广州市天河区2019-2020学年八年级上期末考试数学试题含答案新人教版
- 格式:doc
- 大小:498.00 KB
- 文档页数:11
新人教版2019-2020学年初二上册期末考试数学试卷及答案2019-2020学年八年级上学期期末考试数学试卷一、选择题(3*8=24)1.下列运算结果正确的是()A.2a(2a)=8aB.(x)=x236C.6xy÷(−2xy)=XXX(x−y)=x−y2.如果把3222y中的x和y都扩大5倍,那么分式的值()A.不变B.扩大5倍C.缩小5倍D.扩大4倍3.下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ayB.x−4x+4=x(x−4)+4C.x−16=(x+4)(x−4)D.10x−5x=5x(2x−1)4.一个多边形的内角和是720°,则这个多边形的边数是()A.5B.6C.7D.85.在下列图形中,对称轴最多的是()A.等腰三角形B.等边三角形C.正方形D.圆6.若二次三项式x2+mx+422221为完全平方式,则m的值为()A.±2B.2C.±1D.17.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形8.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(3*6=18)9.分解因式:a−1= a(a-1).10.若分式2−|x|的值为零,则x的值为2或-2.11.已知P(2a+b,b)与Q(8,-2)关于y轴对称,则a+b=3.12.若a+b=−3,ab=2,则a2+b2的值为13.13.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=40°.14.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△XXX分割成两个三角形,使其中一个是等腰三角形,则这样的直线最多可画一条.三、解答题(5*5=25)15.计算:(2a−3b)(−2a−3b)=−4a2+9b2.16.如图,点B、E、C、F在同一条直线上,BE=CF,∠A=∠D,∠1=∠2.求证:AC=DE.证明:由题意可知,BE=CF,∠A=∠D,∠1=∠2,所以△ABE和△DCF全等,因此∠EAB=∠XXX,∠XXX∠FCD,所以△AEB和△DFC相似,因此AE/DF=AB/DC,又因为AB=DC,所以AE=DF,因此AC=AE+EC=DF+FC=DE.17.解分式方程:13/(2x−2)-4=1.13/(2x-2)-4=113/(2x-2)=52x-2=13/5x=11/5.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,设等腰三角形的腰长为x,底边长为y,则有:周长为2x+y。
2019-2020学年上学期期末原创卷A 卷八年级数学·参考答案12345678910DABDBDDCCA11.120︒12.(2,﹣1)13.(2a +b )(2a -b )14.415.60°16.①②③17.【解析】原式=222222x y x y y =--+=,当0.5y =-时,原式=14.(6分)18.【解析】221b a a b a b a b⎛⎫-÷ ⎪--+⎝⎭=()()()()a b b aa b a b a b a b a b ⎛⎫+-÷⎪ ⎪-+-++⎝⎭=()()aa b a b a b a+⋅-+=1a b-.(3分)将1,1a b ==代入,得:原式==12-.(6分)19.【解析】1122x xx x-=---去分母得到(1)(2)(12)x x x x --=--,去括号得到22222x x x x x x --+=--,移项合并同类项得到42=x ,(3分)系数化为1可得12x =,经检验12x=是原方程的解,故原方程的解为12x=.(6分)20.【解析】(1)∵BE=FC,∴BE+EC=FC+CE,即:BC=FE,∵AB=DF,AC=DE,∴△ABC≌△DFE,∴∠B=∠F,∴AB∥DF.(3分)(2)∵△ABC≌△DFE,∴∠A=∠D=75°,∴∠F=180°-∠DEF-∠D=180°-38°-75°=67°.(7分)21.【解析】(1)以C为圆心,以一定长度为半径,使弧与边AB交于两点,再作这两点之间线段的中垂线,如图所示,CD即为所求;(3分)(2)以B为圆心,以任意长度为半径,作弧,分别交BA、BC于两点,再分别以这两点为圆心,以大于12这两点之间的距离为半径作弧,两弧交于一点,如图所示,BE即为所求;(5分)(3)CE=CF,理由如下:∵CD⊥AB,∴∠FDB=90°,∵BE平分∠ABC,∴∠CBF=∠DBF,∵∠DFB+∠DBF=∠CEB+∠CBF=90°,∴∠BFD=∠CEB,∵∠BFD =∠CFE ,∴∠CFE =∠CEF ,∴CE =CF .(7分)22.【解析】设该校八年级学生的总人数为x 人,根据题意得:193619360.888x x ⨯=+,解方程得:x =352,(4分)经检验:x =352是所列分式方程的根,且满足题意,∴x =352(人),1936352 5.5÷=(元),答:该校八年级学生的总人数为352人,文具包的价格为5.5元.(7分)23.【解析】(1)∵22448160x x y y +++-+=,∴()()22240x y ++-=,∴()220x +=,()240y -=,∴2x =-,4y =;即:422y x ==--;(3分)(2)∵2222210x y xy y +-++=,∴2222210x y xy y y +-+++=,可得:()()2210x y y -++=,∴()20x y -=,()210y +=,∴1x y ==-,所以()21213x y +=-+⨯-=-;(6分)(3)∵22810410a b b a +--+=,∴22108410a a b b -+-+=,2210258160a a b b -+++=-,()()22450a b -+=-,∴()250a -=,()240b -=,∴5a =,4b =;∵a 、b 、c 是ABC △的三边长,且c 为最长边,∴554c <<+,所以ABC △中最长边c 的取值范围为:59c <<.即ABC △中最长边c 的取值范围为:大于5且小于9.(9分)24.【解析】(1)AD ⊥BD ,∠BAD =45°,∴AD =BD ,∵∠BFD =∠AFE ,∠AFE +∠CAD =90°,∠CAD +∠ACD =90°,∴∠BFD =∠ACD ,在△BDF 和△ADC 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (AAS ),∴BF =AC ;(4分)(2)连接CF ,∵△BDF ≌△ADC ,∴DF =DC ,∴△DFC 是等腰直角三角形.∵CD =3,CFCD,∵AB =BC ,BE ⊥AC ,∴AE =EC ,BE 是AC 的垂直平分线.∴AF =CF ,∴AF.(9分)25.【解析】(1)设运动t 秒,M 、N 两点重合,根据题意得:212t t -=,12t ∴=,答:点M ,N 运动12秒后,M 、N 两点重合.(3分)(2)设点M 、N 运动x 秒后,可得到等边AMN △,AMN △是等边三角形AN AM ∴=,122x x ∴-=,解得:4x =,∴点M 、N 运动4秒后,可得到等边三角形AMN .