当前位置:文档之家› 半导体材料的分类及应用

半导体材料的分类及应用

半导体材料的分类及应用
半导体材料的分类及应用

半导体材料的分类及应用

————————————————————————————————作者: ————————————————————————————————日期:

?

半导体材料的分类及应用

能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具,极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器,无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表,在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。

1 元素半导体

周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定,易发挥; 灰Sn在室温下转变为白Sn, 已金属;B、C的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

表1 具有半导体性质的元素

周期ⅢA ⅣA ⅤA ⅥA ⅦA

BC

S i P S

Ge As S e

SnSb Te I

Se 曾广泛地用作光电池和整流器, 晶体管发明后,Ge 迅速地兴起, 但很快又被性能更好的Si 所取代。现在Se 在非晶半导体器件领域还保留一席之地,Ge 在若干种分立元件( 低压、低频、中功率晶体管以及光电探测器等) 中还被应用, 而Si 则一直是半导体工作的主导材料, 这种情况预计到下个世纪初也不会改变。Si 能成为主角的原因是:含量极其丰富( 占地壳的27%) , 提纯与结晶方便; 禁带宽度1. 12eV,比Ge 的0.66eV大, 因而Si器件工作温度高; 更重要的是SiO2膜的纯化和掩蔽作用, 纯化作用使器件的稳定性与可靠性大为提高,掩蔽作用使器件的制和实现了平面工艺,从而实现了大规模自动化的工业生产和集成化,使半导体分立器件和集成电路以其低廉的价格和卓越的性能迅速取代了电子管,微电子学取代了真空电子学, 微电子工程成为当代产业中的一支生力军。据报导, 1995 年世界半导体器件销售额为1464 亿美元,硅片销费量约为30.0亿平方英寸, 1996 年市场规模为1851 亿美元, 增长了26.4%, 消费硅片则达33. 46亿平方英寸。

硅材料分为多晶硅, 单晶硅和非晶硅。单晶硅分为直拉单晶硅

( CZ) 、区熔单晶硅( FZ) 和外延单晶硅片( EPI)。其中, CZ 单晶硅的特点是直径大、机械强度高、电阻率低、氧含量较高, 主要用于制造集成电路、晶体管、低电压小功率二极管、传感器和太阳能电池; FZ 单晶硅的特点是电阻率高、补偿度小、少数载流子寿命长、NT D 单晶硅电阻率均匀性好,主要用于电力电子器件( SR、SCR、GTO 等) 高反压晶体管和射线探测器;外延单晶硅片的特点是薄膜单晶、气相生产表面, 主要用于各种类型晶体管,近年来为克服集成电路的软失效(So ft er ror ) 和锁存效应(Catch up), 用于高速CM OS电路;浇铸多晶硅和淀积或溅射非晶硅,主要用于低成本太阳能电池。为提高计算机的贮存容量的速度以及不断地降低成本, 要求其贮存器芯片尽量减少每个元件的面积并提高集成度, 需要大面积无缺陷的硅单晶片作保证。目前16 兆的动态随机贮存器( DRAM )及0. 5 m工艺已实现大批量生产, 64 兆位的DRAM 正在开发, 预计2000 年将生产出IG 的DRAM。与此相应, 硅材料制备技术已达到十分完美的程度。5英寸和6 英寸的硅单晶片已占硅片生产总量的70%以上, 1994年以后世界各国都在大力扩大8 英寸片的生产能力, 12英寸的单晶硅也已问世。另方面,高压大功率器件的发展, 区熔硅单晶生产水平也有很大提高, 4 英寸和5 英寸区熔硅单晶已可工业化生产, 6 英寸的也已研制成功, 并投入生产。

2 化合物半导体及其固溶体

人们在探索元素半导体以外的半导体材料的努力中,很自然地

把目标转向化合物材料。50 年代就开始了对化合物半导体的研究,1952年WelkeV 首先把Ⅲ—Ⅴ化合物半导体作为新的重要半导体族,现在已经发现了许多种具在半导体性质的化合物, 包括Ⅰ族与Ⅴ、Ⅵ、Ⅶ族; Ⅱ族与Ⅳ、Ⅴ、Ⅵ、Ⅶ族;Ⅲ族与Ⅴ、Ⅵ族; Ⅳ族与Ⅳ、Ⅵ族;Ⅴ族与Ⅵ族; Ⅵ族与Ⅵ族的许多化合物。但这当中有实用价值或工艺上目前达到实用阶段的并不多,主要集中在Ⅲ—Ⅴ及Ⅱ—Ⅵ族化合物及其多元固溶体上。早期( 上世纪末至二战前)曾广泛使用的天然矿石检波器(方铅矿、黄铁矿、闪锌矿) 及Cu2O 整流器是人们最早使用的化合物半导体, 如今只有史料价值了。

