步3:向前计算路段流量 从r点开始,按s(i)的下降顺序依次考虑每个节点i,计算 进入它的所有路段流量,对路段(i,j),进入它的流量为:
第四节
非均衡分配方法
若i r
w(i, j ) q rs w(i, m) m O j x(i, j ) x(l , i ) w(i, j ) l w(i, m) I j mO j
a
第四节
其他分配方法
r, s
平衡分配过程中应该满足交通流守恒的条件,用公式 可以表示为:
kWrs rs f k qrs
径路交通量和路段交通量之间应该满足如下的条件:
xa f krs ars ,k
r s k rs ck ta xa ars ,k a
a L
1-d
1
1-d
1
图a、b,三条路径的阻抗都是1,由Logit模型,这三条路径 被选中的概率均为1/3,它们分配的流量也相同。 但图b,当d很大,接近1时,1、2路径重叠路段很长,极限 情况下,认为合成一条路径。则它与路径3的选择概率各为1/2, 上面两条路径各为1/4。 模型反映不出图b的情况:1、2路径的相关性(重合路径)。
⑨
8
9
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
0
∞
2
0
运用矩阵迭代法求最小阻抗
设Oi为离开节点i的路段另一端点的集合 设Ii为进入点i的路段的另一个端点的集合
1 , j) 1 w(i② ③ 若L(i,j) q js rs w ( m , j ) m I j r=3,s=3 r=2,s=4 r=4,s=2 0.368 1 0 x(i, j ) 1 ⑤ w(i1 , j) ⑥ 若i r L(i, j ) ④ x ( j , m ) 其它情况 i I m w(i, j ) L(i, j ) w(m,ji) w ( m , j ) 其它情况 o W(i,j) j r=5,s=2 r=6,s=0 mI r=4,s=4 0 1 mI j 1 0.368 0.368 1 1 ⑦ ⑧ ⑨