热力学与统计物理学第六章 系综理论
- 格式:ppt
- 大小:846.50 KB
- 文档页数:47
第六章 统计热力学基础内容提要:1、 系集最终构型:其中“n*”代表最可几分布的粒子数目2.玻耳兹曼关系式:玻耳兹曼分布定律:其中,令为粒子的配分函数。
玻耳兹曼分布定律描述了微观粒子能量分布中最可几的分布方式。
3、 系集的热力学性质:(1)热力学能U :(2)焓H :**ln ln ln !i n i m iig t t n ≈=∏总2,ln ()N VQU NkT T∂=∂iiiQ g e βε-=∑*i ii i i i i in g e g e N g e Q βεβεβε---==∑m ln ln S k t k t ==总(3)熵S :(4)功函A :(5)Gibbs 函数G :(6)其他热力学函数:4、粒子配分函数的计算(1)粒子配分函数的析因子性质粒子的配分函数可写为:,ln ln ln()mN V S k t Q Q Nk NkT Nk N T=∂=++∂ (i)tvenrkTi ikTkTkTkTkTt r v e n trvent r v e nQ g eg eg eg eg eg eQ Q Q Q Q εεεεεε------===∑∑∑∑∑∑2,ln N VQ H U pV NkT NkTT ∂⎛⎫=+=+ ⎪∂⎝⎭lnQA NkT NkT N=--lnQ G NkT N=-()22ln ln ln ln V V U Q Q C Nk Nk T T T ∂∂∂⎛⎫==+ ⎪∂∂⎝⎭∂(2)热力学函数的加和性质1)能量2)熵3)其他5、 粒子配分函数的计算及对热力学函数的贡献(1)粒子总的平动配分函数平动对热力学函数的贡献:2222ln ()ln ln ln ()()()iVt v r V V V t r v Q U NkT TQ Q Q NkT NkT NkT T T T U U U ∂=∂∂∂∂⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥∂∂∂⎣⎦⎣⎦⎣⎦=+++t r v H H H H =+++t r v A A A A =+++t r v G G G G =+++3/222()t mkT Q V hπ=2ln 3()2i t V Q U NkT NkT T ∂==∂2ln 5()2i t V Q H NkT NkT NkT T ∂=+=∂t r v S S S S =+++(2)转动配分函数1)异核双原子分子或非对称的线形分子转动特征温度:高温区低温区中温区2) 同核双原子分子或对称的线形多原子分子配分函数的表达式为在相应的异核双原子分子的Q r 表达式中除以对称数σ。
物理学中的热力学与统计物理理论热力学和统计物理学是物理学两个重要分支领域。
热力学主要研究热、功以及它们之间的关系,而统计物理学则是将微观粒子的运动方式和定量的统计方法结合起来,将宏观现象与微观世界联系起来,从而解释了许多宏观现象。
热力学和统计物理学分别从不同角度解释了物质与能量之间的关系,并在工业、材料等领域得到广泛应用。
首先,我们来了解一下热力学。
热力学研究的是热量和功以及它们之间的关系。
热量是能量的一种形式,它是由于温度差使得能量在物体之间传递的结果。
热力学第一定律告诉我们,它们之间是可以相互转换的,能量不会被消灭。
而功则是一种对物体施加的能量,会使物体发生运动或变形。
热力学第二定律则说明了热量的流动方向只能从高温物体向低温物体,热力学第三定律则是在温度趋向于绝对零度时,物体的熵趋近于零。
接下来,我们来谈一谈统计物理学。
统计物理学是将微观粒子的运动方式和定量的统计方法结合起来,将宏观现象与微观世界联系起来。
一个系统的热力学性质,比如温度、熵、压力等,很多时候可以通过大量的微观粒子的统计来得到。
比如系统的温度可以通过测量大量分子的平均动能获得,系统的熵可以通过分子在不同状态下的组合数来计算。
统计物理学在对系统物理性质进行预测方面发挥了很大作用。
总的来说,热力学是研究宏观物理现象的科学,而统计物理学是研究微观粒子特性的科学。
尽管两者研究的角度不同,但是在物理理论和应用方面都发挥了非常重要的作用。
在应用方面,热力学和统计物理学在工业、材料等领域都有广泛的应用。
在生产过程中,控制物体的温度、压力、湿度等参数,可以增加生产效率,提高产品质量。
在能源领域,利用热力学的原理可以生产出大量的电力,而统计物理学则可以解释材料的物理特性和性质变化规律。
总之,热力学和统计物理学是物理学两个重要分支的基础理论。
虽然从不同的角度出发,但是都在理解物质与能量之间的关系以及解决实际问题中发挥着重要的作用。
第1节粒子运动状态的经典描述一.回顾1.最概然分布(1)分布:粒子在能级上的分布(2)最概然分布:概率最大的分布2.粒子运动状态描述--力学运动状态(1)经典力学描述(2)量子力学描述二.粒子向空间描述1.运动状态确定自由度为r的粒子,任意时刻的力学运动状态由r个广义坐标(q)和r个广义动量(p)的数值确定,则粒子的能量为2. 向空间(1)空间:由r个广义坐标和r个广义动量构成一个直角坐标系,这个2r维的空间,就称为空间。
(2)代表点(相点)(3)相轨迹.3.常见粒子的描述1. 自由粒子定义:不受力的作用而作自由运动的粒子。
描述:粒子能量为2. 线性谐振子3. 转子第2节粒子运动状态的量子描述1.波粒二象性与测不准关系1.波粒二象性德布罗意关系2. 测不准关系2.常见粒子的量子态描述1线性谐振子2. 转子(1),当L 确定时,可将角动量在其本征方向投影(z轴)(2)能量(3)简并与简并度3. 自旋角动量自旋角动量()是基本粒子的内禀属性4. 自由粒子(1)一维(2)三维容器边长L,动量和能量分量x: ,y:z;总动量和总能量(3)量子态数第3节系统微观运动状态的描述1、系统1、对象:组成系统的粒子为全同近独立粒子2、全同粒子系统具有完全相同的内禀属性的同类粒子的系统3、近独立粒子系统:系统中的粒子之间的相互作用很弱,相互作用的平均能量远小于单粒子能量。