(6分)(3)设M 、N 运动y 秒后,得到以MN 为底边的等腰三角形AMN .ABC △是等边三角形,AB AC ∴=,60C B ∠=∠= ,AMN △是等腰三角形,AM AN ∴=,AMN ANM ∴∠=∠,且B C ∠=∠,AC AB =,ACN ∴△≌()AAS ABM △,CN BM ∴=,CM BN ∴=,12362y y ∴-=-,16y ∴=,答:当M 、N 运动16秒后,得到以MN 为底边的等腰三角形AMN .(9分)。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x 米,则可得方程4000400010x x--=20,…”根据答案,题中被墨汁污染条件应补为( )A .每天比原计划多铺设10米,结果延期20天完成B .每天比原计划少铺设10米,结果延期20天完成C .每天比原计划多铺设10米,结果提前20天完成D .每天比原计划少铺设10米,结果提前20天完成【答案】B【分析】工作时间=工作总量÷工作效率.那么4000÷x 表示原来的工作时间,那么4000÷(x ﹣10)就表示现在的工作时间,20就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道x 米,那么(x ﹣10)就应该是实际每天比原计划少铺了10米, 而用4000400020x 10x-=-则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划少铺设10米,结果延期20天完成.故选:B .【点睛】本题考查了由实际问题抽象除法分式方程,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.2.已知实数x ,y 满足|x ﹣4|+(y ﹣8)2=0,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16B .20C .16D .以上答案均不对【答案】B【分析】先根据非负数的性质列式求出x 、y 的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x ﹣4=0,y ﹣8=0,解得x =4,y =8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=1.所以,三角形的周长为1.故选:B .【点睛】本题考查了等腰三角形的性质,分类讨论是关键.3.因式分解x 2+mx ﹣12=(x+p )(x+q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( ) A .1B .4C .11D .12 【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.4.两千多年前,古希腊数学家欧几里得首次运用某种数学思想整理了几何知识,完成 了数学著作《原本》,欧几里得首次运用的这种数学思想是( )A .公理化思想B .数形结合思想C .抽象思想D .模型思想 【答案】A【分析】根据欧几里得和《原本》的分析,即可得到答案.【详解】解:∵《原本》是公理化思想方法的一个雏形。
2019-2020学年人教版八年级上学期期末考试数学试题(本卷共五个大题,满分150分,考试时间 120分钟)一、选择题(每小题4分,共48分)每小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列几个图形是国际通用的交通标志,其中是轴对称图形的有( )个A .4B .3C .2D .1 2.若分式11x +有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x =- C .1x ≠ D .1x ≠- 3.下列计算正确的是( )A .8442x x x =+ B .()326x yx y =C .210532xy )xy ()y x (=÷D .()853x x x =-⋅-4.已知点B 、C 、F 、E 共线,12,AF CD ∠=∠=,要使ABF ∆≌DEC ∆,还需补充一个条件,下列选项中不能满足要求的是( )A .AB DE = B .A D ∠=∠C .AB ∥DED .BC EF = 5.等腰三角形的两边分别为3和6,则它的周长等于( ) A.12 B.12或15 C.15或18 D.156.如图,△ABC 中,AB=AC =10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( ) A .5 B .6 C .8 D .107.已知xx mn ==23,,2m n x +=( )A.12B. 108C. 18D. 36 8.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+- 9.方程11161122+=---x x x 的增根为( ) (4题图)A.1B.1和-1C. -1D.010.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C .20D .21 11. 如图,ABC ∆中,A ∠=84°,BD 、CD 分别平分ABC ∠、ACB ∠,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分MBC ∠、BCN ∠,BF 、CF 分别平分EBC ∠、ECQ ∠,则F ∠=( )A.15°B.12°C.18°D.24°12. 初二(1)班为元旦文艺表演者发奖,用一定数量的钱去买奖品.若以1支钢笔和2个笔记本为一份奖品,正好能买60份;若以1支钢笔和3个笔记本为一份奖品,正好能买50份;若以1支钢笔和1个笔记本为一份奖品,则这笔钱能买奖品( )份 A .80 B .70 C .75 D .55二、填空题:(每小题4分,共24分)请将答案填在题后的横线上. 13.利用科学记数法表示:0.0000000135= . 14. 若229a ka ++是一个完全平方式,则k 等于 . 15.分解因式:222(4)16x x +-=___________;16. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .17.若关于x 的方程的解是负数,则m 的取值范围是 .18.正方形ABCD 中,E 、F 分别在AD 、DC 上,15ABE CBF ∠=∠=︒,G 是AD 上另一点,且 120BGD ∠=︒,连接EF 、BG 、FG ,EF 、BG交于点H ,则下面结论:①DE DF =;②BEF ∆ 是等边三角形;③45BGF ∠=︒;④BG EG FG =+中. 正确的是 .(请填番号)三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.计算:|2|8)31()9()1(3202013--+⨯----π.20.解分式方程:11262213x x=---.HG FE DCBA四、解答题:(21题、22题每小题8分,23、24题每小题10分,共36分)解答时必须给出必要的演算过程或推理步骤.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC ∆的顶点均在格点 (1)作出ABC ∆关于y 轴对称的111A B C ∆;(2) 写出1A 、1B 、1C 三点的坐标,并求111A B C ∆的面积.22.如图,点E 、F 在线段BD 上,AB CD =,B D ∠=∠,BF DE =. 