3 支持向量机算法3.4 神经网络算法3.5 集成学习算法4. 机器学习模型评估与优化4.1 模型评估指标4.2 过拟合与欠拟合4.3 模型优化技术5. 深度学习与人工智能5.1 深度学习的概念和应用5.2 卷积神经网络与图像识别5.3 递归神经网络与自然语言处理5.4 强化学习与智能决策6. 机器学习实践案例6.1 电商推荐系统6.2 医疗诊断辅助6.3 金融风控与欺诈检测6.4 智能交通与无人驾驶四、教学方法1. 理论讲解与案例分析相结合,激发学生的兴趣和思考;2. 实践操作与项目实战相结合,培养学生的实际应用能力;3. 学生个人学习与团队合作相结合,提升学生的综合能力;4. 提供开放式的学习资源和平台,鼓励学生的创新实践。
五、教学评估1. 平时作业:对学生的学习情况进行跟踪和检查;2. 课堂讨论:组织学生进行主题讨论和思考;3. 实验报告:要求学生完成机器学习实践案例并撰写实验报告;4. 期末考试:考核学生对机器学习理论和应用的理解和掌握程度。
六、教学资源1. 教材:《机器学习导论》;2. 参考书:《机器学习实战》、《Python机器学习基础教程》等;3. 网络资源:机器学习相关的开放教育资源和学术论文。
机器学习导论•目录:•第1章机器学习概述••1.1什么是机器学习••1.2机器学习的分类••1.2.1基本分类••1.2.2监督学习及其功能分类••1.3构建机器学习系统••1.3.1机器学习的基本元素••1.3.2机器学习的一些基本概念••1.3.3机器学习模型的性能评估••1.4通过简单示例理解机器学习••1.4.1一个简单的回归示例••1.4.2一个简单的分类示例••1.5训练、验证与测试••1.6深度学习简介•1.7本章小结••习题••第2章统计与优化基础••2.1概率基础••2.1.1离散随机变量••2.1.2连续随机变量••2.1.3随机变量的基本特征••2.1.4随机特征的蒙特卡洛逼近••2.2概率实例••2.2.1离散随机变量示例••2.2.2高斯分布••2.2.3指数族••2.2.4混合高斯过程••2.2.5马尔可夫过程••2.3似然估计•2.4贝叶斯估计——后验估计••2.5随机变量的熵特征••2.5.1熵的定义和基本性质••2.5.2KL散度、互信息和负熵••2.6非参数方法••2.7优化技术概述••2.7.1基本优化算法••2.7.2拉格朗日方法••2.8本章小结••习题••第3章贝叶斯决策••3.1机器学习中的决策••3.2分类的决策••3.2.1加权错误率准则••3.2.2拒绝判决•3.3回归的决策••3.4高斯情况下的分类决策••3.4.1相同协方差矩阵情况的二分类••3.4.2不同协方差矩阵情况的二分类••3.4.3多分类情况••3.5KNN方法••*3.6概率图模型概述••3.6.1贝叶斯网络••3.6.2无向图模型••3.6.3图模型的学习与推断••3.7本章小结••习题••第4章基本回归算法••4.1线性回归••4.1.1基本线性回归•4.1.2线性回归的递推学习••4.1.3正则化线性回归••4.1.4多输出线性回归••*4.2稀疏线性回归Lasso••4.2.1Lasso的循环坐标下降算法••4.2.2Lasso的LAR算法••4.3线性基函数回归••*4.4奇异值分解••4.5回归学习的误差分解••4.6本章小结••习题••第5章基本分类学习••5.1基本分类问题••5.2线性判别函数模型••5.2.1Fisher线性判别分析•*5.2.2感知机••5.3逻辑回归••5.3.1二分类问题的逻辑回归••5.3.2多分类问题的逻辑回归••5.4朴素贝叶斯方法••*5.5机器学习理论简介••5.5.1假设空间有限时的泛化误差界••5.5.2假设空间无限时的泛化误差界••5.6本章小结••习题••第6章支持向量机与核函数方法••6.1线性支持向量机••6.1.1不等式约束的优化••6.1.2线性可分情况的SVM••6.1.3不可分情况的SVM•6.1.4合页损失函数••6.1.5SVM用于多分类问题••6.2非线性支持向量机••6.2.1SVM分类算法小结••*6.2.2SMO算法••6.3支持向量回归••*6.4核函数方法••6.5本章小