2. 1 Ⅲ—Ⅴ族化合物及其固溶体半导体

Ⅲ—Ⅴ族合化物指周期表中Ⅲ—A( B、Al、Ga、I n)与VA( N、P、As、Sb) 族元素构成的16种化合物, 但B系及N系化合物由于制备困难、能源过宽以及自补偿效应等原因,只BN 及AIN 有一些研究报导。Al 系化合物一般不稳定、易潮解, 只在三元系固溶体中作为一个组元而被使用。因此, 研究得较多的是Ga、I n 与As、P和Sb的化合物,尤其是GaAs 和InP。GaAs 的能隙为1. 43eV, 因而有比Si更高的使用温度( 可达400℃) , 其载流子电子的迁移率是Si 的6倍,是制作高速器件的理想材料,此外其抗辐射能力也比Si 强。因此在高速集成电路的领域已向硅提出了强有力的挑战。目前构成砷化镓基超高速集成电路(GaAsVHSIC)的主要器件是GaAs MESFET ( 金属半导体场效应晶体管) 、HEMT ( 高

电子迁移率晶体管) 和HBT( 异质结双极晶体管) 。GaAsMESFET 是1974 年研制成功的,在GaAs VHSIC 中用得最多,也是最基本的有源器件。HEM T 和HBT 分别在1980 年和1984 年问世, 它们都是采用MBE( 分子束外延)或MOCVD( 金属有机化学汽相淀积) 技术制得的。GaAs VHSIC 的发展借鉴了Si- IC 的经验,例如CAD 技术、全离子注入平面结构、干法刻蚀、难熔金属栅或替代式栅自对准工艺等。砷化镓集成电路的制作水平已达 100mm 的圆片和0. 4 m 线宽,数字电路35万门的产品已投入市场。在固体微波器件领域, 微波频率的低端( 4GHz以下) Si双极晶体管是功率器件的主流,在4GHz 以上, 微波固态功率源则是以GaAs MESFET 器件为主流产品,并且借用MBE、MOCVD 等高质量超薄层生长技术以及亚微米微细加工技术, HEM T 及HBT 等微波和毫米波新器件得到很大发展,基保GaAs、InP 及AlGaAs 等Ⅲ- Ⅴ族材料的优越性能得到了充分利用。而InP 在许多方面呈现出比GaAs更好的特性, 它的主要特性是:速度高、耐辐射,可进行光化学蚀刻,频率高, 导热性好, 击穿场强高。现业已证实, InP 制造的晶体管与用其它任何材料制造的器件相比其速度快50%。InP 是制造高频器件、结型场效应晶体管、抗核辐射器件以及光电集成电路最有希望的基础材料。由于电子战、雷达、通信和智能武器能军用要求, 以及移动通信、卫星通信和汽车通信等商用要求, 高频、高速、低噪、宽带大功率的小型可靠的半导体器件和电路成为发达国家竞相发展的重点, 微波毫米波单片集成电路(MIMIC) 从80年代以

来得到迅速的发展,现在MIMIC 电路已将微波电路本身的集成、微波与数字电路的集成以及微电子与光电子的集成结合在一起(宏单元电路) , M IMIC工艺已进入了3 英寸0.1 m的水平。

半导体光电子器件包括半导体发光器件、光探测器件和光电子集成电路三大部分, 在这个领域,化合物半导体特别是Ⅲ- Ⅴ族材料起着十分重要的作用。此外, 化合物半导体之间还能形成固溶体,又称混晶。按组成元素的数目构成三元或四元固溶体。组成多元固溶体的优点在于: 随着每种组元在固溶体中所占百分比的改变, 固溶体的许多性质会连续地改变,从而满足器件设计的需要。由于社会的迅速信息化, 军事上对通信联络及武器装备高精度、高灵敏、小型化要求的刺激, 基于大面积超薄层外延生长( 超晶格量子陷结构)技术、微细加工技术的高性能光电子器件正迅速发展,例如高速化宽带宽光源和光电二极管、二维阵列表面光电子器件、光集成器件、大面阵高分辨率图象传感器和热成像器件等, 这些领域主要是化合物在大显身手。下面是Si、GaAs 和I nP 三种主要半导体材料的性质比较表2 SiGaAs 和I nP 基本物理性质比较