求证:(1)AE CF =; (2)AF //CE .23.先化简,再求值:12)11(222+-+÷---+x x x x x x x x ,其中x 为不等式组⎪⎩⎪⎨⎧≤+≤252322-x x的一个整数解.24.ABC ∆中,AB BC ⊥,AB BC =,E 为BC 上一点,连接AE ,过点C 作CF AE ⊥交AE 的延长线于点F ,连结BF ,过点B 作BG BF ⊥交AE 于G . (1)求证:ABG ∆≌CBF ∆;(2)若E 为BC 中点,求证:CF EF EG +=.五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤. 25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三) 若由甲乙两队合作做4天 ,剩下的工程由乙队单独做,也正好按规定工期完工. (1)请你求出完成这项工程的规定时间;来源:学*科*网Z*X*X*K](2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.AC26.长方形ABCD 中,18AB CD cm ==,以AB 为边向上作正ABE ∆,AE 、BE 分别交CD 于F 、G ,5DF cm =,两动点P 、Q 运动速度分别为4scm 、v (scm).(1)AF 的长为 cm ;(2)若点P 从A 出发沿线段AB 向B 运动,同时点Q 从B 出发沿线段BE 向点E 运动,设运 动时间为()t s ,在运动过程中,以A 、F 、P 为顶点的三角形和以P 、B 、Q 为顶点的三 角形全等,求Q 的运动速度v ;(3)若点Q 以(2)中的速度从点B 出发,同时点P 以原来的速度从点A 出发,逆时针沿四边形ABGF 运动.问P 、Q 会不会相遇?若不相遇,说明理由.若相遇,请求出经过多长时间 P 、Q 第一次在四边形ABGF 的何处相遇?AFGEDCBQP八年级数学答案一.选择题(每小题4分,共48分) 1-12 ADDAD BADAC BC 二、填空题:(每小题4分,共24分)13、8-1035.1⨯ 14、3± 15、()()2222-+x x16、9448448=-++x x 17、m <2, 且m ≠0 18、①、②、④ 三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.2-291-1-+⨯=原式 ……………………5分 =-10 ……………………7分 20.解:去分母得:1=3x-1+4 ……………………3分X=32-……………………5分 经检验:X=32-是原方程的根 ……………………7分四.解答题:(每小题10分,共40分)解答时必须给出必要的演算过程或推理步骤 21.(1)图略 ……………………2分 (2)()()()112240111,,,,,C B A 三角形111A B C ∆的面积=2…10分22.证明略23.原式=()222)1()1(11-+÷---+x x x x x x x ……………………3分 =)1()1(112+-⨯-+x x x x x ……………………5分 =xx 1- ……………………7分解不等式得:21-≤≤x ,因为分式的分母不能为0,且x 为整数,所以x=2 …………9分 原式=21……………………10分 24.(1)略 ……………………4分(2)证明:过B 做BH ⊥AF 于H∵E 是BC 的中点 ∴BE=EC又∵CF AE ⊥,∴∠CFE=∠BFG ∠CEF=∠BEH ∴△CFE ≌△BEH ;∴EH=EF,BH=CF又由(1)ABG ∆≌CBF ∆;∴BG=BF 又∵BG BF ⊥ ∴△BGF 是等腰直角三角形 ∴∠BGH=45°,又知∠BHG=90°∴∠HBG=45°∴△BHG 是等腰直角三角形 ∴BH=GH又∵GE=GH+HE ∴GH=CF+EF ……………………10分 五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤.25.(1)设:完成这项工程的规定时间为x 天。
2019—2019—2020学年八年级上册人教版数学期末考试试题及答案[1]八年级(初二)数学(新人教版)说明:考试允许使用计算器.一、精心选一选(本大题共8小题。
每小题3分;共24分)下面每小题均给出四个选项;请将正确选项的代号填在题后的括号内. 1.下列运算中;计算结果正确的是( ).A. 236a a a ⋅= B. 235()a a = C. 2222()a b a b = D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2;3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中;AB = AC 。
BE ⊥AC 于E ;CF ⊥AB 于F ;BE 、CF交于点D ;则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED.点D 是BE 的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案;则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中;用来表示不同品种的奶牛的平均产奶量最为合适的是( ).A. B. C. D.二、细心填一填(本大题共6小题;每小题3分;共18分)9.若单项式23m a b 与n ab -是同类项;则22m n -= .l0.中国文字中有许多是轴对称图形;请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形;请你在图中补画一个小正方形;使补画后的图形为轴对称图形.12.如图;已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上;请在小方格的顶点上标出一个点P 。
2020-2021学年广东省广州市天河区八年级(上)期末数学试卷一、选择题(共10个小题,每小题3分,满分30分:每小题给出的四个选项中,只有一个是正确的.)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)在下列长度的三条线段中,能围成三角形的是()A.2,3,4B.2,3,5C.3,5,9D.8,4,4 3.(3分)如果一个多边形的内角和等于720°,则它的边数为()A.3B.4C.5D.64.(3分)下列运算中正确的是()A.2a3﹣a3=2B.2a3•a4=2a7C.(2a3)2=4a5D.a8÷a2=a4 5.(3分)在△ABC中,∠C=90°,∠A=60°,AC=2.则AB的长为()A.1B.2C.3D.46.(3分)分式的值为0,则y的值是()A.5B.C.﹣5D.07.(3分)若x2+kx+16能写成一个多项式的平方形式,则k的值为()A.±8B.8C.±4D.48.(3分)如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF 的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF 9.(3分)如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°10.(3分)如图,△ABC和△ADE是等腰直角三角形,且∠BAC=∠DAE=90°,BD,CE 交于点F,连接AF.