阶跃函数和阶跃响应
- 格式:ppt
- 大小:390.00 KB
- 文档页数:20
说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系:
1.零状态响应:
零状态响应是系统在没有初始储能(即系统处于零状态)下,由外部激励引起的系统响应。
它可以通过系统的传递函数或冲激响应来描述。
在零状态响应中,系统的储能不随时间变化,只与外部激励有关。
2.冲激响应:
冲激响应是系统在单位冲激函数激励下的响应,它是系统的传递函数的冲激函数形式。
冲激响应描述了系统对单位冲激函数的响应,可以看作是时间域上的积分运算的结果。
冲激响应是系统固有的特性,与外部激励无关。
3.阶跃响应:
阶跃响应是系统在单位阶跃函数激励下的响应。
阶跃响应描述了系统在阶跃信号作用下随时间变化的动态过程,包括上升、稳定和下降等阶段。
阶跃响应可以通过系统的传递函数或冲激响应来求解。
三者之间的联系:
零状态响应、冲激响应和阶跃响应之间存在密切的联系。
对于线性时不变系统,零状态响应可以通过冲激响应和阶跃响应来描述。
具体来说,系统的零状态响应等于冲激响应和阶跃响应的卷积,即y(t)=h(t)*u(t),其中y(t)表示零状态响应,h(t)表示冲激响应,u(t)表示阶跃响应。
这个公式表明,系统的零状态响应可以通过冲激响应和阶跃响应的卷积运算来获得。
第8章电路的暂态分析含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。
本章的学习重点:●暂态、稳态、换路等基本概念;●换路定律及其一阶电路响应初始值的求解;●零输入响应、零状态响应及全响应的分析过程;●一阶电路的三要素法;●阶跃响应。
8.1 换路定律1、学习指导(1)基本概念从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。
(2)基本定律换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。
此规律揭示了能量不能跃变的事实。
(3)换路定律及其响应初始值的求解一阶电路响应初始值的求解步骤一般如下。
①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。
②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于u C(0+)的恒压源。
根据t = 0+时的等效电路图,求出各待求响应的初始值。
2、学习检验结果解析(1)何谓暂态?何谓稳态?您能说出多少实际生活中存在的过渡过程现象?解析:在含有动态元件电容的电路中,电容未充电,原始储能为零时是一种稳态,电容充电完毕,储能等于某一数值时也是一种稳态。
1 双端口网络:若网络有两个端口,则称为双口网络或二端口网络2 阶跃响应:当激励为单位阶跃函数时,系统的零状态响应3 冲激响应:当激励为单位冲激函数时,系统的零状态响应4 周期信号频谱的特点:①离散性》频谱是离散的②谐波性》频谱在频率轴上位置都是基波的整数倍③收敛性》谱线高度随着谐波次数的增高总趋势是减小的5 模拟离散系统的三种基本部件:数乘器·加法器·单位延迟器6 模拟连续系统的三种基本部件:数乘器·加法器·积分器7 线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统8 通频带:我们把谐振曲线有最大值9 离散系统稳定的充分必要条件:∑︳h(n)︳〈∞(H(z)的极点在单位圆内时该系统必是稳定的因果系统)10网络函数:在正弦稳态电路中,常用响应向量与激励向量之比定义为网络函数,以H(jw)表示11 策动点函数:激励和响应在网络的同一端口的网络函数12 传输函数(转移函数):激励和响应在不同的端口的网络函数13 因果连续系统的充分必要条件:h(t)=0 t<0 (收敛域在S右半平面的系统均为因果系统)14 连续时间稳定系统的充分必要条件:∫︳h(t)︳dt≤M M:有界正实常数即h(t)满足绝对可积,则系统是稳定的15 傅里叶变换的时域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)*f2(t)↔F1(jw)F2(jw)16 傅里叶变换的频域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)·f2(t)↔(1/2π)F1(jw)*F2(jw)17 稳定系统:18 系统模拟:对被模拟系统的性能在实验室条件下模拟装置模仿19 因果系统:未加激励不会产生零状态响应的系统20 稳定的连续时间系统:一个连续时间系统,如果激励f(t)是有界的,其零状态响应y f(t)也是有界的,则称该系统是稳定的连续时间系统21 H(s)(h(t))求法:由微分方程、电路、时域模拟框图,考虑零状态条件下取拉氏变换、画运算电路、作S域模拟框图,应用Y f(s)/F(s)糗大H(s)。
