第六章 受压构件承载力计算
- 格式:pdf
- 大小:136.90 KB
- 文档页数:9
06受压构件承载力计算随着工程领域应用的不断深入,受压构件的承载力计算也变得越来越重要。
受压构件是指在受到外力作用下,以抵抗压力为主要承载形式的构件,如柱、墙、梁等。
本文将介绍关于受压构件承载力计算的基本原则和方法。
首先,受压构件承载力计算的基本原理是根据构件的几何形状、材料特性以及外力情况来确定构件能够承受的最大压力。
在计算过程中,一般会考虑构件的屈服强度、稳定性以及整体的平衡状态。
其次,受压构件的承载力计算方法主要有弯曲屈服强度法、稳定屈服强度法和极限承载力法等。
弯曲屈服强度法是基于构件受压时的挠度和变形来计算承载力的一种方法。
该方法主要考虑构件在受压时的弯曲和屈曲现象,通过应变-应力关系和变形-受力关系来计算构件的承载力。
这种方法适用于承受轴向压力作用下的细长构件,如柱、墙等。
稳定屈服强度法是基于构件受压时的稳定性和屈服强度来计算承载力的一种方法。
该方法主要考虑构件受压时的稳定性问题,如整体变形和局部失稳等。
通过分析和求解构件的稳定性方程来计算构件的承载力。
这种方法适用于承受轴向压力作用下的短柱、框架结构等。
极限承载力法是基于构件受压时的极限承载力来计算承载力的一种方法。
该方法主要考虑构件在受压时的破坏模式和破坏机理,通过分析构件的极限承载力来计算其承载力。
这种方法适用于承受轴向压力作用下的混凝土构件、钢结构等。
在实际工程中,根据具体情况选择适当的计算方法非常重要。
且在计算过程中需要考虑一些约束条件,如构件的几何尺寸、材料特性、外力作用、边界条件等。
同时还需要对构件的安全系数进行合理设置,以保证构件在承受压力时的安全性。
综上所述,受压构件承载力计算涉及到多个因素,包括构件的几何形状、材料特性以及外力情况等。
通过合理选择计算方法,考虑约束条件和安全系数,可以准确计算出受压构件的承载力,为工程实践提供重要的指导依据。
第六章受压构件截面承载力计算受压构件包括柱、短杆、墙等结构中的竖向构件。
在受到外部压力的作用下,受压构件会产生内部应力,当该应力超过材料的承载能力时,结构就会发生破坏。
因此,了解受压构件截面的承载能力非常重要,可以保证结构的安全性。
截面承载力计算按照材料的不同分类,一般分为钢材和混凝土结构的计算方法。
以下将分别介绍这两种材料的截面承载力计算方法。
钢材截面承载力计算方法:1.确定边缘受压构件的型式,常见的有矩形、L形、T形和带肋板等,根据构件的几何形状,选择相应的计算方法。
2.通过截面分析,确定构件的有效高度和宽度。
3.确定截面的截面系数,根据构件的几何形状和受力状态,计算出截面系数。
4.根据材料的特性,计算出计算强度和材料的安全系数。
5.通过计算公式,结合以上参数,得出受压构件的截面承载力。
混凝土结构截面承载力计算方法:1.确定混凝土的试验结果,包括抗压强度、抗弯强度等。
2.根据受压构件的几何形状和受力状态,计算出截面的面积和惯性矩。
3.确定混凝土的计算强度和材料的安全系数。
4.根据截面形状和受力状态,选取相应的公式,计算出截面承载力。
5.根据所得结果,进行合理的构造设计。
在受压构件截面承载力计算中,不同材料的计算方法有所不同,但都需要考虑材料的特性和截面的几何形状。
此外,还需要参考相关的标准和规范,以确保计算结果的准确性和可靠性。
总而言之,受压构件截面承载力计算是一个复杂而重要的工作,需要考虑多个因素,包括材料的特性、截面的几何形状和受力状态等。
通过合理的计算方法和准确的数据,可以确定受压构件的最大承载能力,保证结构的安全性和稳定性。
《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。