4、系统的能量N个全同近独立粒子 .2、系统的微观状态的经典描述1、力学方法:。
2、可分辨全同粒子系统中任意两个粒子交换位置,系统的力学运动状态就不同。
3、量子描述1、全同性原理2、状态的描述(1)、定域系:全同粒子可辨非定域系:全同粒子不可分辨定域系需要要确定每个粒子的个体量子数;非定域系确定每个个体量子态上的粒子数(2)、微观粒子的分类玻色子:自旋量子数位整数费米子:自旋量子数为办整数4、系统分类1、玻色系统:玻色子不受泡利原理控制;2、费米系统:费米子受泡利原理约束,不可分辨;3、玻尔兹曼系统:粒子可分辨,同一个个体量子态上粒子数不受限制。
在一定的宏观条件下,大量性质和结构完全相同的、处于各种运动状态的、各自独立的系统的集合。
全称为统计系综。
系综是用统计方法描述热力学系统的统计规律性时引入的一个基本概念;系综是统计理论的一种表述方式;系综并不是实际的物体,构成系综的系统才是实际物体。
研究气体热运动性质和规律的早期统计理论是气体动理论。
统计物理学的研究对象和研究方法与气体动理论有许多共同之处,为了避免气体动理论研究中的困难,它不是以分子而是以由大量分子组成的整个热力学系统为统计的个体。
系综理论使统计物理成为普遍的微观统计理论。
系统的一种可能的运动状态,可用相宇中的一个相点表示,随着时间的推移,系统的运动状态改变了,相应的相点在相宇中运动,描绘出一条轨迹,由大量系统构成的系综则可表为相宇中大量相点的集合,随着时间的推移,各个相点分别沿各自的轨迹运动,类似于流体的流动。
系综并不是实际的物体,构成系综的系统才是实际物体。
约束条件是由一组外加宏观参量来表示。
在平衡统计力学范畴下,可以用来处理稳定系综。
一、常用系综分类根据宏观约束条件,系综被分为以下几种:1. 正则系综(canonical ensemble),全称应为“宏观正则系综”,简写为NVT,即表示具有确定的粒子数(N)、体积(V)、温度(T)。
正则系综是蒙特卡罗方法模拟处理的典型代表。
假定N个粒子处在体积为V的盒子内,将其埋入温度恒为T的热浴中。
此时,总能量(E)和系统压强(P)可能在某一平均值附近起伏变化。
平衡体系代表封闭系统,与大热源热接触平衡的恒温系统。
正则系综的特征函数是亥姆霍兹自由能F(N,V,T)。
2. 微正则系综(micro-canonical ensemble),简写为NVE,即表示具有确定的粒子数(N)、体积(V)、总能量(E)。
微正则系综广泛被应用在分子动力学模拟中。
假定N个粒子处在体积为V的盒子内,并固定总能量(E)。
此时,系综的温度(T)和系统压强(P)可能在某一平均值附近起伏变化。
第一章1、与其他物体既没有物质交换也没有能量交换的系统称为孤立系;2、与外界没有物质交换,但有能量交换的系统称为闭系;3、与外界既有物质交换,又有能量交换的系统称为开系;4、平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。
5、参量分类:几何参量、力学参量、化学参量、电磁参量6、温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度7、第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律8、t=T-273.59、体胀系数、压强系数、等温压缩系数、三者关系10、理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔11、顿分压12、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
13、广义功14、热力学第一定律:系统在终态B和初态A的内能之差UB-UA 等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律.UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
15、等容过程的热容量;等压过程的热容量;状态函数H;P2116、焦耳定律:气体的内能只是温度的函数,与体积无关。
P2317、理想气体准静态绝热过程的微分方程P2418、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程19、热功转化效率20、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成21、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程22、如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程23、卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高24、卡诺定理推论:所有工作于两个一定温度之间的可逆热机,其效率相等25、克劳修斯等式和不等式26、热力学基本微分方程:27、理想气体的熵P4028、自由能:F=U-FS29、吉布斯函数:G=F+pV=U-TS+pV30、熵增加原理:经绝热过程后,系统的熵永不减少;孤立系的熵永不减少31、等温等容条件下系统的自由能永不增加;等温等压条件下,系统的吉布斯函数永不增加。