Si GaAs InP

晶格常数 A 5. 491 5.653 5. 869

密度kg/ cm3 2. 33×103 5. 32×103 4. 787×103 熔点℃ 14121237 1062

禁带宽度 eV 1. 119 1. 38 1. 27

晶体结构金刚石型闪锌矿型闪锌矿型

晶系立方立方立方

热导率W/ cm. K 0. 21 0. 07 0.10

显微硬度 kg/ cm2 950 700±50 435±20

熔点时的蒸汽压105Pa 6×10-6Pas2+ Pas 4= 0. 98 PGa=10- 4 Pp2+ Pp4=27. 5

屈服应力 N/ mm2 —1. 9 1. 8

堆垛层错能meV/ at om —47 17

2. 2 Ⅱ-Ⅵ族化合物半导体及其固溶体

Ⅱ-Ⅵ族化合物指周期表中ⅡB( Zn、Cd、Hg ) 与ⅥA( O、S、Se、Te ) 族元素构成的12种化合物, 但因金属氧化物有其自身的共性, 常单独作为一类, 即氧化物半导体,故还有9 种。它们都是直接带隙半导体, 能隙最大的是ZnS( 3. 6eV) 最小的是HgTe(0. 02eV) 。由于Ⅱ- Ⅵ化合物的离子性质, 所以点缺陷浓度大, 这往往带来化学计量比的偏离。点缺陷是带电的, 因此Ⅱ- Ⅵ化合物往往不需要掺杂, 就呈现出某种导电型号, 例如ZnTe是p 型, CdSe 、ZnSe、CdS等是n 型。这些材料由于所谓“自补偿”效应, 无法利用掺杂改变导电型号,因此不能制成p- n结, 只能采用异质结结构。不过采用固溶体组合,如ZnxCd1- xTe、ZnSexTe1- x 则在一定组分比X 范围都可以制成p型和n型材料。Ⅱ- Ⅵ化合物主要用途在光电器件领域。ZnS是著名的发光材料-萤光粉; CdS 是光敏电阻材料;CdT e 是唯一能得到n 型和p 型两种导电的材料,能隙约1. 5eV,与太阳电池最高转

换效率所要求的能隙十分接近, 是制作薄膜高效光电池的理想材料。又如三元固溶体HgxCd1- x Te,是重要的红外探测器材料, 改变组分比X,可以覆盖红外辐射的三个“大气窗口”: 1~3, 3~ 5及8~14 m波长。

2. 3 其它化合物半导体

化合物半导体种类非常多, 以下介绍几种已实用化或正在研究实用化的材料。

碳化硅它有较大的热导率、宽能隙( 6H型SiC能隙2. 89eV) , 高的电子饱和速度紫外光探测器及荧光LED 等方面有很好的应用前景。近年来在SiC 晶体生长技术方面有较大进展, 已有直径25mm的抛光6H - SiC 芯片商品。

Ⅱ-Ⅵ族半导体 Bi 2T e3 和Sb2T e3 等及其固溶体是传统的半导体温差电致冷材料。

3 金属氧化物半导体

金属氧化物的能隙都在2~3eV以上, 但它们很容易偏离化学计量, 即在化学组成上出现氧不足或氧过剩,由于在晶体中造成点缺陷。点缺陷往旆起施主或受主作用, 使金属氧化物在常温下也成为半导体。由于能隙大所以材料的使用温度高,许多金属氧化物半导体是过渡金属氧化物, 其导带是过渡金属的d 能带, 宽度较窄,能带窄到一定程度时电子输运就不能用能带传输模型,而采用小极化子模型或热激活跳跃模型, 这时载流子的迁移率很低。金属氧化物半导体是半导体功能陶瓷的基础, 如今在很多方面, 例如传感器方

面, 正日益与微电子技术相结合,实现器件的薄膜化、微型化与集成化。

4 有机半导体

有机化合物是指含有碳键的化合物, 其晶体是分子晶格, 分子间为范得瓦尔相互作用, 分子间价电子的共用化几乎是不可能的,因此呈现优良的绝缘性能。但有些有机物的聚合态具有特殊的结构, 在与碳键垂直的方向上, 其 电子云有相当程度的重叠, 形成( 一堆)导带, 通过化学或电化学掺杂, 载流子能容易地进入能带( 或从能带中抽出) , 使电导率发生巨大变化。从长远看, 导电聚合物具有价格低, 重量轻, 易加工, 可挠曲等特点,可能还有某些新的功能, 引起人们的重视。目前报导的研究工作有: 场效应晶体管(有源层使用!-六噻吩) ; 发交二极管( 以MEH—PPV 为有源层的黄绿光LED;以矛对苯撑为源层的兰光LED) ;太阳电池( 用聚v乙炔、聚N—Z烯咔唑和各种聚噻吩的衍生物)。近年来C60的发现引起轰动。这是由60 个碳原子构成的原子团簇, 由C60构成的C60团簇固体是除石墨、金刚石、无定形碳天然形态之外的由人工制成的碳的新构型。其基元是20 面体的“球”。fcc 结构团簇固体的能隙约1. 5eV。掺杂C60团簇固体可得到转变温度达18至28K 的超导体。