2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。
3.深入理解偏心受压构件的Nu-Mu关系曲线。
4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。
5.掌握受压构件的主要构造要求和规定。
♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。
6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。
6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。
6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。
单层工业厂房的预制柱常采用工字形截面。
圆形截面主要用于桥墩、桩和公共建筑中的柱。
柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。
6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。
同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。
6钢筋混凝土受压构件承载力计算6.1 受压构件的基本构造要求6.1.1 受压构件的分类常见的受压构件如框架柱、墙、拱、桩、桥墩、烟囱、桁架压杆、水塔筒壁等。
钢筋混凝土受压构件在其截面上一般作用有轴力、弯矩和剪力。
分类:(1)轴心受压构件(2)偏心受压构件:单向偏心受压构件,双向偏心受压构件在实际设计中,屋架(桁架)的受压腹杆、承受恒载为主的等跨框架的中柱等因弯矩很小而忽略不计,可近似地当作轴心受压构件。
单层厂房柱、一般框架柱、屋架上弦杆、拱等都属于偏心受压构件。
框架结构的角柱则属于双向偏心受压构件。
6.1.2 截面形式及尺寸轴心受压构件的截面形式一般为正方形或边长接近的矩形。
建筑上有特殊要求时,可选择圆形或多边形。
偏心受压构件的截面形式一般多采用长宽比不超过1.5的矩形截面。
承受较大荷载的装配式受压构件也常采用工字形截面。
为避免房间内柱子突出墙面而影响美观与使用,常采用T形、L形、十形等异形截面柱。
对于方形和矩形独立柱的截面尺寸,不宜小于250mm×250mm,框架柱不宜小于300mm×400mm。
对于工字形截面,翼缘厚度不宜小于120mm;腹板厚度不宜小于100mm。
柱截面尺寸还受到长细比的控制。
对方形、矩形截面,l0/b≤30,l0/h≤25;对圆形截面,l0/d≤25。
柱截面尺寸还应符合模数化的要求,柱截面边长在800mm以下时,宜取50mm为模数,在800mm以上时,可取100mm为模数。
6.1.3 材料强度等级受压构件宜采用较高强度等级的混凝土,一般设计中常用的混凝土强度等级为C25~C50。
在受压构件中,采用高强度钢材不能充分发挥其作用。
因此,一般设计中常采用HRB335和HRB400或RRB400级钢筋做为纵向受力钢筋,采用HPB235级钢筋做为箍筋,也可采用HRB335级和HRB400级钢筋做为箍筋。
6.1.4 纵向钢筋作用:与混凝土共同承担由外荷载引起的纵向压力,防止构件突然脆裂破坏及增强构件的延性,减小混凝土不匀质引起的不利影响;同时,纵向钢筋还可以承担构件失稳破坏时凸出面出现的拉力以及由于荷载的初始偏心、混凝土收缩、徐变、温度应变等因素引起的拉力等。
第六章 受压构件承载力计算一、填空题:1、小偏心受压构件的破坏都是由于 而造成的。
