图的着色
- 格式:ppt
- 大小:419.50 KB
- 文档页数:27
图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。
用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。
求一个图的最小色数 m 的问题称为m-着色优化问题。
二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。
在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。
如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。
具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。
2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。
3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。
4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。
此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。
5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。
6. 重复步骤2至5,如果最终 step 为0则代表无解。
2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。
三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。
数学中的图的着色问题与四色定理数学中的图论是一门研究图及其性质的学科,其中一个重要的问题就是图的着色问题。
图的着色问题是指如何用有限种颜色给图的顶点或边进行染色,使得相邻的顶点或边不具有相同的颜色。
这个问题在实际应用中有着广泛的应用,比如地图着色、时间表的安排等。
在图的着色问题中,最著名的就是四色定理。
四色定理是指任何平面图都可以用四种颜色进行着色,使得相邻的区域不具有相同的颜色。
这个定理在1852年被英国数学家弗朗西斯·格思·韦尔斯顿和威廉·哈姆顿·伯奇证明,被认为是图论中的一个里程碑。
证明四色定理的过程非常复杂,需要运用大量的数学知识和技巧。
其中一个重要的思想就是通过对图进行适当的分割,将大问题转化为小问题,然后逐步解决。
这种分割的方法被称为“规约法”,即将一个复杂的问题规约为一系列简单的子问题。
通过这种方法,韦尔斯顿和伯奇最终证明了四色定理的正确性。
四色定理的证明引起了广泛的关注和讨论。
人们对于这个问题的兴趣不仅在于它的应用价值,更在于它背后的数学原理和思维方式。
四色定理的证明过程中,涉及到了众多的数学概念和定理,如图的平面性、图的连通性、图的染色等。
这些概念和定理的研究不仅推动了图论的发展,也对其他领域的数学研究产生了重要影响。
除了四色定理,图的着色问题还有其他一些重要的结果。
比如,五色定理指出任何平面图都可以用五种颜色进行着色,六色定理指出任何平面图都可以用六种颜色进行着色。
这些定理的证明过程和四色定理类似,都需要运用复杂的数学技巧和方法。
图的着色问题不仅在理论上有着重要的意义,也在实际应用中发挥着重要的作用。
比如,在地图着色中,我们可以用不同的颜色表示不同的国家或地区,以便更好地区分它们。
在时间表的安排中,我们可以用不同的颜色表示不同的活动或任务,以便更好地组织和管理。
这些应用都离不开图的着色问题的研究和应用。
总之,图的着色问题是数学中一个重要且有趣的问题。
图论中的图的着色与染色问题图论是数学的一个分支,研究的是图的性质和图的应用。
在图论中,图的着色与染色问题是一个经典且重要的研究课题。
图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。
本文将介绍图的着色与染色问题的基本概念和应用。
一、图的基本概念1. 无向图和有向图无向图由一些顶点和连接这些顶点的边组成,边没有方向性。
而有向图中,边是有方向性的,连接两个顶点的边有始点和终点之分。
2. 邻接矩阵和邻接表邻接矩阵是一种表示图的方法,用一个矩阵表示图中各个顶点之间的连接关系。
邻接表是另一种表示图的方法,用链表的形式表示图中各个顶点之间的连接关系。
二、图的着色问题图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。
图的着色问题有以下两种情况:1. 顶点着色对于无向图或有向图的顶点,通过对每个顶点进行染色,使得图中任何相邻的顶点具有不同的颜色。
这里的相邻顶点指的是通过一条边相连的顶点。
2. 边着色对于无向图或有向图的边,通过对每条边进行染色,使得图中任何相邻的边具有不同的颜色。
这里的相邻边指的是有共同始点或终点的边。
三、图的染色算法对于图的着色问题,有不同的染色算法可以解决。
在这里我们介绍两种常用的染色算法:贪心算法和回溯算法。
1. 贪心算法贪心算法是一种基于局部最优策略的算法。
对于图的顶点着色问题,贪心算法的策略是从一个未染色的顶点开始,将其染上一个可用的颜色,并将该颜色标记为已占用,然后继续处理下一个未染色的顶点。
如果当前顶点没有可用的颜色可染,则需要增加一个新的颜色。
2. 回溯算法回溯算法是一种穷举所有可能性的算法。
对于图的着色问题,回溯算法的策略是从一个未染色的顶点开始,尝试不同的颜色进行染色,如果发现染色后与相邻顶点冲突,就回溯到上一个顶点重新尝试其他颜色,直到所有顶点都被染色。
四、图的着色问题的应用图的着色问题在实际中有广泛的应用。
图的着⾊算法图着⾊算法描述:给定⽆向连通图和m种不同的颜⾊。
⽤这些颜⾊为图G的各顶点着⾊,每个顶点着⼀种颜⾊。
是否有⼀种着⾊法使G中每条边的两个顶点有不同的颜⾊。
这个问题是图的m可着⾊判定问题。
若⼀个图最少需要m种颜⾊才能使图中每条边相连接的两个顶点着不同颜⾊,称这个数m为这个图的⾊数。
求⼀个图的⾊数m称为图的m可着⾊优化问题。
给定⼀个图以及m种颜⾊,请计算出涂⾊⽅案数。
图的着⾊算法分析:1. Color存储着⾊⽅案。
2. 从第⼀个顶点开始着⾊,判断是否安全。
3. 安全则继续着⾊直到顶点全部被着⾊,输出可⾏的着⾊⽅案4. 若不安全则停⽌着⾊⽅案,回溯,测试下⼀⽅案本⼈使⽤的是C#,以下是完整代码,输⼊为顶点数,颜⾊数和图的连接矩阵。
IsSafe函数判断安全与否,ColorGraph函数具体着⾊。
递归实现回溯。
using System;namespace graphColoring{class Program{static void Main(string[] args){Console.WriteLine("请输⼊顶点数:");string numberN = Console.ReadLine();int N = Int32.Parse(numberN);Console.WriteLine("请输⼊颜⾊数:");string numberColor = Console.ReadLine();int M= Int32.Parse(numberColor);int[, ] matN = new int[N, N]; //⽆向图的邻接矩阵Console.WriteLine("请输⼊⽆向图的邻接矩阵:");for(int i = 0; i < N; i++){string str = Console.ReadLine();string[] temp = str.Split("".ToCharArray());for(int j = 0; j < N; j++){matN[i, j] = Int32.Parse(temp[j]);}}int[,] MatN = matN;graph myGraph = new graph(N,M,MatN);Console.WriteLine("所有的⽅案:");myGraph.graphDeal();}}class graph{private int n; //顶点数private int m; //颜⾊数private int[,] matN; //邻接矩阵private int[] color; //着⾊⽅案public graph(int N,int M,int[,] MatN){n = N;m = M;matN = MatN;color = new int[n];for (int i = 0; i < n; i++)color[i] = 0;}public void graphDeal(){ColorGraph(matN, m, color, 0);}private bool IsSafe(int[, ] matN,int[] color, int n1, int i){for(int j = 0; j < n; j++)if (matN[n1, j] == 1 && i == color[j])return false;return true;}private void ColorGraph(int[, ] matN,int m,int[] color,int n1){if (n == n1){printSolution(color);return;}for(int i = 1; i <= m; i++){if (IsSafe(matN, color, n1, i)){color[n1] = i;ColorGraph(matN, m, color, n1 + 1);color[n1] = 0; //如果缺少则color⽆法在每个正确或者错误的⽅案完成后重置 }}}void printSolution(int[] color){foreach(int i in color){Console.Write(i+"");}Console.WriteLine();}}}。