5 非晶态半导体

长程无序短程有序的物质叫非晶态物质。同一种材料,处于晶态或非晶态,其特性可有极大的不同。非晶态半导体保存了存在能

隙这一最基本的性质。!- Si膜可控掺杂的实现和硫系非晶半导体开关及贮存特性的发现, 开辟了非晶半导体材料走向实用化的途径。非晶半导体制备工艺简单,容易实现大面积化, 可以在任意形状的衬底上成膜以及光吸收系数大等优点, 得到了充分的利用。目前利用非晶半导体的光学和电学特性制造新器件的研究十分活跃。例如: !- Si∶H 太阳电池, 已占世界太阳电池产量的31. 8%, 单晶电池在AM1. 5 时的效率大于12%; !- Si∶H 场效应管与集成电路,作为大面积液晶显示屏的驱动电路; !- Si∶H电荷藕合器件; 摄像靶; 图像传感器; 辨色器以及!!-SiC∶H平板型电致发光器件;!- Si∶H 复印鼓等。

6 微结构材料

超晶格量子阱理论的提出, 使材料科学进入了新纪元, 人们可以根据需要, 改变化合物的组成, 设计出自然界根本不可能存在的新材料( 所谓“能带工程”) ,或者改变材料的维度( 从三维变成二维、一维甚至0维, 所谓量子面、量子线或量子点材料) , 赋予某种材料以新的性质。先进的加工技术(MBE、MOCVD、离子注入以及精细光刻)使得微结构材料得以实现。HEMT、HBT 以及光通信中许多器件就是结合了微结构材料制成的。近年来关于Si1-xGex 材料的研究倍受重视。SiGe混晶电子迁移率是Si的两倍, SiGe-IC的速度可与GaAs- IC匹敌, 然而它可与现有Si 工艺技术兼容,材料也比GaAs 便宜得多, 因此SiGe- IC 的速度、频率及价格上均具极大优势。SiGe/ Si 多量子阱以SiGe作

势阱, Si作势垒, 据认为发生在势阱区的辐射复合跃迁可毋需声子参与, 结合前述特点, 有人认为SiGe是光集成的理想材料。多孔硅的研究也很活跃, 多孔硅中由孔所包围的硅柱等效为一维量子线,由于量子约束效应, 其子带间的能量差可以远大于硅能隙, 因而对应的发光波长可移到可见光范围, 外量子效应可> 1%,可同AlGaAs 异质结的发光效应相比较。有人认为, 多孔硅研究的进一步深化, 可能导致全硅的光电子电路的实现。

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

半导体材料(精)

半导体材料 概要 半导体材料(semiconductor material) 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。 特性和参数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体?; I* s# N* v8 Y! H3 a8 q4 a1 R0 \- W 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何' u* k9 `+ D1 v1 U# f5 [7 G 答:硅(Si)、锗(Ge)和砷化家(AsGa): j* z$ X0 w& E4 B3 m. M( N( _; o4 D 何谓VLSI' b5 w; M# }; b; @; \8 g3 P. G 答:VLSI(Very Large Scale Integration)超大规模集成电路5 E3 U8 @- t& \ t9 x5 L4 K% _2 f 在半导体工业中,作为绝缘层材料通常称什幺0 r7 i, `/ G1 P! U" w! I 答:介电质(Dielectric). w- j" @9 Y2 {0 L0 f w 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线?4 Z* y3 A, G f+ z X* Y5 ? 答:良好的导体仅次于铜 介电材料的作用为何?% Y/ W) h' S6 J, l$ i5 B; f9 [ 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质5 |3 X. M$ o; T8 Y, N7 l5 q+ b 何谓IMD(Inter-Metal Dielectric)9 u9 j4 F1 U! Q/ ?" j% y7 O/ Q" m; N, b 答:金属层间介电质层。1 X8 g' q a0 h3 k4 r" X$ l. l 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass): u0 F0 d! A M+ U( w/ Q 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG?& ~- I3 f8 i( Y! M) q, U 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass)6 f/ g4 U& D/ }5 W 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体" q) ]0 H- @9 p7 C8 P; D8 Y. P) X 二氧化硅其K值为3.9表示何义( Y! @1 J! X+ P; b* _$ g 答:表示二氧化硅的介电质常数为真空的3.9倍6 H9 v' O5 U U" R9 w! o$ ` 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体4 Z& Z5 a* E6 m+ F 简述Endpoint detector之作用原理.6 [2 d$ j" l7 p4 V. f 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测