2、大偏心受压破坏属于 ,小偏心破坏属于 。
3、偏心受压构件在纵向弯曲影响下,其破坏特征有两种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。
4、在偏心受压构件中,用 考虑了纵向弯曲的影响。
5、大小偏心受压的分界限是 。
6、在大偏心设计校核时,当 时,说明sA ′不屈服。
7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。
8、偏心受压构件 对抗剪有利。
二、判断题:1、在偏心受力构件中,大偏压比小偏压材料受力更合理。
( )2、在偏心受压构件中,s A ′不大于bh %2.0。
( )3、小偏心受压构件偏心距一定很小。
( )4、小偏心受压构件破坏一定是压区混凝土先受压破坏。
( )5、在大小偏心受压的界限状态下,截面相对界限受压区高度b ξ,具有与受弯构件的b ξ完全相同的数值。
( )6、在偏心受压破坏时,随偏心距的增加,构件的受压承载力与受弯承载力都减少。
( )7、附加偏心距随偏心距的增加而增加。
( )8、偏心距增大系数,解决了纵向弯曲的影响问题。
( )9、在偏心受压构件截面设计时,对称配筋时,当b ξξ≤时,可准确地判别为大偏心受压。
( )10、在偏心构件中对称配筋主要是为了使受力更合理。
( )11、附加偏心距是考虑了弯矩的作用。
( )12、偏心距不变,纵向压力越大,构件的抗剪承载能力越大。
( )13、偏心距不变,纵向压力越大,构件的抗剪承载能力越小。
( )三、选择题:1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。
A 受压混凝土是否破坏B 受压钢筋是否屈服C 混凝土是否全截面受压D 远离作用力N 一侧钢筋是否屈服2、在偏心受压构件计算时,当( )时,就可称为短柱,不考虑修正偏心距。
A 30≤h l B 80≤h l C 3080≤h l p D 300f hl 3、小偏心受压破坏的特征是( )。
A 靠近纵向力钢筋屈服而远离纵向力钢筋受拉B 靠近纵向力钢筋屈服而远离纵向力钢筋也屈服C 靠近纵向力钢筋屈服而远离纵向力钢筋受压D 靠近纵向力钢筋屈服而远离纵向力钢筋不屈服4、对称配筋的混凝土受压柱,大小偏心受压的判别条件是( )。
A b ξξ≤B 03.0h e i f η时为大偏压C b ξξf 时为大偏压D 无法判别5、在对钢筋混凝土偏压构件作大、小偏心受压判断时,下列( )判断正确? A 轴向力作用在截面核心区以内时为小偏压,反之为大偏压 B 轴向力作用在截面范围内时为小偏压,反之为大偏心压 C b ξξ≤为大偏压,反之为小偏压 D 03.0h e i f η为大偏压,反之为小偏压6、混凝土规范规定,当矩形截面偏心受压构件的长细比hl 0( )时,可取1=η A 8≤ B 5.17≤ C 5≤ D 6≤7、轴向压力对偏心受压构件的受剪承载力的影响是( )。
A 轴向压力对受剪承载力没有影响B 轴向压力可使受剪承载力提高C 当压力在一定范围内时,可提高受剪承载力,但当轴力过大时,却反而降低受剪承载力D 无法确定8、矩形、T 形和工字形截面的钢筋混凝土偏心受压构件,其斜载面受剪承载力应按下列公式计算:0175.1bh f V V t u +=≤λ0h s A f sv yv ++N 07.0,计算公式中的N ( )。
A 为与剪力设计值V 相应的轴向压力设计值,当03.0bh f N c f 时,取 03.0bh f N c =B 没有限制C 为该截面组合的最大轴力D 为该截面组合的最大轴力,当03.0bh f N c f 时,取 03.0bh f N c =9、如图6-1所示偏心受压钢筋混凝土工字形柱,对称配筋,混凝土强度等级为C40,HRB335级钢筋,其单侧纵向受力钢筋最小面积s A 和全部纵向钢筋的最小面积∑s A 应为下列( )数值。