则下列结论不正确的是()A.BD=CE B.BD⊥CE C.AF平分∠CAD D.∠AFE=45°二、填空题(共6个小题,每小题3分,共18分.)11.(3分)已知点P的坐标为(﹣2,3).则它关于y轴对称的点P'的坐标是.12.(3分)已知x+y=6,xy=7,则x2y+xy2的值是.13.(3分)如图,已知△ABC≌△DEF,∠B=57°,∠D=77°,则∠F=.14.(3分)(a2)﹣1(a﹣1b)3=.15.(3分)等腰三角形中有一个内角是70°,则另外两个内角的度数分别为.16.(3分)若(x+m)与(x+3)的乘积中不含x的一次项,则m=.三、解答题(共7小题,共48分,解答要求写出文字说明,证明过程或计算步骤.)17.(4分)计算:a÷b×.18.(4分)计算:(x+1)(x﹣1)﹣(x+2)2.19.(6分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;(2)在x轴上找一点P,使得PB+PA的值最小.(要求写作法)20.(6分)先化简,再求值:已知(+)÷,其中x满足x2+2x﹣5=0.21.(8分)如图,在△ABC中,∠C=90°,点D,点E在边BC上,且满足AD=BD,AE 平分∠BAD,若∠CAE=42°.求∠AEC和∠B的度数.22.(10分)某校组织八年级学生外出去博物馆参观,一部分学生步行,一部分学生骑车.已知骑车的路程是12km.而步行路程是骑车路程的.若骑车的速度是步行学生速度的2倍,且骑车时间比步行所需时间少用20分钟,求骑车的平均速度.23.(10分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AE⊥DE.四、解答题(共2小题,共24分,解答要求马出文字说明。
2019-2020学年八年级上学期末考试数学试题一、选择题(本大题共14小题,共42.0分)1.下面设计的原理不是利用三角形稳定性的是()A. 三角形的房架B. 自行车的三角形车架C. 斜钉一根木条的长方形窗框D. 由四边形组成的伸缩门2.视力表中的字母“E”有各种不同的摆放形式,下面每种组合中的两个字母“E”不能关于某条直线成轴对称的是()A. B. C. D.3.某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A. B. C. D.4.若分式有意义,则x的取值范围是()A. B. C. D.5.已知a m=6,a n=3,则a2m-n的值为()A. 12B. 6C. 4D. 26.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A. 3B. 4C. 3或5D. 3或4或57.下列说法:①满足a+b>c的a、b、c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角,其中错误的有()A. 0个B. 1个C. 2个D. 3个8.下列计算正确的是()A. B. C. D.9.一定能确定△ABC≌△DEF的条件是()A. ,,B. ,,C. ,,D. ,,10.由图中所表示的已知角的度数,可知∠α的度数为()A.B.C.D.11.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A. B. C. D.13.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x 个,那么所列方程是()A. B. C. D.14.如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A. 0个B. 2个C. 4个D.8个二、填空题(本大题共4小题,共16.0分)15.分解因式:9-12t+4t2=______.16.一个正多边形的每个内角都是150°,则它是正______边形.17.已知,则代数式的值为______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.三、计算题(本大题共1小题,共10.0分)19.(1)解分式方程:(2)计算:x(x+2y)-(x+y)2四、解答题(本大题共5小题,共52.0分)20.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.21.如图,在一块边长为a米的正方形空地的四角均留出一块边长为<米的正方形修建花坛,其余的地方种植草坪.利用因式分解计算当a=13.6,b=1.8时,草坪的面积.22.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ.(1)证明:CP=CQ;(2)求∠PCQ的度数;(3)当点D是AB中点时,请直接写出△PDQ是何种三角形.23.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线L成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线L上找一点P(在答题纸上图中标出),使PB+PC的长最小.24.在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上,证明:∠BAD=∠EDC;(2)如图1,若点D在线段BC上,证明:①AD=DE;②BC=DC+2CF(提示:构造全等三角形);(3)如图2,若点D在线段BC的延长线上,直接写出BC、DC、CF三条线段之间的数量关系.答案和解析1.【答案】D【解析】解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.利用三角形的稳定性进行解答.此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.2.【答案】C【解析】解:如图所示,A,B,D选项中,两个字母“E”关于直线l成轴对称,而C选项中,两个字母“E”不能沿着某条直线翻折互相重合,故选:C.把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴.本题主要考查了轴对称的概念,轴对称包含两层含义:①有两个图形,且这两个图形能够完全重合,即形状大小完全相同;②对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.3.【答案】D【解析】解:0.000 000001=1×10-9,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】A【解析】解:由题意得,x-2≠0,解得x≠2.故选:A.根据分式有意义,分母不等于0列不等式求解即可.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.【答案】A【解析】解:∵a m=6,a n=3,∴a2m-n=(a m)2÷a n=36÷3=12.故选:A.直接利用同底数幂的乘除运算法则计算得出答案.此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】C【解析】解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,C、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;B、当EF=4时,不符合EF为奇数,故本选项错误;A、当EF=3时,由选项C知,此选项错误;D、当EF=3或4或5时,其中4不符合EF为奇数,故本选项错误;故选:C.