半导体材料

半导体材料 应用物理1001 20102444 周辉 半导体材料的电阻率界于金属与绝缘材料之间的材料。这种材料在某个温度 范围内随温度升高而增加电荷载流子的浓度,电阻率下降。由化合物构成的半导 体材料,通常是指无机化合物半导体材料。比起元素半导体材料来它的品种更多, 应用面更广。 半导体材料结构特征主要表现在化学键上。因为化合物至少由两个元素构 成,由于它们彼此间的原子结构不同,价电子必然向其中一种元素靠近,而远离 另一种元素,这样在共价键中就有了离子性。这种离子性会影响到材料的熔点、 带隙宽度、迁移率、晶体结构等。 化合物半导体的组成规律一般服从元素周期表排列的法则。对已知的化合物 半导体材料,其组成元素在同一族内垂直变换,其结果是随着元素的金属性增大 而其带隙变小,直到成为导体。反之,随着非金属性增加而其带隙变大,直至成 为绝缘体。 类别按其构成元素的数目可分为二元、三元、四元化合物半导体材料。它 们本身还可按组成元素在元素周期表中的位置分为各族化合物,如Ⅲ—V族,I —Ⅲ—Ⅵ族等。下面介绍二元化合物,其中主要的类别为Ⅲ—v族化合物半导体 材料,Ⅱ—Ⅵ族化合物半导体材料,Ⅳ—Ⅳ族化合物半导体材料。 Ⅳ—Ⅵ族化合物半导体材料。已发现具有半导体性质的有格式,GeSe,GeTe, SnO ,SnS,SnSe,SnTe,Pb0,PbS,PbSe,PbTe,其中PbO,PbS,PbSe,PbTe 2 已获重要用途。

V—Ⅵ族化合物半导体材料。已发现具有半导体性质的有Bi 2O 3 ,Bi 2 S 3 ,Bi 2 Se 3 , Bi 2Te 3 ,Sb 2 O 3 ,Sb 2 S 3 ,Sb 2 Te 3 、As 2 O 3 ,As 2 S 3 ,其中Bi 2 Te 3 ,Bi 2 Se 3 等已获实际应用。 I—Ⅵ族化合物具有半导体性质的有Cu 2 O,Cu 2 S,Ag 2 S,Ag 2 Se,Ag 2 Te等,其 中Cu 20,Cu 2 S已获应用。 三元化合物种类较多,如I—Ⅲ—Ⅵ、I—v—Ⅵ、Ⅱ—Ⅲ—Ⅵ、Ⅱ—Ⅳ—V 族等。多数具有闪锌矿、纤锌矿或黄铜矿型晶体结构,黄铜矿型结构的三元化合 物多数具有直接禁带。比较重要的三元化合物半导体有CuInSe 2,AgGaSe 2 , CuGaSe 2,ZnSiP 2 ,CdSiP 2 ,ZnGeP 2 ,CdGaS 4 ,CdlnS 4 ,ZnlnS 4 和磁性半导体。后者 的结构为AB 2X 4 (A—Mn,Co,Fe,Ni;B—Ga,In;X—S,Se)。 四元化合物研究甚少,已知有Cu 2FeSnS 4 ,Cu 2 FeSnSe 4 ,Cu 2 FeGeS 4 等。 应用化合物及其固溶体的品种繁多,性能各异,给应用扩大了选择。在光电子方面,所有的发光二极管、激光二极管都是用化合物半导体制成的,已获工业应用的有GaAs,GaP,GaAlAs,GaAsP,InGaAsP等。用作光敏元件、光探测器、光调制器的有InAsP,CdS,CdSe,CdTe,GaAs等。一些宽禁带半导体(SiC,ZnSe等)、三元化合物具有光电子应用的潜力。GaAs是制作超高速集成电路的最主要的材料。微波器件的制作是使用GaAs,InP,GaAlAs等;红外器件则用GaAs,GaAlAs,CdTe,HgCdTe,PbSnTe等。太阳电池是使用CdS,CdTe,CulnSe2,GaAs,GaAlAs等。最早的实用“半导体”是「电晶体/ 二极体」。 一、在无线电收音机及电视机中,作为“讯号放大器用。 二、近来发展「太阳能」,也用在「光电池」中。 三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。 其中在半导体材料中硅材料应用最广,所以一般都用硅材料来集成电路,因为硅是元素半导体。电活性杂质磷和硼在合格半导体和多晶硅中应分别低于