图6-1 题9附图A 2273mm A s =,2546mm A s =∑ B 2315mm A s =,2630mm A s =∑ C 2408mm A s =,21224mm A s =∑ D 2450mm A s =,21350mm A s =∑四、简答题:1、轴心受压构件为什么不宜采用高强钢筋?2、如何划分受压构件的长柱与短柱?3、为何实际工程中没有绝对的轴压构件?4、为何随偏心距的增加,受压构件承载力降低?5、什么叫大偏心受压破坏?其破坏的性质是什么?6、什么叫小偏心受压破坏?其破坏的性质是什么?7、大小偏心破坏的界限是什么?8、如果说小偏心受压破坏都是发生在偏心距很小或者较小的情况下,此种说法是否正确?9、钢筋混凝土偏心受压构件中的为什么要引入附加偏心距a e ?计算时如何取值?10、计算钢筋混凝土偏心受压构件中为何要考虑偏心距增大系数η?怎样计算?什么情况下取1=η?11、在大偏心受压构件非对称配筋截面设计中,为何取0h x b ξ=12、钢筋混凝土偏心受压构件截面配筋率应满足哪些要求?13、偏心受压柱的配筋方式有哪两种?实际工程中多采用哪种?为什么?14、满足什么条件可不验算偏心受压构件的斜截面受剪承载力而按构造配置箍筋?15、轴向压力对钢筋混凝土偏心受压构件斜截面受剪承载力有什么影响?计算公式中如何体现?对轴向压力有无限制?公式中λ如何取值?16、偏心受压构件什么情况下要对弯矩作用平面外的承载力验算?17、如何确定受压构件的截面形式?18、如何确定受压构件的截面尺寸?19、受压构件纵向受力筋直径如何选择?其钢筋布置有何要求?20、受压柱中对纵筋配筋率有何要求?为什么要有所要求?21、普通受压柱中箍筋有何作用?22、柱中箍筋采用何种形式?23、柱中箍筋的间距和直径有何要求?参考答案一、填空题:1、混凝土被压碎2、延性 脆性3、强度破坏 失稳4、偏心距增大系数5、b ξξ=6、s a x ′2p7、b ξξ≤ b ξξf8、轴向压力N二、判断题:1、√2、×3、×4、√5、√6、×7、×8、√9、√ 10、× 11、× 12、× 13、×三、选择题:1、D2、B3、D4、A5、C6、C7、C8、A9、D四、简答题:1、因为受压构件中,钢筋和混凝土共同受压,其应力受混凝土的极限应力控制。
混凝土达到最大应力时对应的应变值为:002.0=ε,此时,钢筋的应力值最大可达到:25/400002.0102mm N E s s =××=×=εσ所以当采用高强钢筋时(钢筋的屈服强度超过400N/mm 2),受压钢筋达不到屈服强度y f ′,不能充分发挥其高强度的作用,这是不经济的。
因此,受压构件不宜采用高强钢筋。
2、(1)长细比80≤bl 的钢筋混凝土柱,在计算上可视为短柱; (2)长细比80f bl 的钢筋混凝土柱,在计算上可视为长柱。
3、(1)由于荷载作用位置的偏差;(2)构件混凝土材料的非均匀性;(3)配筋的不对称性;(4)施工时钢筋的位置和截面尺寸的偏差等。
因此,目前有些国家的设计规范中已取消了轴心受压构件的计算。
我国考虑到对以恒载为主的构件,如恒载较大的等跨单层厂房中柱、框架的中柱、桁架的腹杆,因为主要承受轴向压力,弯矩很小,一般可忽略弯矩的影响,因此仍近似简化为轴心受压构件进行计算。
4、(1)偏心距越大,构件截面受力越不均匀;(2)偏心距大受压破坏可能性小,受拉破坏可能性越大;(3)混凝土抗拉强度低,而抗压强度高。
5、偏心距e 0较大而受拉钢筋数量不多。
由于偏心距较大,截面靠近N 一侧受压,另一侧受拉。