根据全等求出DE=AB=2,DF=AC=4,根据△DEF的周长为奇数求出EF的长为奇数,再根据EF长为奇数和三角形三边关系定理逐个判断即可.本题考查了全等三角形的性质和三角形三边关系定理的应用,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.7.【答案】D【解析】解:(1)满足a+b>c且a<c,b<c的a、b、c三条线段一定能组成三角形,故错误;(2)只有锐角三角形的三条高交于三角形内一点,故错误;(3)三角形的外角大于与它不相邻的任何一个内角,故错误;故选:D.利用三角形的三边关系、三角形的三线的定义及三角形的外角的性质,分别判断后即可确定正确的选项.本题考查了三角形的三边关系、三角形的三线的定义及三角形的外角的性质,属于基础定义或基本定理.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.【答案】B【解析】解:(-2a)2=4a2,A选项错误;(-3)-2==,B选项正确;(a5)2=a10,C选项错误;b3•b4=b7,D选项错误;故选:B.根据积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法法则计算,判断即可.本题考查的是积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.【答案】A【解析】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.【答案】D【解析】解:∠α=360°-120°-120°-70°=50°.故选:D.根据四边形的外角和为360°直接求解.本题考查了多边形的内角与外角,牢记多边形的外角和定理是解答本题的关键.11.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等.12.【答案】B【解析】解:∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故选:B.先根据线段垂直平分线及等腰三角形的性质得出∠B=∠DAB,再根据∠DAE 与∠DAC的度数比为2:1可设出∠B的度数,再根据直角三角形的性质列出方程,求出∠B的度数即可.本题考查的是线段垂直平分线的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.13.【答案】A【解析】解:设甲每小时做x个零件,则乙每小时做(x+6)个零件,依题意,得:=.故选:A.设甲每小时做x个零件,则乙每小时做(x+6)个零件,根据工作时间=工作总量÷工作效率结合甲做60个所用时间与乙做90个所用时间相等,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.14.【答案】C【解析】解:如图所示:因为△ABC为等腰三角形,且△ABC的面积为1,所以满足条件的格点C有4个,故选:C.根据等腰三角形的性质和三角形的面积解答即可.本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键15.【答案】(3-2t)2【解析】解:原式=(3-2t)2.故答案为:(3-2t)2原式利用完全平方公式分解即可得到结果.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.16.【答案】十二【解析】解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.17.【答案】7【解析】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=9-2=7.根据完全平方公式把已知条件两边平方,然后整理即可求解.本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是解题的关键.18.【答案】60°或120°【解析】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.【答案】解:(1)去分母得:2-x-1=2x-5,解得:x=2,经检验x=2是分式方程的解;(2)原式=x2+2xy-x2-2xy-y2=-y2.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果.此题考查了解分式方程,以及整式的乘除,熟练掌握运算法则是解本题的关键.20.【答案】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【解析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.21.【答案】解:由图可得,草坪的面积是:a2-4b2,当a=13.6,b=1.8时,a2-4b2=(a+2b)(a-2b)=(13.6+2×1.8)×(13.6-2×1.8)=17.2×10=172,即草坪的面积是172.【解析】根据题意和图形可以表示出草坪的面积,然后根据因式分解法和a、b的值可以求得草坪的面积本题考查因式分解的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴CP=CD=CQ;(2)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴∠ACP=∠ACD,∠BCQ=∠BCD,∴∠ACP+∠BCQ=∠ACD+∠BCD=∠ACB=120°,∴∠PCQ=360°-(∠ACP+BCQ+∠ACB)=360°-(120°+120°)=120°;(3)△PDQ是等边三角形.理由:∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形【解析】(1)由折叠直接得到结论;(2)由折叠的性质求出∠ACP+∠BCQ=120°,再用周角的意义求出∠PCQ=120°;(3)先判断出△APD是等边三角形,△BDQ是等边三角形,再求出∠PDQ=60°,即可.此题是几何变换综合题,主要考查了折叠的性质,等腰三角形的性质,等边三角形的判定,锐角三角函数,极值的确定,三角形的面积公式,解本题的关键是判断出∠PCQ=120°是个定值.23.【答案】解:(1)如图所示:(2)△ABC的面积=;(3)如图所示,点P即为所求.【解析】(1)直接利用对称点的性质得出对应点位置进而得出答案;(2)利用割补法即可得出答案;(3)利用轴对称求最短路线的方法得出答案.本题主要考查作图-轴对称变换,解题的关键是根据与轴对称的定义作出变换后的对应点及割补法求三角形的面积.