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

常用的半导体材料有哪些

常用的半导体材料有哪些? 晶圆 初入半导体行业为了尽快入门,我们必须对这个行业的主要物料做一个详细的了解,因为制造业的结构框架是人机料法环测。物料是非常关键的一部分,特别是对于半导体这类被人家卡脖子的行业更要牢记于心,尽快摆脱西方的围堵,但是基础材料这块需要长时间的积累,短期我们很难扭转当下这种憋屈的局面。 在半导体产业中,材料和设备是基石,是推动集成电路技术创新的引擎。半导体材料在产业链中处于上游环节,和半导体设备一样,也是芯片制造的支撑性行业,所有的制造和封测工艺都会用到不同的半导体材料。 半导体材料一般均具有技术门槛高、客户认证周期长、供应链上下游联系紧密、行业集中度高、技术门槛高和产品更新换代快的特点,目前高端产品市场份额多为海外企业垄断,国产化率较低,寡头垄断格局一定程度制约

了国内企业快速发展。华为事件的发生发展告诉我们半导体材料国产替代已经非常紧迫了。 半导体材料细分行业多,芯片制造工序中各单项工艺均配套相应材料。按应用环节划分,半导体材料主要可分为制造材料和封装材料。在晶圆制造材料中,硅片及硅基材料占比最高,约占31%,其次依次为光掩模板14%,电子气体14%,光刻胶及其配套试剂12%,CMP抛光材料7%,靶材3%,以及其他材料占13%。 在半导体封装材料中,封装基板占比最高,占40%。其次依次为引线框架15%、键合丝15%、包封材料13%、陶瓷基板11%、芯片粘合材料4%、以及其他封装材料2%。封装材料中的基板的作用是保护芯片、物理支撑、连接芯片与电路板、散热。陶瓷封装体用于绝缘打包。包封树脂粘接封装载体、同时起到绝缘、保护作用。芯片粘贴材料用于粘结芯片与电路板。封装方面相对难度要低一点,所以我们国家的半导体企业主要集中在封测这一后工艺领域。 半导体材料中前端材料市场增速远高于后端材料,前端材料的增长归功于各种前端技术的积极使用,如极紫外(EUV)曝光,原子层沉积(ALD)和等离子体化学气相沉积(PECVD)等。

半导体材料硅基本性质

半导体材料硅的基本性质 一.半导体材料 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂

质称为受主。如硼、铝就是硅的受主。 图(a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图所示。 二.硅的基本性质 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。 性质符号单位硅(Si) 原子序数Z 14 原子量M 原子密度个/cm3 ×1022 晶体结构金刚石型 晶格常数 a ? 熔点Tm ℃1420 密度(固/液) ρg/ cm3 介电常数ε0 个/ cm3×1010本征载流子浓度n i 本征电阻率ρi Ω·cm ×105

半导体材料的分类及应用

半导体材料的分类及应用

————————————————————————————————作者: ————————————————————————————————日期: ?

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具,极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器,无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表,在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定,易发挥; 灰Sn在室温下转变为白Sn, 已金属;B、C的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

半导体材料的分类及应用

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具, 极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器, 无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表, 在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定, 易发挥; 灰Sn 在室温下转变为白Sn, 已金属; B、C 的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。 表1 具有半导体性质的元素

周期ⅢA ⅣA ⅤA ⅥA ⅦA B C S i P S Ge As S e S n Sb Te I Se 曾广泛地用作光电池和整流器, 晶体管发明后,Ge 迅速地兴起, 但很快又被性能更好的Si 所取代。现在Se 在非晶半导体器件领域还保留一席之地, Ge 在若干种分立元件( 低压、低频、中功率晶体管以及光电探测器等) 中还被应用, 而Si 则一直是半导体工作的主导材料, 这种情况预计到下个世纪初也不会改变。Si 能成为主角的原因是: 含量极其丰富( 占地壳的27%) , 提纯与结晶方便; 禁带宽度1. 12eV, 比Ge 的0. 66eV 大, 因而Si 器件工作温度高; 更重要的是SiO2 膜的纯化和掩蔽作用, 纯化作用使器件的稳定性与可靠性大为提高,掩蔽作用使器件的制和实现了平面工艺, 从而实现了大规模自动化的工业生产和集成化, 使半导体分立器件和集成电路以其低廉的价格和卓越的性能迅速取代了电子管, 微电子学取代了真空电子学, 微电子工程成为当代产业中的一支生力军。据报导, 1995 年世界半导体器件销售额为1464 亿美元, 硅片销费量约为30. 0 亿平方英寸, 1996 年市场规模为1851 亿美元, 增长了26. 4%, 消费硅片则达33. 46 亿平方英寸。 硅材料分为多晶硅, 单晶硅和非晶硅。单晶硅分为直拉单晶硅( CZ) 、区熔单晶硅( FZ) 和外延单晶硅片( EPI) 。其中, CZ 单晶