拉区混凝土先出现横向裂缝,随着荷载的拉加,裂缝不断开展延伸,受拉钢筋s A 应力增长较快,首先达到屈服y f 。
最后压区混凝土被压碎而构件破坏,受压钢筋sA ′也达到屈服y f ′。
破坏特征与适筋梁相似,破坏是由于受拉钢筋屈服而导致的压区混凝土受压破坏。
有明显预兆具有塑性性质。
6、(1)偏心距e 0很小构件全部受压。
距轴力较近一压应力侧大,另一侧压应力小。
随着荷载增大,距轴向力较近一侧受压钢筋屈服而混凝土被压碎而破坏。
距轴向力较远一侧的混凝土没被压碎,钢筋也未屈服(只要偏心距不是过小,另一侧钢筋虽然受压,但尚未屈服)。
破坏来自距轴力较近一侧钢筋屈服、混凝土被压碎所至。
(2)偏心距e 0较小偏心距较第一种情况稍大时,截面大部分受压,小部分受拉。
无论受拉钢筋量多少,受拉钢筋应变都很小,破坏总发生在受压一侧,破坏时,混凝土被压碎,受压筋达到屈服,受拉钢筋未屈服。
(3)偏心距较大e 0,而受拉钢筋数量过多时加载后同样是部分受拉,部分受压。
受拉区先出现裂缝,但由于受拉钢筋数量很多,中和轴距受拉钢筋较近,受拉钢筋应力增长缓慢。
随着荷载的增大,受压钢筋达到屈服压区混凝土被压碎而破坏,而受拉钢筋未达到屈服,这种破坏形态也超筋梁相似。
以上三种情况的共同特点是:构件破坏无同受压区混凝土的压碎所致,远离轴向力一侧钢筋无论是受压还是受拉无未屈服。
所以其承载力主要取决于压区混凝土及受压钢筋,故而称受压破坏。
这种破坏无明显预兆,具脆性破坏性质。
7、大偏心受压破坏时,受拉钢筋首先屈服,而后受压钢筋及混凝土相继达到破坏,它犹如受弯构件截面适筋破坏。
小偏心受压时,受压钢筋屈服,受压混凝土被压坏,而离纵向力较远一侧的钢筋可能受拉也可能受拉,但始终未屈服。
它类似于受弯构件正截面的超筋破坏。
因此,大小偏心受压破坏界限,仍可用受弯构件正截面中的超筋与适筋界限予以划分:即b ξξ=或0h x x b b ξ==(界限破坏:当受拉区的钢筋屈服的同时,受压区混凝土被压坏,这种破坏称界限破坏)(1)当b ξξ≤或0h x x b b ξ=≤时为大偏压;(2)当b ξξf 或0h x x b b ξ=f 时为小偏压。
8、不正确。
当偏心距较大e 0,而受拉钢筋数量过多时, 加载后同样是部分受拉,部分受压。
受拉区先出现裂缝,但由于受拉钢筋数量很多,中和轴距受拉钢筋较近,受拉钢筋应力增长缓慢。
随着荷载的增大,受压钢筋达到屈服压区混凝土被压碎而破坏,而受拉钢筋未达到屈服,这种破坏形态也超筋梁相似。
9、由于截面尺寸和钢筋位置的施工偏差以及混凝土材料的不均匀性和荷载作用位置的不准确性,由内力设计值算出的N M e =0在实际上还存在着差异,《规范》规定用附加偏心距a e 来解决这种差异。
附加偏心距可能使e 0增大,亦可能使e 0减小,但偏心距增大对正截面承载力是不利的,因而应考虑其增大影响。
附加偏心距的取值:规范规定取20mm 和偏心方向截面尺寸的1/30两者中较大值。
10、(1)考虑钢筋混凝土柱在承受偏心荷载后,会产生纵向弯曲变形,而产生侧向挠度,用一个系数η来表示:(2)21200)(/140011ζζηhl h e i += 1ζ—偏心受压构件的截面曲率修正系数,NA f c 5.01=ζ,当11f ζ时取0.11=ζ; 2ζ—构件长细比对截面曲率的影响系数,h l 0201.015.1−=ζ ,当150p h l 时,取0.12=ζ(3)当50≤hl 时,可不考虑纵向弯曲对偏心距的影响,取1=η11、由于基本计算公式中有3个求知数,无法求出解,引进第三个条件;对于大偏心受压构件而言,当0h x b ξ=时受力最合理,混凝土受压面积最大,最能发挥混凝土的抗压性能好的特性,可使设计中总用钢量最少,经济。