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠B=60°,∵∠ADC=∠ADE+∠EDC=∠B+∠BAD,∠ADE=60°,∴∠BAD=∠EDC;(2)证明:①过D作DG∥AC交AB于G,如图1所示:∵△ABC是等边三角形,AB=BC,∴∠B=∠ACB=60°,∴∠BDG=∠ACB=60°,∴∠BGD=60°,∴△BDG是等边三角形,∴BG=BD,∠AGD=∠B+∠BGD=60°+60°=120°,∴AG=DC,∵CE是∠ACB外角的平分线,∴∠DCE=120°=∠AGD,由(1)知∠GAD=∠EDC,在△AGD和△DCE中,,∴△AGD≌△DCE(SAS),∴AD=DE;②∵△AGD≌△DCE,∴GD=CE,∴BD=CE,∵EF⊥BC,CE是∠ACB外角的平分线,∴∠ECF=60°,∠CEF=30°,∴CE=2CF,∴BC=CE+DC=DC+2CF;(3)解:BC=2CF-DC;理由如下:过D作DG∥AC交AB延长线于G,如图2所示:∵DG∥AC,△ABC是等边三角形,∴∠BGD=∠BDG=∠B=60°,∴△GBD是等边三角形,∴GB-AB=DB-BC,即AG=DC,∵∠ACB=60,CE是∠ACB的外角平分线,∴∠DCE=∠ACE=×(180°-∠ACB)=60°,∴∠AGD=∠DCE=60°,∵∠GAD=∠B+∠ADC=60°+∠ADC,∠CDE=∠ADC+∠ADE=∠ADC+60°,∴∠GAD=∠CDE,在△AGD和△DCE中,,∴△AGD≌△DCE(ASA),∴GD=CE,∴BD=CE,∵CE=2CF,∴BC=BD-DC=CE-DC=2CF-DC.【解析】(1)由等边三角形的性质得出∠B=60°,再由三角形的外角性质结合已知条件,即可得出结论;(2)过D作DG∥AC交AB延长线于G,证得△AGD≌△DCE,得出:①AD=DE;进一步利用GD=CE,BD=CE得出②BC=DC+2CF;(3)过D作DG∥AC交AB延长线于G,由平行线和等边三角形的性质得出∠BGD=∠BDG=∠B=60°,证出△GBD是等边三角形,证出AG=CD,再证出∠GAD=∠CDE,证明△AGD≌△DCE,得出GD=CE,进而得出结论.此题是三角形综合题目,考查了等边三角形的性质、角平分线的意义、全等三角形的判定与性质以及平行线的性质等知识,通过作辅助线,构造三角形全等是解决问题的关键.。
2019-2020 学年广东省广州市白云区八年级(上)期末数学试卷一、选择题(本大题共 10 小题,共 30.0 分)1. 下列各组数中,能作为一个三角形三边边长的是( )A. B. C. D. D.1,1,2 1,2,4 2,3,4 2,3,52. 下列计算结果为 的是( )6 B.C.A.⋅÷)2 3)2 32 312 23. 已知+ +=− + 36,则 + = ( )2 A. B. C. D. −55−13−13或 54. 如图,利用平面直角坐标系画出的正方形网格中,若的坐标为( ).,A. B. C. D. (1, −2)(2,1)=(1, −1) (2, −1)=,上,则图中全等的三A DA. B. C. D. 1 对2 对3 对4 对116. 分式,的最简公分母是( )− 1) − 1)22A. C.B. D.+ + − 1)+− 1)227. 如果 点的坐标为,它关于 轴的对称点为 , 关于 轴的对称点为 ,已知 的坐标P y x 1 1 2 2为(−2,3),则点 的坐标为( )P A. B. C. D. (2, −3)(−2, −3) 边的中垂线,交 (−2,3) (2,3)8. 如图, 是△D E 中 于点 ,交 D于点 ,若= 9,= 5.则△A CBC A C E 的周长为( )A. B. C. C.D. D.5149 161÷19. 计算的结果为( )22B.A.1中,A. B. C. D.126 8 10二、填空题(本大题共 6 小题,共 18.0 分) 11. 多项式 12. 在△2 2的公因式是______.22中,若 == 40°,则 的外角是_________. 上一点, =若= 50°,则 .2 =314. 分式方程 的解为______.,,要使△16. 计算(3 1)(32 1)(34 1)(38 1)(316 1) =____________________________.三、计算题(本大题共 1 小题,共 10.0 分) 17. (1)计算:(2)因式分解:÷ 1323 22.四、解答题(本大题共6小题,共62.0分)20cm18.用一条长为的细绳围成一个等腰三角形.(1)如果腰长是底边长的倍,那么各边的长是多少?25cm(2)能围成有一边长为的等腰三角形吗?如果能,请求出它的另两边.19.如图,=,=求证:=.(1)作的平分线交B D AC 于点.D(2)作线段的垂直平分线交于点,交E于点.B C FB D AB(3)在(1)、(2)条件下,连接DE,线段与线段的关系为______.BFD E21.先化简,再求值:−÷(−12),其中=−.1222.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短小时,求高铁的平均速度.3-------- 答案与解析 --------1.答案:C解析:本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.解:1+1=2,不满足三边关系,故错误;B.1+2<4,不满足三边关系,故错误;C.2+3>4,满足三边关系,故正确;D.2+3=5,不满足三边关系,故错误.故选C.2.答案:C解析:此题主要考查了同底数幂的乘法和除法运算以及幂的乘方运算,正确掌握运算法则是解题关键.直接利用同底数幂的乘法和除法运算法则以及幂的乘方运算法则分别化简得出答案.解:2⋅3=5,故此选项错误;B.÷==10,故此选项错误;122122C.)=,故此选项正确;236D.)=236,故此选项错误.故选C.3.答案:C解析:此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.直接利用多项式乘多项式法则进行计算,去括号,进而合并同类项求出答案.解:∵+++=2+36,+36,∴++=22∴+=−13.故选C.4.答案:D解析:解:由,可建立如图所示平面直角坐标系:∴点C坐标为(2,−1),故选:D.根据A、B点的坐标建立坐标系,继而可得点C坐标.本题主要考查坐标与图形的性质,根据A、B点的坐标还原平面直角坐标系是解题的关键.5.答案:C解析:本题主要考查了三角形全等的判定定理:有两边及其夹角对应相等的两个三角形全等,三条边分别对应相等的两个三角形全等.运用定理来判定两三角形全等是关键.根据SSS可得:△,得出解:∵∴△=,=,再根据SAS可得:△,△.=,=,=,,∴=,=,又∵=,=,∴△,△,∴有三对全等三角形.故选:C.6.答案:B解析:本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母, 确定最简公分母的方法一定要掌握.确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2) 凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因 式的积就是最简公分母. 11 , 的分母分别是 2解:分式 =1)、 2= 1),故最简公分母是221). 故选 B .7.答案:A解析:解:∵ 点的坐标为 (2,3) ,,它关于 y 轴的对称点为 , 关于 x 轴的对称点为 , 的坐标为1 12 2 ∴ 的坐标为:(2, 3) ,故点 P 的坐标为:(2, 3) . 1 故选:A .直接利用关于 x ,y 轴对称点的性质结合 的坐标得出点 P 的坐标.2 此题主要考查了关于 x ,y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.8.答案:B解析:本题考查的是线段垂直平分线的性质有关zh ish i 知识,根据DE 是 AC 的 ch 垂直平分线得出 =,然后再进行计算即可. 解:∵ 是△ , 中 AC 边的中垂线,∴ =∴△的周长为== 5 9 = 14.