废水厌氧生物处理过程
- 格式:pptx
- 大小:814.63 KB
- 文档页数:3
微生物污水处理微生物污水处理是一种利用微生物来降解和转化污水中有机物的技术。
它是一种环保、高效、低成本的处理方法,被广泛应用于城市污水处理厂、工业废水处理、农村生活污水处理等领域。
一、微生物污水处理的原理微生物污水处理的原理是利用微生物的代谢活动,将污水中的有机物降解为无机物,从而实现污水的净化。
微生物主要通过以下几个过程来完成污水处理:1. 氧化还原过程:微生物利用污水中的有机物作为能源,在氧化的过程中产生能量和生长所需的物质。
这个过程主要由厌氧和好氧两种微生物完成。
2. 生物吸附:微生物在处理过程中,通过吸附作用将污水中的悬浮物、胶体物质和溶解有机物质吸附到自身表面,从而将污水中的有机物质去除。
3. 沉淀和过滤:微生物在处理过程中,通过生物团聚作用和胞外聚合物的产生,将污水中的悬浮物质和胶体物质会萃成较大的颗粒,从而实现沉淀和过滤的目的。
二、微生物污水处理的工艺流程微生物污水处理通常包括预处理、生物处理和后处理三个阶段。
1. 预处理阶段:主要是对污水进行初步处理,去除大颗粒物质、沉淀物和油脂等。
常用的预处理方法包括格栅、沉砂池、油水分离器等。
2. 生物处理阶段:是微生物污水处理的核心阶段,主要是利用微生物将污水中的有机物质降解为无机物质。
常用的生物处理方法包括活性污泥法、固定化床法、生物膜法等。
- 活性污泥法:将污水与活性污泥混合,通过好氧条件下的氧化反应来降解有机物质。
反应后的污泥通过沉淀和回流的方式循环使用,从而实现对污水的处理。
- 固定化床法:将微生物固定在填料上,通过填料提供的附着面积和氧气传递效果,使微生物在填料上生长和代谢,从而降解污水中的有机物质。
- 生物膜法:利用生物膜将微生物固定在膜表面,通过膜的过滤作用和微生物的附着作用,将污水中的有机物质去除。
3. 后处理阶段:主要是对生物处理后的污水进行进一步处理,去除残留的悬浮物、胶体物质和微生物等。
常用的后处理方法包括沉淀、过滤、消毒等。
废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件好氧生物处理好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。
微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。
过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。
后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。
在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。
优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。
且处理过程中散发的臭气较少。
所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。
在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。
厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。
在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。
在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。
由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。
废水厌氧生物处理废水厌氧生物处理过程不需另加氧源,故运行费用低。
此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。
其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。
但通过对新型构筑物的研究开发,其容积可缩小。
此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。
对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。
废水厌氧处理原理介绍废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4 和CO2的过程。
一、厌氧生物处理中的基本生物过程1、三阶段理论厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2 等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类。
(1)水解、发酵阶段;(2)产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;(3) 产甲烷阶段:产甲烷菌利用乙酸和H2、CO2 产生CH4;一般认为,在厌氧生物处理过程中约有70%的CH4 产自乙酸的分解,其余的则产自H2和CO2。
2、四阶段理论:实际上,是在上述三阶段理论的基础上,增加了一类细菌——同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2 合成为乙酸。
但研究表明,实际上这一部分由H2/CO2 合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。
总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。
二、厌氧消化过程中的主要微生物主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。
1、发酵细菌(产酸细菌):发酵产酸细菌的主要功能有两种:①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时会成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。
