人教版数学六年级下册圆锥的体积微课教学设计
- 格式:docx
- 大小:13.61 KB
- 文档页数:4
人教版数学六年级下册圆锥的体积教学设计3篇〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗教学目标:1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积高)2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高6厘米,体积=?(2)底面半径是2分米,高10分米,体积=?(3)底面直径是6分米,高10分米,体积=?3、认识圆锥(课件演示),并说出有什么特征?二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。
这节课我们就来研究圆锥的体积。
(板书课题)1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?学生回答,教师板书:圆柱------(转化)------长方体圆柱体积计算公式--------(推导)长方体体积计算公式教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。
你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)(学生得出:底面积相等,高也相等。
)教师:底面积相等,高也相等,用数学语言说就叫等底等高。
(板书:等底等高)(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用底面积高来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)用水和圆柱体、圆锥体做实验。
人教版数学六年级下册圆锥的体积优秀教案3篇〖人教版数学六年级下册圆锥的体积优秀教案第【1】篇〗义务教育教科书人教版小学数学六年级下册第三单元教材依据义务教育教科书人教版小学数学六年级下册第三单元《圆柱与圆锥》第五小节《圆锥的体积》。
指导思想《小学数学课程标准》指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,通过学生猜想、观察、操作、实验、证明等数学活动过程,体验数学问题的探索性和挑战性,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程,解决问题。
设计理念本着在教师引导下学生积极主动合作探究的理念,本课以学生认识发展规律为主线,以引导猜想问题、发现问题、提出问题、探究解决问题、得出结论为基点,通过实际应用训练使学生在“认识—实践—再认识、再实践”中理解运用知识。
在教学策略上,本节课利用多媒体创设教学情境,充分激发学生学习的兴趣和欲望,让学生在猜想释疑、合作学习和实验操作中,自觉探究圆锥体积公式的推导过程,并运用规律解决实际问题,激发学生探究的兴趣,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。
学情分析在学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识圆锥的特征了,有了一些推导体积公式的方法,具备了一定的空间观念和学习的方法,能够把新知识与旧知识建立起联系,解决实际问题。
圆锥体也是生活中常见的物体的形状,所以在教学时从学生的生活实际和已有的知识经验入手,通过自主、合作、动手操作探究知识,这样符合小学生认识事物的规律。
教材分析从教材的编写可以看出,教材加强了与现实生活的联系。
加强了在操作中对空间与图形问题的思考,使学生在经历观察、联想、猜测、操作实验、推理等过程中理解和掌握圆锥的体积的计算方法,进一步发展空间观念。
人教版数学六年级下册第13课圆锥的体积教学设计3篇〖人教版数学六年级下册第13课圆锥的体积教学设计第【1】篇〗教学要求:l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第14页练一练第1题自制的圆锥,演示测高、等底、等高的教具演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:一、复习引新1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。
在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。
这些物体的形状都是圆锥体,简称圆锥。
我们教材中所讲的圆锥,都是直圆锥。
今天这节课,就学习圆锥和圆锥的体积。
(板书课题)二、教学新课1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。
(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?4.学生练习。
5.教学圆锥高的测量方法。
(见课本第13页有关内容)6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。
(具体方法可见教材第14页上面的图)(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。
人教版数学六年级下册圆锥的体积教案范文3篇〖人教版数学六年级下册圆锥的体积教案范文第【1】篇〗一、教学目标1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
二、教学重、难点重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
三、教具学具不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
四、教学流程(一)创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。
促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面最大的;生:我选择高是最高的;生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。
下面我们一起来研究圆锥的体积。
并板书课题:圆锥的体积。
(二)设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。
)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?教师根据学生的'回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。
人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。
本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。
为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。
学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。
学习《《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。
因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。
但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。
教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。
3、体会数学与生活的密切联系,感受探究成功的快乐。
教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。
难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。
教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。
4、引入:看来,同学们对于圆锥体的特征掌握得很好。
你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。
2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。
3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。
六年级数学下册《圆锥的体积》教案【精选9篇】小学数学《圆锥的体积》教案篇一教学目标1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
教学重点圆锥体积的计算公式的推导过程。
教学难点圆锥体积计算公式的理解。