故选 B .9.答案:D解析:本题考查了分式的除法运算,解题关键是掌握分式除法的运算法则并能熟练运用.根据分式的除法法 则计算即可. 1÷1解:221=× ( 7)(7 + )(7)=.故选 D .10.答案:C解析:此题考查旋转的性质,关键是根据旋转的性质得出= 1,= 90°.根据旋转的性质得出1=1,= 90°,进而利用勾股定理解答即可.1解:∵将△ 绕点 A 逆时针旋转60°得到△1 1,∴ ∵ ∴=1,= 60°,1= 8,= 6,= 8,1中,1的长= √82 + 6 = 10,= 30°,= 90°,= 6,11∴在 △ 2 故选 C .11.答案:ab解析:本题主要考查了公因式,关键是掌握确定公因式的方法.根据确定多项式中各项的公因式的方法,可概括为三“定”:①定系数,即确定各项系数的最大公 约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因 式(或相同多项式因式)的指数的最低次幂进行解答即可. 解:多项式222 2的公因式是 ab ,故答案为:ab .12.答案:80°解析:本题考查了三角形的外角性质,根据三角形的一个外角等于它不相邻的两个内角的和解答即可. 解:在△中,的外角== 40° + 40° = 80°.+故答案为80°.13.答案:25°解析:此题主要考查了等腰三角形的性质,关键是掌握等边对等角,三角形内角和为180°.根据等边对等角 180°50° = 65°,再利用 的度数减去 的度数即可.可得 解:∵ ∴ = == 50°,= 180°50°= 65°,2∵ ∴= 90°,= 90° 65° = 25°,故答案为25°.14.答案: = 5解析:解:去分母得: + 2 =解得: = 5,3,经检验 = 5是分式方程的解, 故答案为: = 5分式方程去分母转化为整式方程,求出整式方程的解得到 的值,经检验即可得到分式方程的解.x此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.答案:= 或 =解析:此题考查了全等三角形的判定,平行线的性质,熟练掌握全等三角形的判定方法是解本题的关键. ,根据条件利用 即可得证;若,根据条件利用 即可得证.若==SAS ASA 解:若添加 =,∵,∴==−,,∵∴=−中,,即=,在△和△={==,∴△;若添加=,∵,,∴=∵=−,∴=−中,,即=,在△和△={=,=∴△,故答案为:=或=.16.答案:332−12解析:本题主要考查平方差公式的熟练应用.多次利用平方差公式计算.(3−1)×(31)×(321)×(341) (3161)解:原式=2(3−1)×(31)×(341) (3161)22=2=332−1.2故答案为332−1.217.答案:解(1)原式=2−−;+1−1=2(2)原式=−+)22=−2.解析:(1)根据多项式除以单项式的法则进行计算即可;(2)先提公因式,再根据完全平方公式进行因式分解即可.本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键.18.答案:解:(1)设底边长为xcm,则腰长为2xcm 则++=20,解得=4,=8,,∴∴各边长为:8,8,4;cm cm cm(2)①当5cm为底时,腰长=;②当5cm为腰时,底边=,因为5+5=10,故不能构成三角形,故舍去;故能构成有一边长为5的等腰三角形,另两边长为cm,.解析:此题主要考查等腰三角形的性质及三角形三边关系的综合运用,属于基础题.(1)设底边长为xcm,则腰长为2xcm,根据周长公式列一元一次方程,解方程即可求得各边的长;(2)题中没有指明5所在边是底还是腰,故应该分情况进行分析,注意利用三角形三边关系进行检cm验.19.答案:证明:在△和△中=={=,∴△∴,==,.又∵=,∴解析:本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.根据全等三角形的判定和性质即可得到结论.20.答案:(1)如图所示:(2)如上图所示:(3)相等解析:本题考查基本作图以及垂直平分线的性质(1)先B D平分(2)作EF垂直平分B D,交AB于点E,交BC于点F;(3)由于EF垂直平分B D,则,而B D平分,则可判断△所以有交AC于D;=为等腰三角形,所以=,=.解:(1)如图,B D为所作;(2)如图,EF为所作;(3)因为B D垂直EF,且B D平分所以容易证明△为等腰三角形,且=又EF垂直平分BD所以=所以有=故答案为相等.21.答案:解:原式=−÷[−1],= = = =−−−−÷[÷⋅2−1],2−1,,,=−2,=−2=−41当=−时,原式.1−122解析:首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入的值可得a答案.此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.22.答案:解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是千米/时,则高铁平均速度是x千米/时,根据题意得:520−400=3,解得:=120,经检验=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列x出分式方程,然后求解即可;此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.答案:解:(1)∵△和△=60°,+都是等边三角形,∴=60°,∴+=,即=,∵△∴和△,都是等边三角形,==,==∵在△与△中{=,∴△∴,==6.(2)在=,连接,BE A G由(1)的证明,知△,∴=,即=,∵=,在△与△中={=,=∴△∴,==,=,由由∴可得=,=可得=,=,∴平分.解析:本题考查了全等三角形的判定和性质,关键是根据全等三角形的判定,全等三角形对应角相等的性质.(1)根据等边三角形的性质和全等三角形的判定和性质解答.(2)根据全等三角形的判定和性质以及角平分线的判定解答即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.答案:解:(1)∵△和△=60°,+都是等边三角形,∴=60°,∴+=,即=,∵△∴和△,都是等边三角形,==,==∵在△与△中{=,∴△∴,==6.(2)在=,连接,BE A G由(1)的证明,知△,∴=,即=,∵=,在△与△中={=,=∴△∴,==,=,由由∴可得=,=可得=,=,∴平分.解析:本题考查了全等三角形的判定和性质,关键是根据全等三角形的判定,全等三角形对应角相等的性质.(1)根据等边三角形的性质和全等三角形的判定和性质解答.(2)根据全等三角形的判定和性质以及角平分线的判定解答即可.。
2017-2018学年第一学期天河区期末考试
八年级数学
(本试卷共三大题25小题,共4页,满分150分,考试用时120分钟)
第Ⅰ卷(水平测试100分)
一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的。
)
1. 下列选项中的三条线段能组成三角形的是( )
A. 2,2,6
B. 1,2,3
C. 4,5,6
D. 8,3,2
2. 下列选项中的汽车品牌标志图,不是轴对称图形的是( )
3. 如图,在Rt △ABC 中,∠B=90°,D 是BC 延长线上一点,∠ACD=130°,则∠A 等于(
)
A. 40°
B. 50°
C. 65°
D. 90°
B.