废水厌氧生物处理原理及工艺废水厌氧生物处理是指利用厌氧菌在缺氧状态下对有机废水进行处理过程。
废水厌氧生物处理的原理是通过在无氧环境下,厌氧菌利用废水中的有机物质进行生物降解,将有机物质转化为低分子有机物、沼气和微生物生长等产物,从而实现废水的污染物去除。
废水厌氧处理的工艺主要包括以下几个步骤:1.厌氧池:将废水引入厌氧池,厌氧池是一种无氧环境的容器,池内有效维护低氧条件,为厌氧菌的生长提供合适的环境。
2.厌氧菌的附着生长:在厌氧池中,废水中的有机物质作为厌氧菌的营养物质,菌群会附着在填料、颗粒状介质等表面,形成生物膜。
生物膜可以提供良好的微生物附着环境,增加厌氧菌的数量和降解能力。
3.产甲烷反应:在厌氧池中,厌氧菌通过发酵分解有机废水中的有机物质,产生甲烷气体。
甲烷气体可以在池内积聚,然后被收集利用或者排放。
4.污泥处理:污泥是产生在厌氧处理过程中的附着生物膜,污泥中含有大量的厌氧菌。
为了保持厌氧池内菌群的恒定和活性,需要对污泥进行定期处理,如提取部分活性污泥,根据需要增加或减少菌群数量。
1.适应性强:厌氧菌对环境条件的要求较低,适应性强,可以处理含有高浓度有机物质的废水。
2.产甲烷气体:厌氧处理过程中产生的甲烷气体可以作为一种可再生能源,可以被回收利用。
3.污泥产生少:相比于好氧处理过程,厌氧处理过程中产生的污泥量较少。
4.不需供氧:厌氧处理过程中不需要供氧设备,降低了能耗和运行成本。
虽然废水厌氧生物处理有着很多优点,但是也存在着一些问题和挑战。
例如,厌氧处理过程中产生的沼气中可能含有硫化氢等有害物质,需要进行处理和处理;污泥的处理和处置也是一个难题,需要采取适当的方式进行处理。
此外,厌氧处理过程对环境条件的要求相对较高,需要合理的工艺控制和操作管理。
综上所述,废水厌氧生物处理是一种有效的废水处理技术,通过厌氧菌对有机废水进行降解,实现对废水污染物的去除。
深入研究废水厌氧生物处理原理与工艺将有助于改进处理技术,提高废水处理效果,同时也有助于开发可再生能源和实现资源化利用。
厌氧生物处理法工艺流程厌氧生物处理法(Anaerobic Biological Treatment)是一种常用的污水处理方法,适用于有机废水的处理。
该方法在缺氧的环境中利用厌氧微生物对有机物进行降解和转化,产生可利用的能源和无害的废物。
厌氧生物处理工艺流程可以分为四个主要的步骤:1. 预处理:原始废水首先需要经过预处理,去除大颗粒物质和沉淀物,以防止对后续处理设备和微生物的不利影响。
预处理可以通过筛网和沉砂池等物理方法进行。
2. 缺氧反应器:预处理后的废水被引入缺氧反应器,该反应器是厌氧微生物生长和代谢的主要环境。
厌氧微生物分解有机物质产生沼气,其中主要成分为甲烷和二氧化碳。
反应器内的厌氧微生物通过发酵和酸化作用将有机物分解成短链脂肪酸和氨基酸等中间产物。
3. 沼气收集和利用:产生的沼气可以通过收集系统进行收集和处理。
沼气中的甲烷可以用作燃料,发电或供应给其他需要能源的设备,而二氧化碳则可以通过适当的处理回收利用。
4. 沉淀池和沉淀池:厌氧反应器后的废物水和厌氧微生物一起被引入沉淀池和沉淀池。
在这些装置中,微生物会沉淀在底部形成污泥,而水则从顶部流出。
污泥可以作为农业肥料或通过其他方法处理和处置。
厌氧生物处理法具有许多优点。
首先,它能够有效地处理高浓度有机废水,降解有机物质并减少废物对环境的影响。
其次,产生的沼气可用作能源,减少了对传统能源的需求,同时还可以降低温室气体排放。
此外,相对于其他生物处理方法,厌氧生物处理工艺具有更低的能耗和操作成本。
然而,厌氧生物处理法也存在一些挑战。
首先,该方法对温度和pH等环境条件较为敏感,必须在一定范围内才能正常运行。
其次,处理效果可能受到一些抑制剂和毒物的影响,这需要进行适当的控制和监测。
总而言之,厌氧生物处理法是一种具有广泛应用前景的污水处理方法,能够有效降解有机废水,并产生可利用的能源。
在实际应用中,可以根据具体情况对工艺流程进行调整和优化,以提高处理效果和经济效益。
厌氧好氧工艺流程厌氧好氧工艺是一种常见的废水处理工艺,它通过结合厌氧与好氧两种环境条件来处理含有有机污染物的废水。
该工艺能够高效地去除废水中的污染物,使其达到国家排放标准。
下面将为大家介绍一下厌氧好氧工艺的流程。
首先,废水要经过预处理,包括调节水质和去除大颗粒物质。
通常采用调节水质的措施有中和调节、曝气调节和气浮调节。
调节水质后,废水进入格栅池,通过格栅的过滤作用,去除废水中粗大的杂质。
然后,废水进入沉砂池,在沉砂池中,由于废水中的颗粒物质比废水重,所以它们会沉积在沉砂池的底部,从而被去除。
经过预处理后的废水进入调节池,进行进一步的处理。
在调节池中,废水首先进入厌氧区。
在厌氧区中,废水与厌氧细菌接触,这些细菌能够消耗有机物质并产生甲烷气体。
厌氧区的作用是将废水中的有机物质转化为可生物降解的有机物质,为后续的好氧处理提供条件。
经过厌氧区处理后,废水进入好氧区。
在好氧区中,废水与好氧细菌接触,这些细菌能够利用废水中的有机物质进行呼吸和代谢,并将有机质分解为无机物质。
好氧区的作用是将废水中的有机物质进一步降解,并提供良好的生物环境,以确保废水处理效果。
经过好氧区处理后,废水进入沉淀池。
在沉淀池中,由于废水的流速减慢,废水中的悬浮物和污泥会沉淀在底部。
经过一段时间的沉淀后,可以将上清液从上部取出,从而实现废水的分离。
分离后的上清液可以作为再生水或进一步处理。
而沉淀池底部的污泥则可以经过专门的处理措施后进行回收利用或垃圾处理。
最后,分离后的废水进入后处理环节,包括消毒和除磷除氮步骤。
消毒是为了杀灭废水中的细菌和病毒,以保证排放水的安全性。
除磷除氮是为了去除废水中的无机污染物,在一些特定的环境中是必要的。
这些后处理步骤能够进一步提高废水的处理效果,确保废水达到国家排放标准。
综上所述,厌氧好氧工艺是一种高效、经济和环保的废水处理工艺,可以去除废水中的有机污染物,并达到国家排放标准。
该工艺的流程包括预处理、厌氧区处理、好氧区处理、沉淀和后处理等环节,每一个步骤都起着重要的作用,确保了废水的处理效果。