半导体材料有哪些

半导体材料有哪些 半导体材料有哪些 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。 延伸 半导体材料是什么? 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿

半导体材料

半导体材料应用前景调研报告 1.前言 随着科技的进步,半导体材料的研究与发展越来越受到人们的重视与青睐,从小小的光伏电池与LED灯,到雷达与红外探测器,无论是我们日常的生活中,还是包含国际顶尖技术的设备中,都有着半导体材料的影子。在材料领域里,半导体材料作为科学家们重点研究的对象,在现代社会中不断散发着光和热,使这个世界变得更加美好。 2.半导体材料的应用 (1)半导体照明技术 发光二极管,是一种半导体固体发光器件,是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。半导体照明产品就是利用LED作为光源制造出来的照明器具。半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、台灯、笔记本电脑背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。 (2)光伏电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应

工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴--电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。无枯竭危险;绝对干净(无污染,除蓄电池外);不受资源分布地域的限制;可在用电处就近发电;能源质量高;使用者从感情上容易接受;获取能源花费的时间短;供电系统工作可靠等优点。但是太阳能电池成本还很高:比许多绿色/再生能源高很多,无法以合理成本提供大量需求。未来可以期待科学家及工程师们不断的研究,再加上半导体产业技术的进步,太阳能电池的效率也逐渐增加,而且发电系统的单位成本也正逐年下降。因此,随着太阳能电池效率的增加、成本的降低以及环保意识的高涨,太阳能电池的成本可望大幅降低。也可以利用便宜的镜子将阳光反射至昂贵的高效能太阳能电池(需注意散热),可以发电降低成本。 (3)集成电路 材料构成的PN结的单向导电性质,可以用其作出具有一定大小的逻辑电路。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比和罗伯特·诺伊思。 有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

新型半导体材料GaN简介

新型半导体材料GaN GaN的发展背景 GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。 在宽禁带半导体材料中,氮化镓由于受到缺乏合适的单晶衬底材料、位错密度大等问题的困扰,发展较为缓慢,但进入90年代后,随着材料生长和器件工艺水平的不断发展,GaN半导体及器件的发展十分迅速,目前已经成为宽禁带半导体材料中耀眼的新星。 GaN的特性 具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。 GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN 具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个元胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。在室温下,GaN 不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n 型,最好的样品的电子浓度约为4×1016/cm3。一般情况下所制备的P型样品,都是高补偿的。 很多研究小组都从事过这方面的研究工作,其中中村报道了GaN最高迁移率数据在室温和液氮温度下分别为μn=600cm2/v·s和μn=1500cm2/v·s,相应的载流子浓度为n=4×1016/cm3和n=8×1015/cm3。未掺杂载流子浓度可控制在

半导体材料介绍论文

半导体材料介绍 摘要:本文主要介绍半导体材料的特征、分类、制备工艺以及半导体材料的一些参数。 半导体在我们的日常生活中应用很广泛,半导体材料的一些结构和参数决定了 它的特性。以二氧化钛为例,它就是一种半导体材料,其结构和性能决定了它 在降解有机污染物方面的应用,人们现在研究了有关它的性质,并将进一步研 究提高它的光催化效果。 关键词:半导体材料导电能力载流子电阻率电子空穴 正文: 半导体材料是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。 半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类晶体缺陷。位错密度可以用来衡量半导体单晶材料晶格完整性的程度。当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。 半导体材料的特性参数对于材料应用甚为重要。因为不同的特性决定不同的用途。晶体管对材料特性的要求:根据晶体管的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。用载流子迁移率大的材料制成的晶体管可以工作于更高的频率(有较好的频率响应)。晶体缺陷会影响晶体管的特性甚至使其失效。晶体管的工作温度高温限决定于禁带宽度的大小。禁带

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

半导体材料专题介绍

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二○~二○学年度第学期 课程编号课程名称主讲教师评分学号姓名专业年级 题目:

目录 摘要 (4) 1.ZnO的发展历史与基本性质 (5) ZnO的发展历史 (5) ZnO的基本性质 (5) ZnO的晶体结构 (5) ZnO的物理化学性质 (6) ZnO的其他性质 (7) 紫外受激发射特性 (7) 透明导体特性 (8) 气敏性 (8) 压敏特性 (8) P-N结特性 (9) 压电特性 (9) 2.ZnO的原料的获取与提纯 (10) 原料的获取 (10) 原料的提纯 (11) 直接法(美国法) (11) 间接法(法国法) (11) 化学湿法 (12) 3.ZnO的单晶的制备 (13) 水热法 (13) 化学气相输运法 (14) 4.ZnO的薄膜的制备 (16) 脉冲激光沉积法PLD (16) 金属有机物气相外延法MOCVD (17) 喷雾热解法 (17) 磁控溅射法 (18)