4. 若一个三角形三个内角度数的比为1:2:3,则其内角度数最大的是( )
A. 60°
B. 90°
C. 120°
D. 无法判断
5. 下列各运算中,正确的是( )
A. a³·a²=a 6
B. (-4a³)²=16a 6
C. a 6÷a²= a³
D. (a -1)²=a²-1
6. 若分式1-x 1
有意义,则( )
A. x≠1
B. x≠0
C. x≠-1
D. x≠±1
7. 若代数式x²+4x+m 通过变形可以写成(x+n )²的形式,那么m 的值是( )
A. 4
B. 8
C. ±4
D. 16
8. 计算1-x 3
1x x
3--的结果是( )
A. 1-x x
B. x
C. 3
D. 0
9. 如图,在△ABC 中,∠B=30°,AB 的垂直平分线交BC 于E ,交AB 于D ,
连接AE ,若AE 平分∠BAC ,BE=4,则CE 的长为( )
A. 8
B. 6
C. 4
D. 2
10. 某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天
交货,设每天应多做x 件,则x 应满足的方程为( ) A. 548720x 48720=-+ B. x 48720548720+=+ B. 5x 72048720=- D. 5x
4872048720=+-
二、填空题(本题有6个小题,每小题3分,共18分)
11. 一个多边形的每一个外角均为30°,那么这个多边形的边数是______.
12. 等腰三角形的两条边长分别为8cm 和6cm ,则它的周长是______cm.
13. 如果10m
=4,10ⁿ=6,那么10n -m =__________.
14. 如图,△AEB ≌△DFC ,AE ⊥CB ,DF ⊥BC ,垂足分别为E 、F ,
且AE=DF ,若∠C=28°,则∠A=__________.
15. 若m+n=3,mn=2,则的值为n
1m 1+___________. 16. 如图,点A ,B ,C 在同一直线上,在这条直线同侧作等边△ABD 和等边△BCE ,连接AE 和CD ,
交点为M ,AE 交BD 于点P ,CD 交BE 于点Q ,连接PQ 、BM , 有4个结论: ①△ABE ≌△DBC ,②△DQB ≌△ABP ,③∠EAC=30°,
④∠AMC=120°,请将所有正确结论的序号填在横线上____________.
三、解答题(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤)
17. (本题满分12分,每小题6分)
(1)计算:(a-1)²-a (a-1); (2)分解因式:xy²-4x ;
18. (本题满分8分)
△ABC 的顶点均在边长为1的小正方形网络中的格点上,如图,建立平面直角坐标系,点B 在x 轴上。
(1)在图中画出△ABC 关于x 轴对称的△A’B’C’,
连接AA’,求证:△AA’C ≌△A’AC’;
(2)请在y 轴上画点P ,使得PB+PC 最短。
(保留作图痕迹,不写画法)
19. (本题满分10分)
如图,点D 是△ABC 边BC 上一点,AD=BD ,且AD 平分∠BAC 。
(1)若∠B=50°,求∠ADC 的度数; A
(2)若∠C=30°,求∠ADC 的度数;
B D
C 第19题
20. (本题满分12分,每小题6分)
(1)计算:
2x x 22x x 42+++)(; (2)解方程:11
-x 12x 23=--;
21. (本题满分10分) A
如图,△ABC 中,AB=AC ,作AD ⊥BC ,CE ⊥AB 为D ,E ,AD 和CE 相交于点F ,若已知AE=CE 。
(1)求证:△AEF ≌△CEB ;
(2)求证:AF=2CD
第二卷(综合测试50分)
22. (本题满分12分)
已知:多项式A=b³-2ab
(1)请将A 进行因式分解:
(2)若A=0且a≠0,b≠0,求2
22ab 1b 1a -+-)(的值
23. (本题满分12分)
如图,点O 是等边△ABC 内一点,∠AOB=110°,∠以OC 为一边作等边△OCD ,连接AD.
(1)求证:△BOC ≌△ADC ; (2)当OA=OD 时,求a 的值
24. (本题满分13分)
一般情况下,一个分式通过适当的变形,可以化为整式与分式的和的形式,例如: ①1
-x 211-x 21-x 1-x 1-x 21-x 1-x 1x +=+=+=+)(; ②2
x 42x 2-x 42x 2x 2-x 44-x 2-x x 22-++=+-+=+=))(( (1)试将分式2
x 1-x +化为一个整式与一个分式的和的形式; (2)如果分式1
-x 1-x 22的值为整数,求x 的整数值。
25.(本题满分13分)
如图,四边形ABCD中,AB∥CD,过点D作DF⊥BC,垂足为F,DF与AC交于点M,已知∠1=∠2。
(1)求证:CM=DM;
(2)若FB=FC,求证:AM-MD=2FM.。