教学过程一、情景铺垫,引入课题教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。
圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16cm2,高60cm,单价:40元/个。
出示问题:到底选哪种蛋糕划算呢?教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。
板书课题:圆锥的体积二、自主探究,感悟新知1.提出猜想,大胆质疑教师:谁来猜猜圆锥的。
体积怎么算?2.分组合作,动手实验教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。
四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。
并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3.教师用展示实验报告单教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=1/3×圆柱的体积。
《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。
【教学难点:】探索圆锥体积的计算方法和推导过程。
【教具准备:】1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。
孩子们,请记住这句话吧,你的未来一定会很出色的哦。
今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。
你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。
(板书)2、提出问题,明确方向。
爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。
看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。
师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。
比一比,哪个学习小组的方法多,方法好。
各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。
人教版数学六年级下册圆锥的体积教学设计精选3篇〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗教学内容:九年义务教育六年制小学数学第十二册P32页。
教学目标:1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3、进一步培养学生将所学知识运用和服务于生活的能力。
教学重点:灵活运用圆柱圆锥的有关知识解决实际问题。
教学难点:同教学难点。
设计理念:练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。
力求使不同层次的学生都学有收获。
教学步骤、教师活动、学生活动一、复习铺垫、内化知识。
1. 圆锥体的体积公式是什么?我们是如何推导的?2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3.求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米.高12厘米。
4、教师根据学生练习中存在的问题,集体评讲。
同座位的同学先说一说圆锥体积公式的推导过程。
学生独立练习,互相批改,指出问题。
学生交流一下这几题在解题时要注意什么?二、丰富拓展、延伸练习。
1.拓展练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2.完成31页第5题。
讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?学生分组讨论,教师参与其中,以有疑问的方式参与讨论。
小学六年级数学《圆锥的体积计算》教案设计(精选5篇)《圆锥体积的计算》教学设计篇一教学目标1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。
2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生认真审题,仔细计算的习惯。
重点:进一步掌握圆锥的体积计算及应用难点:圆锥体积公式的灵活运用教学过程一、知识回顾1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?2、学生说,教师板书:圆锥圆柱特征1个底面2个扇形侧面展开长方形体积V=1/3SHV=SH二、提出本节课练习的内容和目标三、课堂练习(一)、基本训练1、填空课本1----2(独立完成后校对)2、圆锥的体积计算已知:底面积、直径、周长与高求体积(小黑板出示)(二)、综合训练:1、判断(1)圆锥的体积等于圆柱的1/3(2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米2、应用:练习四第45题任选一题3、发展题:独立思考后校对四课堂小结:说说本节课的收获《圆锥的体积》教案篇二1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。
原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。
(2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。
(3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。
(4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。
人教版数学六年级下册圆锥的体积教学设计(精选3篇)〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗圆锥的体积》教学设计【教材分析】本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.【设计理念】数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】圆锥体积公式的推导【学情分析】学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。
所以对于新的知识教学,他们一定能表现出极大的热情。
【教法学法】试验探究法小组合作学习法【教具学具准备】多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)【教学课时】2课时【教学流程】第一课时一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
《圆锥的体积》教学设计
一、教学目标
1、知识与技能
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
二、教学重、难点
重点:掌握圆锥的体积计算方法。
难点:理解圆锥体积公式的推导过程。
三、教学流程
(一)复习圆柱的体积公式
圆柱的体积=底面积×高
V=Sh
(二)设疑激趣,探求新知
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。
)
师:既然大家认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
引导学生把等底等高的圆柱与圆锥联系起来。
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。
开始吧!
要求:1、实验材料,任选沙、米、水中的一种。
2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)
师:1、谁来汇报一下,你们组是怎样做实验的?
2、通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。
圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。
圆锥的体积是等底等高圆柱的体积的1/3。
)
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略师:请看大屏幕,看数学小博士是怎样做的?(课件演示)
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
(小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh
师:同学们刚才我们得到了圆锥的体积公式,
活动五:整理归纳,回顾体验
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。
)。