溶胶-凝胶法Sol-gel (19) 5.ZnO的应用与前景 (21) 的应用方向 (21) 短波长发光材料 (21) 氮化镓薄膜的缓冲层 (22) 集成光学 (22) 电声器件与声光器件 (22) 传感器和高效率器件 (22) ZnO的问题与挑战 (23) ZnO的前景 (24) 谢辞 (25) 参考文献 (26)

摘要 氧化锌(ZnO)是一种具有广泛用途的新型第三代II-VI族多功能半导体材料,拥有着许多诸如宽禁带,激子结合能大,高化学稳定性和耐高温性等等优良性质,制备出来的ZnO单晶和薄膜在发光器件,透明电极,压敏电阻等等领域有着诸多的应用,在未来有着光明的应用前景,引起了社会各界的广泛关注。 本论文着重介绍了氧化锌半导体材料的材料来源,晶体结构,物理化学性质,单晶与薄膜的制备,具体在各个领域应用与发展和目前制备薄膜以及应用于市场所遇到的难题。 关键词:氧化锌,材料来源,晶体结构,物理化学性质,单晶,薄膜,应用,难题。

半导体分类

按半导体工艺分类,集成电路可以分为 A、双极型电路、MOS电路和接口电路 B、双极型电路、MOS电路和双极型-MOS电路 C、小规模、大规模和超大规模集成电路 D、模拟集成电路、数字集成电路 化合物半导体分类概述 化合物半导体主要包括III-V族,II-VI族、IV-IV族及I-III-VI族等,但就研究现况及未来远景而言,仍以III-V族、II-VI族及IV-IV族为主流,概述如下。 1. III-V族 (1) 砷化物系列材料︰包括AlGaA s、应变InGaAs材料,已是最成熟的化合物半导体,也是在光纤通讯、无线通讯及信息产业上不可或缺的关键材料。近年来,研究重点除了与量产技术相关的课题外,最受注意的方向就是与纳米科技相关的InGaAs、InAs量子点、量子线低维度结构及其临场实时检测技术、Metamorphic 外延技术、含氮的InGaAsSbN材料、以及含Mn,Co,Ni及Cr等元素的磁性材料。 这些新材料搭配纳米结构会是未来发展量子器件的基础。 (2) 磷化物系列材料︰包括可见光范围的AlGaInP/GaAs及光纤通讯应用的InGaAsP/InP以及InAlGaAs/InP系列材料。含磷系列的材料,在MOCVD外延技术上已相当成熟,但在分子束外延(MBE)技术方面,直到最近几年由于固态磷源技术的进步,且有良好的均匀性及安全性的优点,而成为许多人青睐的选项的一。AlGaInP材料主要应用于LED及激光,而InGaP/GaAs则是重要的HBT材料,InP系列除了光纤通讯的应用的外,也是高速器件及MMIC的重要材料,特别是InP HBT将在100 GHz以上的电路扮演极重要的角色。当然,其纳米结构也是研 究重点的一。 (3) 氮化物系列材料︰包括BN,AlN,GaN及InN等,是当今最热门的研究重点,相关材料的波长涵盖范围包括紫外光、紫光、蓝光、绿光、红光,甚至红外光,而器件则包括高亮度LED、半导体激光、光侦测器,以及高功率电子器件,如HEMT 等。由于它的应用广泛,各种不同的外延技术都值得发展。目前氮化物系列材料最大的课题是没有适当的晶格匹配衬底。因此,衬底材料的单晶成长技术,及以HVPE成长厚层GaN作为衬底的相关技术,均是值得探讨的课题。除了六方晶系氮化物系列材料的外,低度含氮的立方化合物半导体材料也是一个重要的研究主题,在GaAs衬底上成长InGaAsN以制作1.3 μm,1.55 μm激光及光放大器即是一例。这类型材料的外延成长、材料缺陷研究、物理研究与器件应用,目前虽已有良好的进展,但其中牵涉的物理仍未十分清楚,有待深入研究。 (4) 锑化物系列材料︰锑化物系列的材料过去主要是在中红外线波长范围(2-5μm)的应用,包括下一世代的光纤通讯、中红外线光源、侦测器及热光伏特(TPV)能

相关主题
文本预览
相关文档 最新文档