工业催化剂的评价与宏观物性的测试
- 格式:ppt
- 大小:724.00 KB
- 文档页数:8
6.2 催化剂宏观物性及其测定 宏观物性:组成催化剂的各粒子或粒子聚集体的大小、形状与孔隙结构所构成的体积、形状及大小分布的特点,以及与此有关的传递特性及机械强度等。
了解和测定宏观物性的重要性:宏观物性对降低催化剂装运过程中的损耗,满足各类反应器操作中流体力学因素的要求十分重要,且直接影响催化反应的动力学过程。
6.2.1 催化剂的表面积及其测定1. 表面积与活性 一般地,表面积愈大,催化剂的活性愈高。
某些情况下,活性与比表面积成正比关系(例,硅酸铝催化剂上进行的烃类裂解。
)催化剂表面积测定的重要性,探寻催化剂活性改变的原因,以便开发或改进催化剂。
2. 比表面测定原理比表面测定方法很多,各有优缺点。
常用吸附法:化学吸附法及物理吸附法。
前者是通过吸附质对多组分固体催化剂进行选择吸附而测定各组分的表面积;后者是通过吸附质进行非选择性吸附来测定比表面积。
物理吸附法又分为BET 法及气相色谱法两类,两类测定法原理均以BET 公式为基础。
原理如下:1) 实验求出吸附等温线(P —V 数据)2) 在相对压力(P/P 0)0.05-0.35范 围内,以V 1)(0P P P-为纵坐标,以P/P 0为横坐标作图, 得BET 方程的直线图象。
3) 利用BET 方程:表示在吸附物正常沸点附近的吸附等温线为V 1)(0P P P -=01P P C V C m⋅-+C V m1(Brunauer,Emmett,Teller 提出)式中,V —平衡吸附量 ml (标准态)或mgV m —形成单分子层时的吸附量 P —平衡压力 mmHgP 0—实验温度下,吸附质饱和蒸汽压C —给定物系,给定温度下的常数求得V m , 截距斜率+=1m V .4) 求出单分子层中吸附质的分子数N m有 0104.223N N m V m ⨯=⨯(V m 为体积) N 0—阿佛加德罗常数6.02×1023分子/克分子 或, 0N N MV m m ⨯=(V m 为重量)M — 吸附质分子量 (mg)5) 表面积 S=N m ×AA — 吸附质分子的截面积Å2比表面积:S g =GA N m 2010-⨯⨯(m 2/g)G —催化剂试样重量(g)该法常用氮、甲醇、苯、正丁烷等为吸附质,它们的分子截面积如下:H 2O14.8,N 216.2,CH 3OH25,n-C 4H 1056.6,C 6H 640(Å2)。
催化剂性能的评价、测试和表征 概述主要内容• 活性评价和动力学研究• 催化剂的宏观物理性质测定 • 催化剂微观性质的测定和表征工业催化剂性能评价的目的①为应用提供依据②为开发制备提供判别的标准 ③基础研究的需要 评价内容① 使用性能活性,选择性,寿命 ②.宏观性能:比表面积,孔结构,形状与尺寸 ③.微观性能:晶相组成,表面酸碱性• 工业催化剂的性能要求及其物理化学性质4催化剂测试• 催化剂的物理性质的测定 ,包括宏观物理性质(孔容、孔径分布、比表面等)及微观物理性质(催化剂的晶相、晶格缺陷、微观粒径尺寸等) 几个基本概念评价(evaluation ),对催化剂的化学性质考察和定量描述; 测试(test ),对工业催化剂物理性质(宏观和微观)的测定; 表征(Characterization ),综合考察催化剂的物理、化学的性质和内在联系,特别是研究活性、选择性、稳定性的本质原因。
第一节.活性评价和动力学研究活性测定方法:流动法和静态法,流动法用得最多(一般流动法、流动循环法、催化色谱法) 本质上是对工业催化过程的模拟流动循环法、催化色谱法多用于反应动力学和反应机理 活性测试的目的a )由催化剂制造商或用户进行的常规质量控制检验b )快速筛选大量催化剂,以便为特定的反应确定一个催化剂评价的优劣。
c )更详尽的比较几种催化剂d )测定在特定催化剂上反应的详尽动力学,包括失活或再生动力学。
e )模拟工业反应条件下催化剂的连续长期运转 活性的表示方法• 转化率(X A)活性的表示方法• 选择性(S)%100⨯=的起始摩尔数反应物已转化的摩尔数反应物A A X A %100⨯=摩尔数已转化的某一反应物的所得目的产物的摩尔数S收率(Y)Y=X A ×S• 时空得率(STY ):每小时、每升催化剂所得产物的量关于时空得率:指在一定条件(温度、压力、进料空速)下,单位体积或单位质量催化剂所得到产物量,多用于工业生产和工业设计,可直接计算出量产。