名词解释1.双口网络:如果一个网络有两个端子与外部电路相连接,使网络有两个端口,为双口网络。
2.对称双口网络:如果将双口网络的入口与出口对调后,其各端口电压、电流保持不变,为对称双口网络。
3.双口网络分析:①端口电流的参考方向均为流入双口网络,且采用正玄稳态相量模式。
②双口网络内部不含独立电源,且初始状态为零的线性时不变网络。
4. 网络函数:在正玄稳态电路中,响应相量与激励相量之比。
若激励与响应在网络的同一端口,则为策动点函数;若不在同一端口,为传输或转移函数。
4.频率响应:在保持电源电压不变的情况下,电路中的电流、电压和阻抗等物理量随电源频率变化的关系。
5.系统:由若干相互关联、相互作用的事物按一定规律组合而成的具有某种功能的整体。
6.连续系统:当系统的输入是连续时间信号时,若系统的输出也是连续时间信号,则称该系统为连续系统。
7.连续信号:在连续时间范围内(—∞<t<∞)有定义的信号。
8.系统的时域分析:若求解系统响应的整个过程是在时间域里进行的,则为系统的时域分析。
9.线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统为线性系统;否则,为非线性系统。
10.时不变系统:如果激励作用于系统引起零状态响应时,当激励延迟了一定时间后作用于系统时,其引起的零状态响应也延迟了相同时间的系统。
它具有微分特性和积分特性。
11.系统建模:根据实际系统的结构、元件特性,利用有关基本定律寻找能表征系统特征的数学关系式。
12.阶跃响应:当激励为单位阶跃函数时,系统的零状态响应为单位阶跃响应。
13.网络输出阻抗:将激励源置零保留激励源为阻抗,此时输出口得等效阻抗为网络输出阻抗。
14.谐振电路的选择性:若串联谐振电路中有不同频率的电源同时作用时,则接近谐振频率的电流成分将较大,而偏离谐振频率的电流成分则较小,由此可将谐振频率附近的电流成分选择出来。
15.线性性质包含的两个内容:齐次性:当激励增大a倍时,零状态响应也增大a倍。
rc一阶电路的响应测试实验总结以RC一阶电路的响应测试实验总结RC一阶电路是电子工程中常见的电路之一,它由一个电阻和一个电容组成。
在实际应用中,RC电路常用于信号滤波、信号放大、信号整形等方面。
在RC电路中,电容器的充放电过程是一个重要的研究对象,因为它决定了电路的响应特性。
本文将介绍RC一阶电路的响应测试实验,并对实验结果进行分析和总结。
实验原理RC一阶电路的响应特性可以通过测试电路的阶跃响应来研究。
阶跃响应是指当输入信号为一个单位阶跃函数时,电路的输出响应。
在RC电路中,当输入信号为一个单位阶跃函数时,电容器开始充电,电路的输出电压也随之变化。
当电容器充电到一定程度时,电路的输出电压达到稳态,此时电路的响应特性就可以通过测量输出电压的变化来研究。
实验步骤1. 搭建RC一阶电路。
将一个电阻和一个电容器串联,接入电源,形成RC电路。
2. 连接测试仪器。
将信号发生器连接到电路的输入端,将示波器连接到电路的输出端。
3. 设置信号发生器。
将信号发生器的输出信号设置为一个单位阶跃函数。
4. 测量输出电压。
在示波器上观察电路的输出电压变化,并记录下电压随时间的变化曲线。
5. 分析实验结果。
根据测量结果,分析电路的响应特性,并绘制出电压随时间的变化曲线图。
实验结果分析通过实验测量,我们可以得到RC一阶电路的阶跃响应曲线。
根据实验结果,我们可以分析电路的响应特性,包括电路的时间常数、电路的稳态响应等。
时间常数是指电容器充电到63.2%所需的时间。
在RC电路中,时间常数可以通过以下公式计算:τ = RC其中,τ为时间常数,R为电阻值,C为电容值。
根据实验结果,我们可以计算出电路的时间常数,并据此分析电路的响应特性。
稳态响应是指电路的输出电压达到稳定状态时的电压值。
在RC电路中,稳态响应可以通过以下公式计算:V = V0(1-e^(-t/τ))其中,V为稳态响应电压,V0为电路的最大输出电压,t为时间,τ为时间常数。