结••习题••第7章决策树••7.1基本决策树算法••7.1.1决策树的基本结构••7.1.2信息增益和ID3算法••7.1.3信息增益率和C4.5算法••7.2CART算法•7.2.1分类树••7.2.2回归树••7.3决策树的一些实际问题••7.3.1连续数值变量••7.3.2正则化和剪枝技术••7.3.3缺失属性的训练样本问题••7.4本章小结••习题••第8章集成学习••8.1Bagging和随机森林••8.1.1自助采样和Bagging算法••8.1.2随机森林算法••8.2提升和AdaBoost算法••8.2.1AdaBoost算法介绍••*8.2.2AdaBoost算法分析•8.3提升树算法••8.3.1加法模型和提升树••8.3.2梯度提升树••8.4本章小结••习题••第9章神经网络与深度学习之一:基础••9.1神经网络的基本结构••9.1.1神经元结构••9.1.2多层神经网络解决异或问题••9.1.3多层感知机••9.1.4神经网络的逼近定理••9.2神经网络的目标函数和优化••9.2.1神经网络的目标函数••9.2.2神经网络的优化••9.3误差反向传播算法•9.3.1反向传播算法的推导••9.3.2反向传播算法的向量形式••9.3.3反向传播算法的扩展••9.4神经网络学习中的一些问题••9.4.1初始化••9.4.2正则化••9.4.3几类等价正则化技术••9.5本章小结••习题••第10章神经网络与深度学习之二:结构••10.1卷积神经网络••10.1.1卷积运算及其物理意义••10.1.2基本CNN的结构••10.1.3CNN的参数学习••*10.1.4卷积的一些扩展结构•*10.1.5CNN示例介绍••10.2循环神经网络••10.2.1基本RNN••10.2.2RNN的计算和训练••*10.2.3长短期记忆模型••*10.2.4门控循环单元••10.3本章小结••习题••第11章神经网络与深度学习之三:技术和应用••11.1深度学习中的优化算法••11.1.1小批量SGD算法••11.1.2动量SGD算法••11.1.3自适应学习率算法••11.2深度学习训练的正则化技术••11.2.1Dropout技术•11.2.2批归一化••*11.2.3层归一化••*11.3对抗训练••*11.4自编码器••11.4.1自编码器的基本结构••11.4.2自编码器的一些扩展••*11.5生成对抗网络••*11.6注意力机制和Transformer ••11.6.1注意力机制••11.6.2序列到序列模型••11.6.3Transformer••11.7本章小结••第12章聚类和EM算法••12.1聚类算法••12.1.1K均值聚类算法•12.1.2DBSCAN聚类算法••12.1.3其他度量和聚类算法••12.2EM算法••12.2.1EM算法的隐变量形式••12.2.2独立同分布情况••*12.2.3EM算法扩展到MAP估计••*12.2.4通过KL散度对EM算法的解释••12.3基于EM算法的高斯混合模型参数估计••12.3.1GMM参数估计••12.3.2GMM的软聚类••12.4本章小结••习题••第13章降维和连续隐变量学习••13.1主分量分析••13.1.1主分量分析原理•13.1.2广义Hebb算法••*13.2样本向量的白化和正交化••13.2.1样本向量的白化••13.2.2向量集的正交化••*13.3独立分量分析••13.3.1独立分量分析的原理和目标函数••13.3.2不动点算法Fast ICA••13.3.3自然梯度算法••13.3.4仿真实验举例••13.4本章小结••习题••第14章强化学习之一:经典方法••14.1强化学习的基本问题••14.2马尔可夫决策过程••14.2.1MDP的定义•14.2.2贝尔曼方程••14.2.3策略••14.2.4强化学习的类型••14.2.5探索与利用••14.3动态规划••14.3.1策略迭代方法••14.3.2值函数迭代方法••14.4强化学习的蒙特卡洛方法••14.4.1MC部分策略评估••14.4.2MC策略改进••14.4.3在轨策略和离轨策略••14.5强化学习的时序差分方法••14.5