半导体物理-05
- 格式:pdf
- 大小:383.21 KB
- 文档页数:7
一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge 和 GaAs 的能带结构。
在 1.1 节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在 1.3 节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。
(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
《半导体物理学》课程教案大纲一、课程说明(一)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学分:学分(二)课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。
通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。
本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。
通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。
(四)教材与主要参考书:[]刘恩科,朱秉升,罗晋生. 半导体物理学(第版)[]. 北京:电子工业出版社. .[]黄昆,谢希德. 半导体物理学[]. 北京:科学出版社. .[]叶良修.半导体物理学(第版)[]. 上册. 北京:高等教育出版社. .[]. . , ( .), , , .二、课程内容与安排第一章半导体中的电子状态第一节半导体的晶格结构和结合性质第二节半导体中的电子状态和能带第三节半导体中电子的运动有效质量第四节本征半导体的导电机构空穴第五节回旋共振第六节硅和锗的能带结构第七节族化合物半导体的能带结构第八节族化合物半导体的能带结构第九节合金的能带第十节宽禁带半导体材料(一)教案方法与学时分配课堂讲授,大约学时。
限于学时,第节可不讲授,学生可自学。
(二)内容及基本要求本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。
半导体物理器件
嘿,朋友们!今天咱就来聊聊半导体物理器件这个神奇的领域呀!
你说半导体物理器件像不像一个充满魔法的宝库?里面藏着各种各样让人惊叹不已的宝贝呢!比如说晶体管,那可真是个了不起的小家伙。
它就像一个超级小英雄,在电子世界里冲锋陷阵,让我们的电子设备变得如此强大和智能。
想想看啊,没有这些半导体物理器件,我们的手机能那么智能吗?能随时随地和朋友聊天、看视频、玩游戏吗?那肯定不行呀!这就好像没有了翅膀的鸟儿,想飞也飞不起来呀。
再看看那些集成电路,它们就像是一个个精密的城市,无数的半导体器件在里面和谐共处,共同完成各种复杂的任务。
这多厉害呀!它们把复杂的电路集成在那么小的一块芯片上,这得需要多么高超的技术和智慧呀!
还有二极管,它就像一个交通指挥员,指挥着电流的流向,让一切都井井有条。
要是没有它,那电流不就乱套了嘛。
咱再说说半导体物理器件的发展,那可真是日新月异呀!就像我们跑步一样,速度越来越快。
以前那些又大又笨的电子设备,现在都变得小巧玲珑了,这可都是半导体物理器件的功劳呀!
而且呀,半导体物理器件的应用那叫一个广泛。
从日常生活中的各种电子产品,到工业生产中的自动化设备,再到航天航空等高科技领域,哪里都有它们的身影。
这就好像是一把万能钥匙,能打开各种神奇的大门。
你说这半导体物理器件是不是特别神奇?特别重要?它们就像是电子世界的基石,没有它们,我们的生活可就完全不一样啦!所以呀,我们可得好好感谢那些研究和制造半导体物理器件的科学家和工程师们,是他们让我们的生活变得如此丰富多彩呀!难道不是吗?。
刘恩科半导体物理学半导体物理学是研究半导体材料及其性质、特性和应用的学科。
刘恩科半导体物理学是以中国科学家刘恩科命名的,他是中国半导体物理学的开拓者和奠基人。
本文将介绍刘恩科半导体物理学的研究内容、重要成果以及对半导体技术发展的贡献。
刘恩科半导体物理学主要研究半导体材料的电学和光学性质,以及半导体器件的物理特性和工作原理。
半导体材料是介于导体和绝缘体之间的一类材料,具有导电能力的同时也能够控制电流流动。
半导体器件是利用半导体材料的特性制成的电子器件,如二极管、场效应晶体管(MOSFET)、光电二极管等。
刘恩科半导体物理学的研究内容包括半导体材料的能带结构、电子与空穴运动、载流子的输运、杂质掺杂、PN结、MOS结构等。
通过对这些基本的物理过程的研究,可以深入理解半导体材料的特性和器件的工作原理,从而推动半导体技术的发展。
刘恩科半导体物理学的重要成果之一是对半导体光电子学的研究。
光电子学是利用光与半导体材料相互作用的现象和机制来实现能量转换和信息处理的学科。
刘恩科在半导体光电子学领域做出了重要贡献,研究了半导体材料的光学性质以及光与电子的相互作用机制,提出了一系列重要理论和实验结果。
这些成果不仅推动了半导体光电子学的发展,也为光电子器件的设计与制造提供了基础。
刘恩科半导体物理学还研究了半导体材料的电子输运性质。
电子输运是指载流子(电子或空穴)在半导体材料中自由移动的过程。
刘恩科通过理论计算和实验研究,揭示了半导体材料中电子输运的机制和规律,为半导体器件的性能优化和电子设备的制造提供了理论依据。
刘恩科半导体物理学对半导体技术的发展产生了深远影响。
半导体技术是现代电子信息技术的基础,广泛应用于计算机、通信、光电子、能源等领域。
刘恩科半导体物理学的研究成果为半导体技术的进步提供了理论支持和实验依据,推动了半导体材料与器件的创新和改进。
刘恩科半导体物理学是一门研究半导体材料及其性质、特性和应用的学科,主要研究半导体材料的电学和光学性质,以及半导体器件的物理特性和工作原理。