.1基本时序差分学习和Sarsa算法••14.5.2离轨策略和Q学习••14.5.3DP、MC和TD算法的简单比较•*14.5.4多步时序差分学习和资格迹算法••*14.6多臂赌博机••14.7本章小结••习题••第15章强化学习之二:深度强化学习••15.1强化学习的值函数逼近••15.1.1基本线性值函数逼近••*15.1.2线性值函数逼近的小二乘策略迭代算法••15.1.3深度Q网络••15.2策略梯度方法••15.2.1MC策略梯度算法Reinforce••15.2.2行动器评判器方法••*15.3连续动作确定性策略梯度方法••15.3.1DPG算法••15.3.2DDPG算法•15.3.3连续动作DRL的一些进展概述••15.4本章小结••习题••附录A课程的实践型作业实例••A.1第1次实践作业••A.2第2次实践作业••A.3第3次实践作业••附录B函数对向量和矩阵的求导••术语表••参考文献。
机器学习算法导论期末考试题
1、给人脸打上标签再让模型进行学习训练的方法,属于( )
A.强化学习
B.半监督学习
C.监督学习
D.无监督学习
正确答案: C
2.机器学习进行的第一步是( )
A.数据收集
B.特征提取
C.交叉验证
D.模型训练
正确答案: B
3、一般来说,在机器学习中,用计算机处理一幅的图像,维度是( )
A.上万维
B.二维
C.三维
D.一维
正确答案: A
4、在讲解“没有免费午餐定理”的时候,我们假设以上每一种情况出现的概率相同,请问这样的假设是基于如”下哪种经验?( )
A.实践经验
B.无经验
C.常识经验
D.学习经验
正确答案: B
二、多选题
1、在本课程中,我们把机器学习分成了哪几类?( )
A.自监督学习
B.传统监督学习
C.无监督学习
D.半监督学习
正确答案:B、C、D
2、以下哪些算法是非显著式编程?( )
A.编程实现扫地机器人的路径规划
B.编程判断医疗CT片中的病变区域
C.编程统计一个地区的GDP
D.编程求解棋盘上的八皇后问题
正确答案:A. B
3、下面哪几种机器学习的分类,完全不需要人工标注数据?( )
A.半监督学习
B.强化学习
C.无监督学习
D.监督学习
正确答案:B. C。
机器学习应用导论教学大纲及教案一、课程简介本课程旨在介绍机器研究的基本概念和应用。
通过理论讲解和实践操作,学生将掌握机器研究的基本原理和常见算法,并学会将其应用于实际问题解决。
二、教学目标1. 了解机器研究的基本概念和发展历程。
2. 掌握常见的机器研究算法及其应用场景。
3. 学会使用机器研究工具和平台进行数据挖掘和模型训练。
4. 能够独立思考和解决实际问题,并将机器研究方法应用于问题求解。
三、教学内容1. 机器研究概述- 机器研究的定义和分类- 机器研究的应用领域2. 监督研究- 概念理解和基本原理- 常见的监督研究算法:线性回归、逻辑回归、决策树、支持向量机等- 监督研究在实际问题中的应用案例3. 无监督研究- 概念理解和基本原理- 常见的无监督研究算法:聚类、关联规则等- 无监督研究在实际问题中的应用案例4. 强化研究- 概念理解和基本原理- 强化研究的算法和模型- 强化研究在实际问题中的应用案例5. 数据预处理和特征工程- 数据清洗和缺失值处理- 特征选择和降维技术6. 机器研究实践- 使用Python进行机器研究开发- 常用的机器研究库和工具介绍- 实战案例分析和实验操作四、教学方法1. 理论授课:讲解机器研究的基本概念和算法原理。
2. 实践操作:通过实际案例和实验操作,让学生亲自动手实践机器研究的流程和方法。
3. 讨论和交流:引导学生思考和讨论,解决实际问题中的机器研究应用难题。
4. 课程作业和项目:布置相关的实践作业和项目,加深学生对机器研究的理解和应用能力。
五、教材与参考资料1. 主教材:《机器研究导论》2. 参考资料:《Python机器研究实战》、《机器研究实战》、《统计研究方法》等六、评估方式1. 平时表现:参与课堂讨论和实践操作。
2. 课程作业:完成相关的实践作业和项目。
3. 考试:理论知识的考核和应用题的解答。
以上为《机器学习应用导论教学大纲及教案》的内容概要,课程内容以具体教案为准。